
Future Enhancements to DPDK
Framework
Keith Wiles, Principal Engineer, Intel Corporation

Classify

QoS

Core
Libraries Platform

Preserving Application Investment with DPDK
• Open-source (BSD license) community project (5+ years,

version 2.1 latest) -- http://dpdk.org/
‒ All code is Open Source including the device drivers or PMDs (Poll Mode

Drivers)
‒ Optimized Linux User Space Library focused on data plane

implementation on general purpose processors
‒ Has been Very stable project with ABI versioning for APIs
‒ Multi-architecture: x86, IBM, Freescale, EZChip(Tilera) support

• Encompasses legacy platforms and newer acceleration
platforms

• DPDK has a large application install base and included in
Linux Distro’s CentOS, Ubuntu, Red Hat, …(Fedora)
‒ Adopted by standard OS distributions (FreeBSD, Linux) and many platform

frameworks including VirtIO/Vhost and OpenvSwitch

• Scalable solution to meet different NFV use cases
• Hardware acceleration complemented by software

implementations for consistent set of services to applications
• Supports a large number of features like lockless rings, hash

keys, ACL, Crypto, Match Action, buffer management and
many others

• Has a large number of example applications and growing
• Supports any number of devices at the same time, using a 2

layer device model

Packet Access
(PMD – Native & Virtual)

EAL

MALLOC

MBUF

MEMPOOL

RING

TIMER

KNI

POWER

IVSHMEM

LPM

EXACT
MATCH

ACL

E1000

IXGBE

VMXNET3

IGB

I40e

VIRTIO

ETHDEV

XENVIRT

PCAP

RING

METER

SCHED

Linux User Space Application

User Space

KNI IGB_UIOVF_IO

2

3

DPDK - AE
What is Acceleration Enhancements for DPDK?

4

DPDK – What does the Future Hold?
Here are a few items we are thinking about and need help
• DPDK-AE (Acceleration Enhancements)
• What type of acceleration device types?

• Crypto via hardware and software acceleration
• DPI engine
• Compression
• Match Action and Flow Director APIs

• Adding support for SoC hardware
• hardware memory management and event handling

• Network Stacks, light weight threading and other applications
• Focus on VirtIO performance and enhancements
• Support other language bindings

5

DPDK – crypto API
Overview of proposed Crypto API for DPDK

6

DPDK – Crypto using Hardware and Software
Doing hardware and/or software crypto has some good advantages

• Hardware crypto can handle the large packets
• Software crypto can handle the smaller packets

Added advantages are:
• better performance over a range of packet sizes
• parallel execution with software and hardware crypto
• Abstracts the packet handling making it transparent to the application

7

DPDK – Flow classification
Proposed flow classification support in DPDK

8

DPDK – Flow Classification with Hardware
DPDK uses Flow Director APIs to manage flows

Match-Action API is a superset of APIs for flow classification
• The code is open source at https://github.com/match-interface

Match-Action API has a much large set of APIs to handle more flow
classification needs, which we need to expose in the future

The Match-Action API is used under the Flow Director API for backward
compatibility with current applications, while extending the
applications to new hardware or software designs

9

DPDK – Flow Classification with Hardware
DPDK uses Flow Director APIs to manage flows

The flows are currently managed in NIC devices, but we can extend FDIR
APIs to support other hardware devices using Match-Action

Later we can continue to extend FDIR API to allow for more complex
configurations and hardware designs using the full set of APIs with
Match-Action APIs

10

DPDK – SoC support
Proposed suggestion to add SoC support to DPDK

DPDK Extending Accelerators via SoC hardware

DPDK – Architecture
DPDK-AE (Acceleration Enhancements)

DPDK – API

Software

Hardware

SoC SDK

SoC
PMD

external
memory
manager 3rd Party

VNF Application

Crypto
Device

Simple model for SOC
integration

Ethernet
Device

SoC PMD: Poll Mode driver model for
SoC devices

Provides a clean integration of SoC via a PMD in
DPDK

• Hardware abstraction in DPDK is at
the PMD layer

• DPDK-API: A generic API extended to
support SoCs
– DPDK provides a two layer device

model to support many devices at the
same time/binary, which can include SoC
devices

– Need to enhance DPDK with some SoC
specific needs or features to support
SoC hardware

• Non-PCI configuration

• External memory manager(s) (for
hardware based memory)

• Event based programming model

• SoC-PMD: Poll Mode Driver model
for SoC
– Allows SoC SDK’s to remain private

Supports
other device

types

12

DPDK – Changes to Support SoC hardware

Enabling SoC hardware in DPDK requires a few enhancements

• Need a way to configure these non-PCIe devices
• Add support to DPDK mempool’s to allow for external or hardware memory

managers
• Add support for event based applications

• e.g. Open Event Machine or others to utilize an event based programming model

Enlisting input for other enhancements to DPDK for SoC devices

13

DPDK – NFV/VNF applications
Quick look at NFV/VNF applications in DPDK

14

VNF Virtual Network Interface Options

1
4

VNF A

virtio

Kernel
Stack

Network
App

Stock
vSwitch

Any
NIC

VNF B
DPDK

virtio

Network
App

Any
NIC

VNF C
DPDK

virtio

Network
App

DPDK
vSwitch

NIC

VNF D
DPDK

IVSHMEM

Network
App

NIC

VNF E

SR-IOV
NIC

Performance

VNF-NFVI Independence

VNF F

NIC VF
Driver

Kernel
Stack

Network
App

SR-IOV
NIC

Stock
vSwitch

DPDK
vSwitch

DPDK

NIC VF
PMD

Network
App

virtio w/ DPDK OVS and SR-IOV w/ OVS

1
5

VNF A

DPDK vHost User

NIC

VNF C
DPDK

virtio

Network
App

VNF C’

DPDK

virtio

Network
App

DPDK netdev

DPDK Poll Mode Driver

virtio

Kernel
Stack

Network
App

VNF A

NIC

VNF E
DPDK

NIC VF
PMD

Network
App

VNF E’

DPDK

NIC VF
PMD

Network
App

Open vSwitch

virtio

Kernel
Stack

Network
App

Kernel Stack

Open vSwitch

PF
VF VF

socket socket

Stock
vHost User Stock

vHost User

Control

16

Switch

Service Chaining Bottlenecks
• Always need to consider the overall

system performance, including internal
bottlenecks

• Having multiple VNFs on the same platform as
part of a service chain leads to much greater
VM-VM traffic than has been typically
foreseen

• Supporting a 3 element service chain
through PCIe x8 Gen 3 would limit
throughput to 16 Gbps (50 Gbps/3)

• Can scale number of cores to meet VM to VM
traffic needs, (number needed will depend on
packet size)

16

VNF 1 VNF 2 VNF 3

NIC

DPDK vSwitch

NIC

PCIe x8 PCIe x8

NIC

PCIe x8 PCIe x8

16
 G

bp
s

16
 G

bp
s

16
 G

bp
s

16
 G

bp
s

NIC

16
 G

bp
s

16
 G

bp
s

N Cores

VNF 1 VNF 2 VNF 3

50
 G

bp
s

50
 G

bp
s

Paying the “Core” Tax of a vSwitch
• We have seen (and will continue to

see) core counts increasing over
time

• As long as the core count remains
constant, or increases slowly, the
additional burden of dedicating a
small number of cores becomes
less of an issue

• e.g. using 2 cores to achieve high
performance switching

lim
x

2
x = 0

18

vSwitch Acceleration
Pros
• Leverages system architecture to its fullest
• Can extend DPDK-AE for other capabilities (e.g.

crypto)
• Virtual interface supported in all VMs now
• Live Migration supported
• Longevity of VMs into the future
• Can be extended to support containers
• Can inspect/modify packets by hypervisor, add

new features
• Scalable (#VMs, #Flows)
• Can adapt to different NIC capabilities
Cons
• Challenges in meeting line rate at 100G
• Latency and jitter needs to be optimized

External vSwitch

Pros
• Performance limited only by silicon
• Lowest latency/jitter
Cons
• No support for Live Migration
• Ties VMs to HW

• issue of longevity and placement
• Difficult to extend capabilities
• Fixed TCAM size
• Easy to replace our solution with competitor

What is the Preferred NFV Solution?

vSwitch Acceleration is the most optimal solution for a scalable NFVi

18

1919

DPDK – Summary
•We need to add more acceleration supported hardware

• Review and comment on the Crypto RFC
•Adding SoC enhancements to DPDK for more devices
•Adding better support for VNF/NFV applications is needed
•Creating a complete top to bottom NFV solution is the goal

•Lets collaborate on these and more…

20

Building a common platform
for everything and everywhere!

20

21

Thank you

21

