Can Virtual CPE Be Cost-Effective for Enterprise Customers?

Charlie Ashton, Wind River

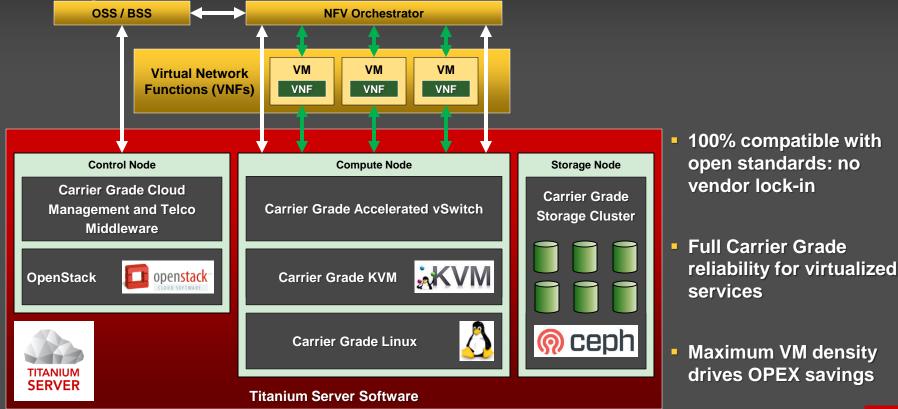
Topics

- Introduction to Wind River in telecom
- Business drivers for virtual CPE

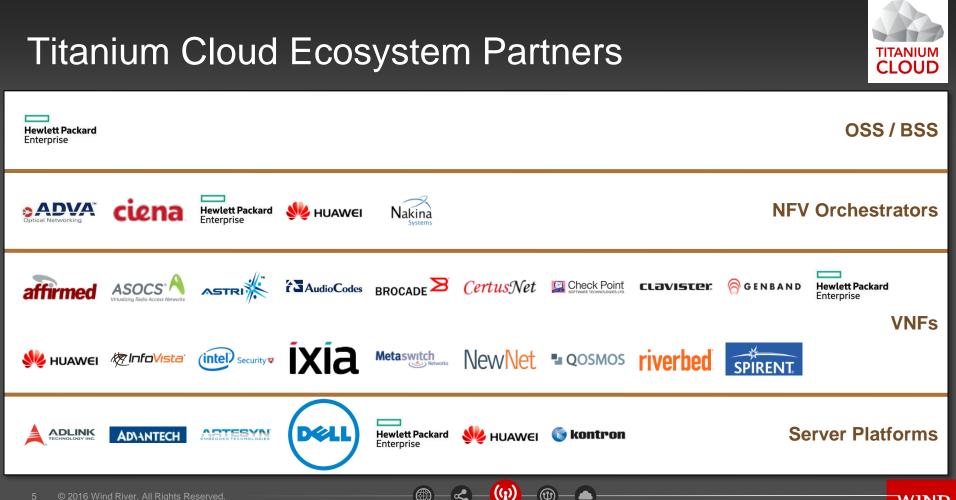
Four key challenges for cost-effective vCPE

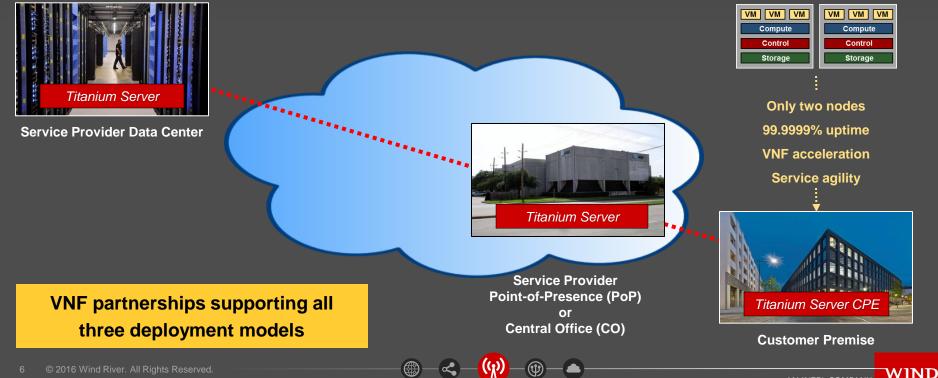
- Service reliability
- Service agility
- Virtualization overhead
- Server footprint

Summary

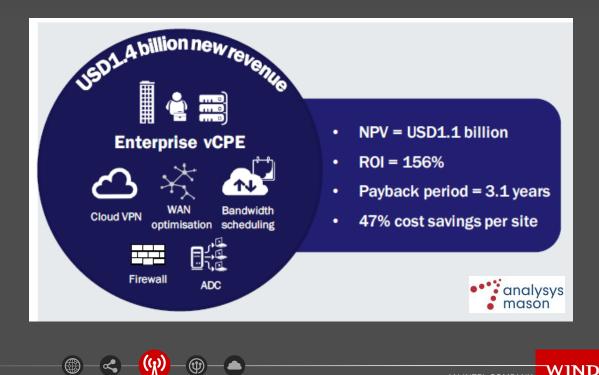

Introduction to Wind River in NFV

- Founded in 1981 as embedded tools and Operating System company
 - Acquired by Intel in 2009
- Our software has been deployed in over two billion devices
 - Where failure is not an option
- Telecom customers include all the top 20 TEMs worldwide


- Solving critical challenges for network virtualization
 - <u>Titanium Server</u>: only commercial NFV cloud that delivers the Carrier Grade reliability required for telecom networks
 - Supported by <u>Titanium Cloud</u> ecosystem of industryleading partners

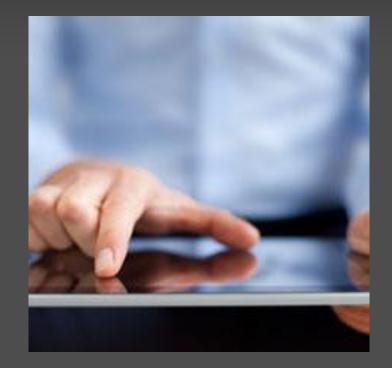

An Open Solution for NFV Infrastructure

AN INTEL COMPANY



Addressing Multiple Virtual CPE Deployment Options Supporting three deployment models planned by service providers

Why Virtual CPE for Enterprises? <u>Revenue growth plus</u> cost savings for service providers



Revenue Growth from Agile, On-Demand Services

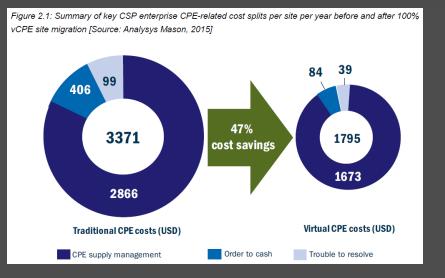
- Managed network services for enterprises is already a lucrative market for service providers

 - MPLS, Ethernet, VPN, WAN Optimization, Security
- vCPE presents significant growth opportunity for first movers
 - Scalable, automated deployment of existing and new services
 - Self-provisioning by customers accelerates adoption cycle
 - ~5% annual revenue growth per site

New Revenue from Upsell and Cross-Sell of Services

- Managed network services enabled by virtualization
 - Dynamic VPN configuration
 - Dynamic WAN configuration
 - Self-service bandwidth-on-demand
 - Data center interconnect services
 - Security as a service (firewall, DDoS etc.)
 - WAN optimization
 - Web acceleration

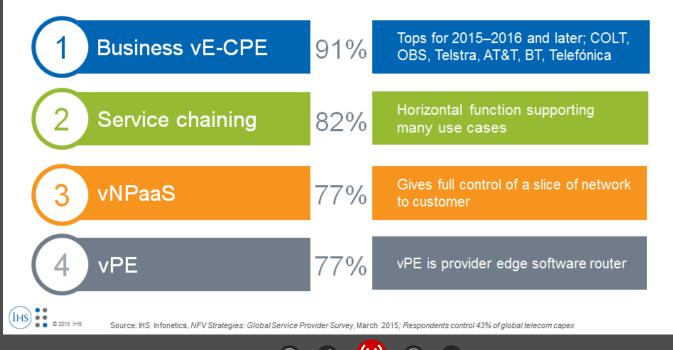
- On-demand provisioning is key
 - Expectations set by portals from cloud service providers (Amazon, Google etc.)
 - Automated, scalable platforms
 - User-friendly dashboards
 - On-demand instantiation of CPE VNFs



WINI

40-50% Cost Savings from Migration to vCPE

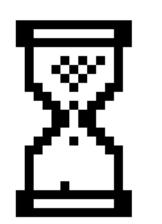
- Replace expensive, dedicated physical appliances with standard servers
 - 42% savings in equipment CAPEX and OPEX
- Remove inefficiencies in manual equipment installation and service provisioning
 - 72% savings in "Order to Cash" (O2C)
- Eliminate most truck rolls and accelerate remote resolution of failures
 - 61% reduction in "Trouble to Resolve" (T2R) costs


SDN and NFV are Key Enablers for Cost Savings

- Equipment CAPEX and OPEX savings driven by low-cost standard servers
 - Efficient resource utilization thanks to virtualization
 - No stranded assets
 - Aggressive VNF pricing driven by competition
- SDN and NFV drive efficiency in Order-to-Cash
 - Accelerated, self-service provisioning of new services
- CPE virtualization minimizes support costs
 - Customer site repairs mostly eliminated

So.... vCPE is Top NFV Use Case for 2015-2016

Operator Top 4 NFV Use Cases for 2015–2016


AN INTEL COMPANY

Four Challenges to Cost-Effective Business CPE

- Service reliability
- Service agility
- Virtualization overhead
- Server footprint

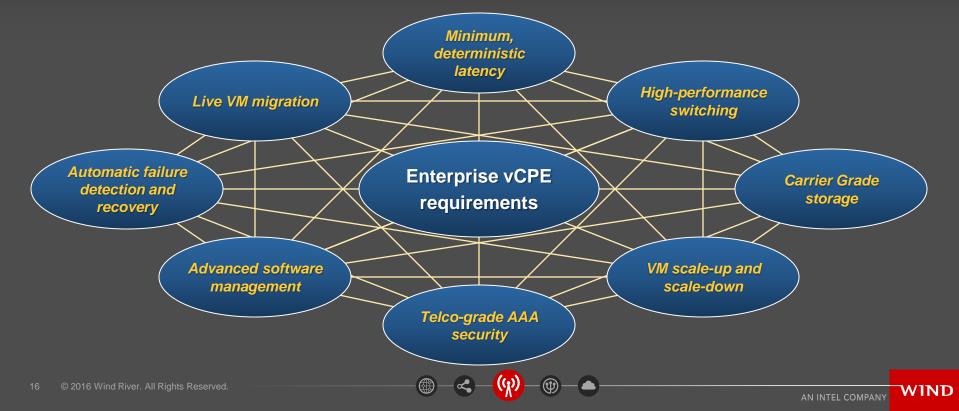
vBCPE Challenge #1: Service Reliability

- Enterprise customers expect high reliability from managed services
 - Whether provided by traditional appliances or delivered by virtual CPE software
 - Typical requirement is five-nines uptime (99.999%)

Service downtime impacts service provider revenues

- Service Level Agreement (SLA) penalties
- <u>plus</u> operational expenses
- plus customer churn

Virtualized CPE services need to maintain reliability of traditional physical implementations


IT Cloud Platforms Don't Deliver Telco Reliability

	IT Platform Capability	Enterprise vCPE Requirements
Detection of failed VM	> 1 minute	< 1s
Detection of failed compute node	> 1 minute	~ 1s
Recovery from control node failure	No support	< 25s
vSwitch performance	1-2 Gbps	Line rate with minimum core utilization
Network link failure detection	Depends on Linux distribution	50ms
Live migration for DPDK-based VMs	No support	Full support

ψ)

Service Reliability Requirements Are Complex

VM lifecycle management, software updates, security and performance

One Solution that Meets All the Requirements

TITANIUM SERVER
าร
S
n 2 cores ckets)
S
:: 200ms
(

Ψ

∰

~

vBCPE Challenge #2: Service Agility

Example **Before:** Router Firewall After: WAN Firewall Router Accelerator

 OpenStack has no primitives to reconnect the firewall interface from the router to the WAN accelerator

Only options are:

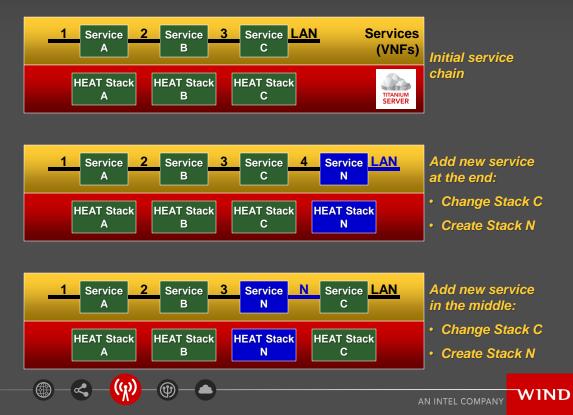
- <u>Either</u> delete the firewall interface and reconnect, which may lead to ambiguity because firewall rules tied to specific virtual NIC
- <u>Or</u> provision new service chain from scratch which causes outage of at least five minutes

Need a solution for reconfiguring service chains with minimal service downtime

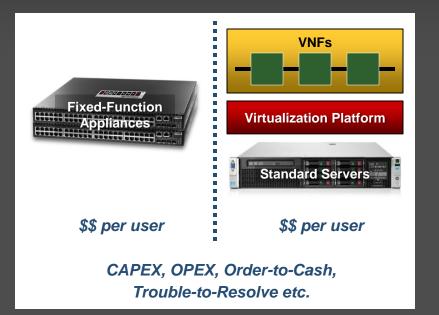
Two Solutions for Service Chain Reconfiguration

Option 1:

- Orchestrate service chain update using OpenStack
- Accelerated by use of HEAT stack for each service


Option 2:

Reconfigure vSwitch flows using SDN


Add a new service in seconds

vs. weeks or months today

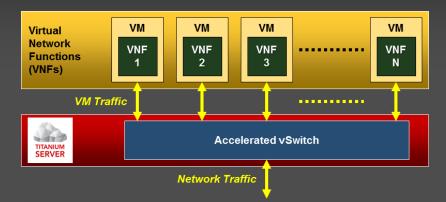
vBCPE Challenge #3: Virtualization Overhead

- Multiple elements contribute to bottom-line cost-per-user
 - Needs to be favorable vs. physical appliances
 - Goal is lower costs <u>plus</u> increased revenues

Virtualization overhead is a major factor

- Off-the-shelf virtual switches have very low performance vs. physical switches
- Limits VNF performance
- Causes inefficient resource utilization

Need to ensure that virtualization overhead is minimized


High Performance vSwitching Drives OPEX Savings

- Example: Accelerated vSwitch integrated in Titanium Server
 - <u>40x performance</u> of Open vSwitch (OVS)
 - Fully compatible with Open vSwitch: standard APIs
- Increased switching performance = greater VM density
 - Fewer cores required to run vSwitch
 - More cores available for VMs

Greater VM density → reduced OPEX

More users per server

Virtualization overhead is minimized

Example use case: virtualized media gateway

System configuration:

- 28-core platform (dual socket) with one VM per core
- Bandwidth required: 3.5 Gbps per core (6.8 Mpps per core)

Most efficient implementation using Open vSwitch

• 23 cores required for switching, <u>1 core running VM</u>, 4 unused

Most efficient implementation using Titanium Server

10 cores required for switching, <u>17 cores running VMs</u>, 1 unused

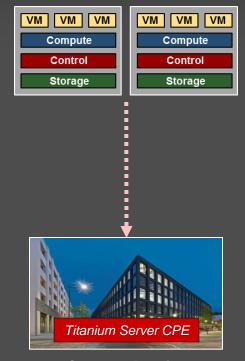
17x improvement in VM density

vBCPE Challenge #4: Server Footprint Especially critical issue for customer premise deployments

Se

- Need to deploy vBCPE on low-cost servers
 - Customers won't pay more for servers than for physical appliances
 - Solution price has to include VNFs and virtualization platform
- Must ensure service reliability required by enterprises
 - Minimum two servers for redundancy on hardware failures
- Server utilization must be optimized
 - Only compute nodes run the services that generate revenue
 - Control and storage nodes represent overhead costs

Central Office (CO)

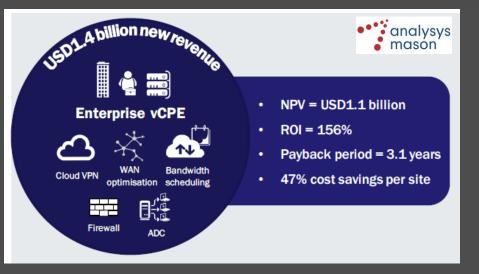


Customer Premise

One Small-Footprint Solution: Titanium Server CPE Complete, high-reliability vBCPE on just two servers

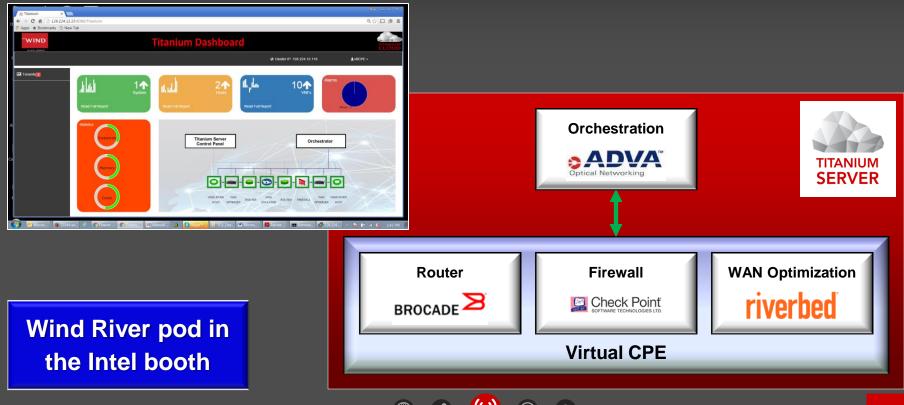
- Compute, control and storage nodes instantiated on each server
 - Only one processor core required for control and one for storage
 - Maximizes cores available for accelerated vSwitch and VMs: <u>revenue</u>
- Ensures service uptime required by enterprises
 - Six-nines infrastructure reliability enables five-nines services
- Accelerated vSwitching maximizes number of users per server
- Validated, pre-integrated VNFs for complete vCPE solution

NINT


Summary Key challenges to cost-effective enterprise virtual CPE are all solvable

Service reliability

Service agility *


Virtualization overhead

Server footprint

Business upside opportunity for service providers is significant and achievable

Please Come and See Our Complete vCPE Demo

