
White Paper

Background
The introduction and deployment of Cloud-based concepts into the IT datacentre industry has been 
very rapid over recent years. In parallel, the associated ecosystem and business models have changed 
fundamentally. IT Cloud economy-of-scale benefits and the overall value proposition derived from 
shared datacentre resources and “pay-as-you-go” business models are also potentially valid for 
telecom networks.

However, in the telecoms domain, network elements are traditionally assembled in a heterogeneous 
way with many different equipment architectures and vendors right through the network. This 
network architecture has evolved by necessity, owing to carrier-grade requirements such as real-
time performance and high availability. Mainstream industry adoption and deployment of Cloud 
Telecoms will be hindered, or even blocked, until carrier grade telecom requirements have been fully 
proven on the key technologies underpinning the Cloud Telecoms concept, namely Network Functions 
Virtualisation (NFV), Software Defined Networking (SDN) and deployment on industry-standard, high-
volume servers. 

Virtualisation promises freedom of deployment for various functionalities in an open, standardised 
environment. When introduced in a telecoms context, the critical success factors are performance, 
latency and standardized management interfaces. 

SDN is an approach to building networks that accomplishes the following: separates the control and 
data planes; provides a global view of the network to a centralized controller; and enables external 
applications to program the network. It also promises freedom of connectivity on a number of different 
levels in the network infrastructure. For example, the same management concepts can be applied 
to connectivity functions (e.g., on network, element, blade and chip levels). SDN can be seen as a 
complementary technology to virtualisation and is potentially well suited for a network-enabled cloud 
and improving network resource utilization on the link level.
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The more network functions that can be migrated to industry-standard, high-volume server 
environments, the bigger the business case becomes for Datacentre concepts to be more widely 
deployed in the network. However, many network functions have extreme characteristics and 
performance requirements. These need to be addressed on industry-standard servers with intelligent 
load balancing, power management and high-speed packet processing. 

This paper describes the Carrier Cloud Telecoms initiative1, a joint program between Intel and Tieto*, 
which explores the key R&D challenges and possible approaches central to cloud realization in 
the telecoms domain. The initiative includes a virtualised proof of concept implementation of 3G 
core network and LTE evolved packet core (EPC) network functions in an open, scalable multicore 
environment based on Intel® architecture. Thanks to cloud-based technologies, and improvement gains 
from Intel® multi-core technology and software optimizations developed by Intel and Tieto, the potential 
exists to open the telecoms network to allow for new innovative service designs that promote ecosystem 
cooperation and best-of-breed solutions. In addition, the potential exists to reduce provisioning costs 
(CapEx) required for telecoms workloads and applications, and significantly lower operational costs 
(OpEx). A truly virtualised cloud-based network architecture can allow equipment providers and mobile 
network operators to:

•	 Efficiently operate, maintain and upgrade network resources, while speeding up functional and 
service deployments.

•	 Lower CapEx by reducing the need for specialised equipment and tool chains.

•	 Innovate to deliver new and enhanced services and revenue streams, while also allowing existing 
investments to be re-used.

The rest of this paper describes the virtualised proof of concept developed by Intel and Tieto, provides 
performance results, and evaluates both the benefits and ongoing challenges to Carrier Cloud based 
telecom deployments.

www.intel.com www.tieto.com

www.intel.com
www.qosmos.com
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Demonstration Setup Description
The virtualised proof of concept uses traffic generators and  
server platforms that are all based on industry-standard, high-
volume hardware, specifically Intel® Xeon® processor E5-2600 
v2 product family. There are also two switches in use, a high-
capacity, OpenFlow*-enabled Intel® Ethernet Switch FM6764 
(10GbE/40GbE L2/L3/L4) and a 1GbE switch, which is used for 
the management interfaces.

The software execution environment is based on a standard 
Linux* distribution (Debian), with the target hardware being an 
Intel Xeon processor E5-2600 v2 product family based platform. 
For the virtualisation parts of the demonstration, KVM (Kernel-

Figure 1.  Demonstration Deployment Setup

based Virtual Machine) and OpenStack* software are used, and 
for SDN, OpenFlow* is used to configure Open vSwitch*. SR-IOV 
(Single Root I/O Virtualisation), Intel® Virtualization Technology 
(Intel® VT) for Directed I/O (Intel® VT-d) and the Intel® Data Plane 
Development Kit (Intel® DPDK) are used to accelerate packet 
processing performance in the virtualised environment. 

In the Carrier Cloud Telecoms initiative, Intel and Tieto are 
currently working to integrate the Intel® Multi-Buffer Crypto 
for IPSec Library to accelerate on-core IPSec processing. 
Performance benchmarking and measurements will be provided 
as part of the demonstration once completed.

Intel® DPDK: Intel® Data Plane Development Kit
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Figure 2.  Demonstration System Architecture

Demonstration Use Case Descriptions
The following scenarios are part of the Carrier Cloud Telecoms 
demonstration:
•	 Dynamic provisioning of 4G/LTE traffic and resources in a 

virtualised SDN environment
 º VLAN-based load distribution enabled by OpenFlow
 º Multiple fault-isolated KVM virtual machines (VM) 

allowing for multiple logically separated tenants in the 
same physical system

 º Dynamic provisioning and management of VMs via 
OpenStack

 º Event and fault management of virtual resources via 
industry-standard, operation and maintenance (O&M) 
northbound APIs (notifications and alarms)

 º Utilization of SR-IOV hypervisor bypass technology on 
Intel® processors along with Intel VT-d for improved 
performance and reduced latency

 º Use of Open vSwitch for the inter-VM interconnect and 
load distribution

•	 High-performance and energy-efficient packet processing and 
protocol distribution using the Intel DPDK and the Tieto IP 
stack (TIP)
 º High-speed software load balancing and distribution of 

SCTP and GTP-U bearer traffic
 º Advanced power management schema based on an  

inter-VM control plane solution
•	 4G/LTE to 3G video stream handover scenario

 º Seamless 3GPP handover from the LTE to 3G network 
using Open vSwitch and OpenFlow in line with 3GPP 
procedures

 º Quality of service (QoS) implementation
•	 LTE Network Functions - PGW handover scenario using SDN

 º Consolidation of traffic streams at low system loads
 º Software controlled seamless traffic handover of internet 

traffic at the Packet Data Network Gateway (PGW)
 º Utilization of OpenFlow API and Open vSwitch to          

re-program traffic flows during handovers
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Figure 3. Intel® Data Plane Development Kit

Intel® Architecture and Intel® Data Plane 
Development Kit (Intel® DPDK)
Packet processing performance has improved tremendously 
on Intel processor-based platforms due to the combination of 
software advances and Intel® microarchitecture enhancements.

Intel architecture-based platforms, combined with high-
performance packet processing software, like the Intel DPDK, 
provide the capability to consolidate telecoms workloads onto a 
single platform. Moreover, Intel is committed to delivering ever-
increasing performance and power-efficiency through an industry-
leading beat-rate of manufacturing process improvements and 
microarchitecture advancements via a predictable “Tick-Tock” 
model. This predictability, matched with optimized software 
solutions, helps to unleash the full potential of Intel architecture-
based platforms.

The Intel DPDK is a set of optimized software libraries and drivers 
that enable high-performance data plane packet processing 
on network elements based on Intel architecture. For more 
information on the Intel DPDK, see  www.intel.com/go/dpdk.

Network Functions Virtualisation 
Network Functions Virtualisation (NFV) is today a major topic 
of industry attention and interest, and has resulted in the 
creation of industry collaboration groups such as the ETSI NFV 
Industry Specification Group (ISG), of which both Intel and Tieto 
are participants. The Carrier Cloud Telecoms demonstration 
uses virtual network functions, such that each of the LTE EPC 
and 3G Core Network applications is executing within a VM. 
The demonstration uses OpenStack and KVM, which provide 
the overall virtualisation infrastructure. KVM supports native 
virtualisation on processors with hardware virtualisation 
extensions. Deploying virtualisation in the network can help to 
support multi-tenancy deployments, a key requirement for future 
network evolution. Virtualisation separates the underlying cloud 
infrastructure ‘enabling’ host framework from the tenants, and it 
will also provide inter-tenant separation when multiple tenants are 
occupying the same physical hardware. 

The key benefits of using virtualisation are:

•	 Flexibility of deployment, helping to simplify scalability of 
application software on industry standard hardware.

•	 Reduced equipment costs through consolidation of equipment 
and energy efficient power management implementations.
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•	 Reduced time to market (TTM) by minimising the procure-
design-integrate-deploy innovation cycle. Expenditures and 
time required to innovate, validate and deploy hardware-based 
functionalities are much less for software-centric development, 
allowing for more innovation in overall lifecycle.

http://www.intel.com/go/dpdk
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•	 Reuse of application software, which encourages more 
innovation internally and in the broader industry. This allows 
new services and revenue streams to be developed quickly 
and at much lower risk. It also allows these new services to 
be targeted geographically for greater flexibility.

•	 Increased support for fault isolation and security in the 
network.

Virtualisation does have its challenges, however. From the Cloud 
Telecoms perspective, ensuring that performance latencies 
caused by virtualisation and hypervisors are kept to a minimum is 
paramount.

Executing programs in a VM is normally quite efficient due to 
virtualisation features built into newer CPUs, e.g. the Intel Xeon 
processor E5-2600 v2 product family with Intel VT-d. This applies 
as long as the execution of instructions is contained within the 
VM. However, operations that require execution to exit from 
the VM and continue in the hypervisor can have considerable 
performance overhead. In classic virtualisation, hardware is 
emulated in the hypervisor and all hardware access requires an 
exit from the VM into the hypervisor to simulate the hardware 
access from the VM environment. Such a switch of context has a 
considerable performance overhead.  

Para-virtualisation means that less of the hardware is simulated, 
which results in better VM performance; this is one of several 
features that can be used to improve performance of virtualisation. 
In the Carrier Cloud Telecoms initiative, SR-IOV, Intel VT-d and 
the Intel DPDK have been used to allow the Tieto IP-stack within 
the VM to access the physical hardware directly from within the 
VM to achieve network performance comparable to native, non-
virtualised performance. While SR-IOV allows an IP-stack within 
a VM direct access to parts of the physical hardware, it does not 
allow the IP-stack to configure the hardware, i.e., the configuration 
needs to be handled from outside the VM by the hypervisor. 
While virtualisation provides efficient compartmentalization and 
abstraction of physical hardware, it also makes infrastructure 
performance monitoring and management more difficult.  In 
the Carrier Cloud Telecoms demonstration, basic hardware 
management has been implemented using OpenStack; however, 
fine-grained control of the hardware needs a control channel 
between IP-stack and hypervisor. In the demonstration, a 
specialized inter-VM power management algorithm has been 
implemented to minimize latencies, which is a good example of a 
more fine-grained control channel. 

Performance Benchmarking

The purpose of the performance measurements within the Carrier 
Cloud Telecoms initiative is to demonstrate high performance  
and scalability on multiple cores with the protocols used in 
LTE EPC. To demonstrate flexibility and cost efficiency, only 
generalized hardware such as Intel Xeon processor E5-2600 v2 
product family based CPUs and Intel® Ethernet Gigabit Server 
Adapters (NICs) are used. The primary protocols of LTE EPC 
are SCTP and GTP-U, and these are used by nodes, such as 
the MME and SGW nodes for signalling and user-plane data, 
respectively. The performance demonstration shows performance 
and scalability of these protocols. 

The results presented are thus applicable to any node using 
protocols and traffic patterns similar to those presented (like 
eNodeB). Performance has been measured in a simplified network 
with two nodes connected back-to-back. In the simulation, one 
node generates traffic while the other relays back duplex traffic. 
A fully-featured IP-stack is used (Tieto IP Stack) together with 
simulated SGW and MME functionality. The GTP protocol is not 
fully featured but performance-wise is representative of a full 
implementation. Tests have been made in both a virtualised and a 
non-virtualised setup. Virtualisation adds complexity, and despite 
improved hardware support for virtualisation, some overhead is 
still expected. Intel processors support extended page tables that 
reduce virtualisation overhead. NICs are being accessed directly 
through Intel VT-d, which adds an input/output translation look-
aside buffer (IOTLB) to reduce the overhead from accessing the 
NICs. Also, the setup uses huge-pages to reduce the load on the 
translation look-aside buffer (TLB) caches.

The performance measurement system has four physical 
cores with Intel® Hyper-Threading Technology (Intel® HT 
Technology), which creates eight logical cores. Performance 
results are based on an architecture where there is one load 
distribution core and three “worker cores”, upon which the 
traffic is distributed. The load distributor runs on core 0. When 
running multiple application instances in one VM, core 1 is 
used for the TX multiplexer required to map transmit traffic from 
the worker cores into the single transmit queue available in the 
virtualised environment. When running one application per VM, 
the load distributor and the TX multiplexer are not required. 
The application worker cores are running on the logical cores 
2, 4  and 6. The additional logical threads created by Intel HT 
Technology are not used for the application worker cores. 
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The maximum throughput is measured by increasing the traffic 
generation rate until the resulting throughput does not increase. 
To measure the scalability of performance when increasing the 
number of cores, we have also made measurements with a fixed 
(high) traffic rate and by increasing the number of cores. The 
traffic is always equally loaded between the involved cores.

Performance measurements have been taken for both Host and 
Virtualised environments.

For all the figures below, the throughput is in units of:

•	 Kpacket is 1000 message signal units (MSUs)

•	 Mbit is 1.000.000 bits

•	 Packet size is GTP-U payload

Throughput in the graphs is one-way only (even though the traffic 
is two-way). All traffic is sent from the generator to the target test 
application, which echoes the traffic back. The generator measures 
the throughput, and it only counts the number of packets received. 
This means that all packets are both received and transmitted by 
the target test application but are only counted once. The total 
throughput (both receive and send) is the double of the throughput 
values shown in the graphs. For all tests, Intel HT Technology is 
enabled, although the additional logical cores are not used for 
applications.

The load distribution component is software-based functionality 
that distributes ingress traffic to IP-stack slices based on a (static) 
set of rules. A dedicated core receives ingress traffic from the 
NIC ports and distributes traffic to worker cores. The Intel DPDK 
ring functionality is used for passing ingress traffic from the load 
distributor core to the worker cores.

The software load distributor uses a static set of rules, and the 
supported rules are (in deceasing order of precedence):

1. IP address range

2. Port range match

3. VLAN tags

4. IPSec selectors

5. GTP-U endpoint ID match. 

The load distributor also supports exception traffic such as ARP 
and ICMP. Handling of these packets is defined with special rules; 
for example, each ARP packet can be directed to a specific core 
running an ARP proxy. 

The use of the load distributor enables efficient traffic distribution 
on a multicore environment. However, for very high throughput 
wireless traffic (GTP-U) distribution (40GbE and higher), 
the software-based load distribution mechanism can start to 
experience performance-bottlenecking (essentially IO-bound). 
Thus, the architecture of the load distributor will need to be 
enhanced and potentially complemented by hardware-based load 
distribution for extremely high throughput scenarios where GTP-U 
traffic needs to be distributed over the available cores in the 
system.

The proof of concept performance using the Tieto IP stack 
and Intel DPDK was measured for both host and virtualised 
environment. In summary, the obtained performance results are 
listed below. These numbers are given for two-way traffic (i.e., 
packets are counted both as received and transmitted).

Sustainable SGW throughput:

•	 Generally host and VM performances are identical

•	 Performance with and without power management is identical

•	 GTP 10 bytes MSU 1 core (host) 8.000.000 packet/s

•	 GTP 10 bytes MSU 1 core (VM) 8.000.000 packet/s

•	 GTP 64 bytes MSU 1 core (host) 7.600.000 packet/s

•	 GTP 64 bytes MSU 1 core (VM) 7.600.000 packet/s

•	 GTP Packet Mix (50% 64byte, 50% 1400 Byte) 1 core (VM) 
14.000.000 packet/s bi-directional (at 70% core utilization)

•	 SCTP 100 bytes MSU 1 core (host) 2.580.000 MSU/s

•	 SCTP 100 bytes MSU 1 core (VM) 2.580.000 MSU/s

Host and Virtualised Performance Benchmarks 
The Carrier Cloud Telecoms initiative has baselined formal 
performance numbers for GTP-U based bearer traffic in both a 
virtualised and host OS environment as part of the demonstration. 
The system used is an Intel® Core™ i7-3820 processor @ 
3.60GHz with 10 Mbyte cache and support for Intel VT-d, and has 
Intel C-state management enabled in the BIOS. The systems are 
configured for a host OS or a virtualised environment, depending 
on the actual tests. These findings are presented on the next page.
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Figure 5.  Tieto IP Stack and Intel® Data 
Plane Development Kit (Intel® DPDK) 
GTP-u Performance in a Virtualised 
Environment With Power Management
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Figure 6. Maximum GTP Throughput 
With Three Cores in VM and Non-VM 
(Host) Environment
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Power Management in a Virtualised Environment
In the Carrier Cloud Telecoms architecture running on Linux, a 
specialized power management algorithm replaces the standard 
Linux power management (basically developed for laptops) 
because it tends to be inefficient, especially when the workload 
increases. The standard Linux implementation makes decisions 
based on CPU load history, whereas the approach taken in the 
Carrier Cloud Telecoms initiative is based on the detected future 
workload. Low-level power management APIs are only available 
in a non-virtualised environment and virtualised machines cannot 
perform power management (e.g., manage CPU frequencies).
To overcome this, the initiative developed a power management 
agent that is part of the control plane of the cloud virtualisation 
infrastructure and not merely within the virtualisation environment. 

The Carrier Cloud Telecoms demonstration scales the number 
of resources in the cloud depending on individual CPU loads.  
Load, as measured on a single processing unit (e.g., a core), 
not only depends on the number of instructions executed by that 
individual core, but also on the resource contention amongst 
other cores (i.e., execution units (physical and logical), cache, 
memory bandwidth, I/O devices, etc). This means other tenants 
may actually increase the load on other unrelated tenants if they 
share physical resources in some way. As more physical hardware 
topology and physical hardware load is hidden by virtualisation, it 
becomes more difficult to manage the cloud.

Power management in previous phases of the initiative was 
implemented using frequency management through the Linux 
userspace “frequency governor” API and CPU load/C-state 
transitions triggered by an adaptive algorithm that for brief periods 
of time suspends the application. The Linux userspace frequency 
governor API is not available in current hypervisors; therefore, the 
current phase of the program and the associated demonstration 
implemented a control channel from the VM to a frequency 
management agent in the hypervisor. The frequency target 
calculations are implemented by the IP-stack within the VM based 
on current load levels and lengths of ingress packet queues (i.e., 
attributes that are intrinsic to the IP-stack). The resulting frequency 
targets are communicated to the frequency management agent, 
which propagates it through the Linux userspace API.

CPU load throttling and C-state transitions, triggered through 
adaptive IP-stack and application suspension in the VM, need 
to be treated slightly differently with current hypervisors. This 
is because the suspension is implemented by starting a timer 
with the current suspend interval and then waiting for that timer 

to expire. Using timers from a VM with current hypervisors will 
trigger an exit from the VM into the hypervisor, which results in 
timers having higher overhead than when used natively (e.g., from 
a host Linux OS). The consequence is that short suspends are not 
possible, and power management from a VM has a slight overhead 
compared to the native implementation shown in previous phases 
of this program.  

The challenge has been mitigated by placing a lower limit on 
the sleep value, but it inevitably causes a small shift of the load 
curve upwards compared to the non-virtualised environment. The 
overhead will typically manifest itself at low to medium loads, with 
the worst-case overhead occurring at very low loads (just above 
idle), and may be as large as 100%. The overhead decreases 
as throughput is increased, and at around 30% throughput, the 
difference is negligible.

The conclusion is that virtualisation is an excellent capability, 
but there are use cases and situations where knowledge and 
access to the physical hardware may still be necessary; at least 
until inter-VM software switching performance improves. Also, 
as implemented in the demonstration, the underlying cloud 
infrastructure has to provide control plane mechanisms that allow 
the guest to manage low-level features like power management. 

OpenStack
IaaS computing resources are pooled to serve the needs of 
applications that require different physical and virtual resources. 
In the cloud, these resources are dynamically assigned and 
reassigned on demand. Examples of computing resources include 
storage, processing (compute), memory, network bandwidth and 
virtual machines. 

In addition, a traditional IT cloud enforces location independence, 
therefore, the application generally has no control or knowledge 
over the exact location of the provided resources. This model 
is not sufficient for the telecoms cloud; instead, a more specific 
mechanism for placement is needed. 

The Carrier Cloud Telecoms demonstration uses OpenStack 
to implement the management of virtualised resources as part 
of the Cloud Management Infrastructure. The benefits of using 
OpenStack include:

•	 Uses open source software

•	 Simplifies the management of complex virtualised systems
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•	 Allows heterogeneous VM environments (KVM, Xen*, 
VMware*)

•	 Supports a well-defined IaaS interface with Amazon* Elastic 
Compute Cloud (EC2) compatibility

•	 Implements a REST base remote management interface

At a high level, OpenStack is built from five components:

•	 Nova - cloud infrastructure “runtime”

•	 Glance - image management and OCCI management interface

•	 Swift - object store

•	 Keystone - user management and authentication

•	 Quantum – network infrastructure

The Nova component is composed of:

•	 Nova API - OpenStack IaaS API

•	 Nova compute – manages the VM lifecycle

•	 Nova volume - disk management

•	 Nova scheduler - schedules cloud resources for Nova        
API calls

•	 Nova network - handles host machine network configurations

The demonstration uses these components as follows:

1.  The VM images are stored in the Glance image store 

2.  Each user is defined in Keystone, and prior to the OCCI 
call, the user needs to authenticate via Keystone

3.  VMs are started and stopped remotely via OCCI - 
Internally OCCI calls the Nova API

4.  The Nova API and Nova compute are used for running 
the VMs, with the VM lifecycle being fully managed by Nova 
compute

Quantum is used to configure a private network between the 
OpenStack management node and virtual machines. Unfortunately, 
Quantum cannot be used at present to configure SR-IOV networks. 
Therefore, in the demonstration, the hypervisor bypass was 
configured manually to the host system.

Given the fact that OpenStack is primarily developed for the IT 
cloud realization, there are some modifications and extensions 

that will be necessary when orchestrating a telecoms cloud using 
this technology. For example, the VM placement mechanism, 
which is part of the Nova scheduler, is currently too limited to 
support the complex Telecom requirements, like placement with 
high availability (2N or N+1) or explicit assignment of computing 
resources such as pinning a VM to specific set of CPU cores. 
In the future, Telco-specific extensions need to be added to 
OpenStack to support these and other requirements. These 
extensions are being considered as part of future phases of the 
Carrier Cloud Telecoms program. Note that from a standards 
perspective it remains to be seen which Cloud Orchestration path 
will find greatest acceptance in the industry.

Software Defined Networking 
It is important in the Telecoms cloud to maximize resource 
utilization but to do it in an energy efficient manner, which is 
why the elasticity (aka workload distribution) of the computing 
resources is very important. In the demonstration, this resource 
elasticity is realized in both the SGW and PGW.

A good example to consider is how a software-defined network 
handles UE packets when the PGW they are attached to is 
removed. In the telecoms cloud, this scenario is a realistic one 
since resources are elastic, and the system is capable of shutting 
down elements and resources on demand. Once the PGW is 
removed, there is no network element in place to receive the UE’s 
incoming packets. 

This is where software-defined networks and OpenFlow can help. 
Since it is not possible to control the incoming packet from the 
serving network, it is necessary to modify the traffic flows. In the 
Carrier Cloud Telecoms demonstration, this is achieved using the 
OpenFlow protocol and Open vSwitch.

The SDN setup in the demonstration has four levels of hierarchy: 
blade, CPU, VM and core. From the SDN perspective, only core 
is relevant since all PGW VMs have the same IP address for 
outgoing IP packets. When a packet arrives to the edge of the 
cloud, the PGWs need to do core identification (i.e., determine 
which PGW instance the subscriber is currently assigned to). This 
is implemented using VLANs. Now, assume a subscriber has an 
active tunnel in the PGW running on core 2 with VLAN tag 2. The 
system decides to halt the PGW on core 2; therefore, all the traffic 
from that PGW needs to be handed over to another PGW. Assume 
that the handover target is PGW on core 1 with VLAN tag 1. The 
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handover is implemented using Open vSwitch and OpenFlow as 
follows:

1.  The system implements PGW pseudo-handover and creates 
a new tunnel for the subscriber to the PGW on core 1.

2.  Once the pseudo-handover completes the PGW on core 1, 
it uses OpenFlow to request Open vSwitch to modify the VLAN 
tag of the user to 1 instead of 2. The user is identified using the 
subscriber IP address.

If the PGW with active tunnels is shut down, a handover procedure 
is executed for each of the tunnels. In the handover, a new tunnel 
is established to the PGW, which is still active. While the handover 
executes, the old tunnel remains active (i.e., traffic continues to 
flow through it). Once the new tunnel is established, the PGW, 
which is being shut down, contacts the OpenFlow controller 
and requests that packets initially targeted for it are redirected to 
the new PGW. In order to avoid situations where the new PGW 
is not able to receive all the connections, the PGW selection is 
orchestrated by the Cloud Controller, which is aware of the PGW 
capacities and loads.

Handover from the LTE to 3G network is also realized using Open 
vSwitch and OpenFlow. Once the handover is initiated by the 
simulator, the attach procedure is implemented towards the 3G 
network to establish a new tunnel. The demo uses same IP address 
for both LTE and 3G users. After the tunnel has been created, the 
eNodeB requests the OpenFlow Controller to modify the incoming 
packet flow. The OpenFlow Controller uses OpenFlow to modify 
flow tables in the Open vSwitch in such a way that each incoming 
packet for the particular user gets sent to the GGSN instead of the 
PGW. This is realized by changing the gateway IP address. 

Another problem related to the PGW handover is associated with 
the address resolution protocol (ARP) packets. Ethernet uses 
ARP to obtain the MAC address of the machine where a specific 
IP packet is being sent. In theory, the demonstration should have 
an ARP proxy that is aware of where each UE is connected. This 
would be quite a slow solution; therefore, the demonstration has a 
single ARP proxy that responds to each ARP request and returns 
the same MAC address each time. Then the PGW uses OpenFlow 
to define a correct MAC address for a particular UE IP address.

In addition, the load balancer needs to identify the target element 
within the VM. Each VM has a maximum of three element 

instances. The identification is implemented using VLANs. Each 
element within a VM has its own VLAN. OpenFlow is used to 
tag incoming packets with a correct VLAN tag so the core load 
balancer can distribute the packet to a correct element instance. 

Based on this schema the following benefits were identified:

•	 Minimized downtime

•	 Reduced security risks

•	 Simplified and more flexible implementation of the PGW 
handover 

Going forward, more work in this area is planned to determine how 
this schema can be used in more complex network scenarios. In 
addition, the whole question of migration of legacy systems needs 
to be dealt with.

The system also uses Open vSwitch to connect the VMs that 
implement the SGSN and GGSN applications. Open vSwitch is 
open source and provides flexible inter-VM communication. 
The challenge with Open vSwitch is the performance latencies it 
currently possesses. It requires optimizations and support from 
the latest high performance networking technologies such as 
the Intel DPDK. Open vSwitch optimisations with Intel DPDK are 
something that will be addressed in future phases of the Carrier 
Cloud Telecoms program.

IPSec 
Traditionally, base stations have been placed at operator facilities 
that are physically secured. In LTE, however, base stations are 
increasingly being placed in less secure environments, and IPsec 
is employed to ensure confidentially and integrity for signalling 
and user plane traffic. Using cloud-based architectures, and thus 
shared infrastructures, also significantly increases the need for 
IPsec to provide security between nodes.     

In the context of the Carrier Cloud Telecoms initiative, IPsec is 
used to secure the backhaul links between the eNodeB nodes 
and the SGW/MME nodes where both GTP-U and SCTP traffic 
is carried through IPsec tunnels. As illustrated in Figure 8 on the 
next page, adjacent eNodeB nodes may communicate with each 
other through an IPsec tunnel (the LTE X2 interface), and each 
eNodeB will communicate with at least one set of  MME/SGW 
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nodes through IPsec tunnel(s) (the LTE S1 interface). Since IPsec 
is essential for securing the backhaul network, IPsec performance 
demonstrations are very relevant when considering the Carrier 
Cloud Telecoms IP-stack functionality.

IPSec Acceleration Support
There are two possible ways to implement IPsec decryption:

Hardware based: IPSec acceleration is possible using support 
of an external accelerator, like the Intel® Communications 
Chipset 89xx series, which is part of the latest Intel® Platforms 
for Communications Infrastructure. The platform contains one or 
more Intel Communications Chipset 89xx series based devices, 
and each of these contains a number of dedicated crypto engines. 
These engines may be used for asynchronous look-aside offload 
of IPsec encryption/decryption.

eNodeB

eNodeB

eNodeB

eNodeB

MME

SGW

MME

SGW

SeGWUntrusted
network

Trusted
network

Untrusted
networka)

b)

Figure 8. Two possible uses of IPsec tunnels between adjacent eNodeB’s and core network nodes MME and SGW; a) direct connection from eNodeB to core 
network nodes and b) connection through a separate security gateway. In the latter case, the IPsec tunnels are potentially terminated at a different node than 
SCTP and GTP.

Software based: Many recent Intel processors support Intel® 
Advanced Encryption Standard New Instructions (Intel® AES-NI), 
which improves the speed of AES encryption/decryption. For 
example, high-performance software crypto support, implemented 
via Intel AES-NI, is present in Intel® Xeon® processor E56xx 
series and E5-2600 v2 product family. In a multi-core Intel 
processor with these architecture features, each core will be able 
to use Intel AES-NI, and parallel IPsec encryption/decryption by 
each core is possible. In addition, software-accelerated IPSec 
performance can be enhanced by leveraging software acceleration 
libraries such as the Intel Multi-Buffer Crypto for IPSec Library.

In the Carrier Cloud Telecoms initiative, Tieto integrated the 
Intel Multi-Buffer Crypto for IPSec libraries. Figure 9 shows 
characteristics of a single non-virtualised logical core (Intel Core 
i7-3820 processor @ 3.60 GHz) servicing GTP-u traffic through 
an IPsec tunnel. The IPsec tunnel is configured to use manually 
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keyed AES-128 encryption and SHA1 authentication. Packet sizes 
are using Internet traffic distribution (50% each of 64 and 1398 
byte GTP-u payload). IPsec performance achieved is as follows:

2.905 Gbps/s at 430k packets/s load rate2

These numbers are one-way only, i.e., actual IPSec throughput/
operations are twice the quoted numbers.

Cloud Telecoms Management
The NIST (National Institute of Standards and Technology) 
definition of Cloud Computing states that:

“Cloud computing is a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction. This cloud model is composed of five essential 

characteristics, three service models (IaaS, PaaS and SaaS), and 
four deployment models.”

This impacts not only cloud computing itself, but also the 
technology and processes governing how cloud computing 
is managed, including provisioning, configuration and 
administration processes.

Telecom Cloud is one very important aspect when speaking about 
the future evolution of the cloud; more and more mobile network 
elements will be running on cloud infrastructure, providing new 
opportunities for developing different kinds of flexible services 
for end-users. Telecom Cloud creates not only challenges for 
cloud management systems, but also opportunities for the new 
companies to provide (centralized) management systems and/
or services for the operators and end-users. From the operator 
perspective, this kind of flexibility offers the potential for reduced 
costs and faster time to market (and to money) for new services.

A challenge currently facing cloud management is the lack 

0           50         100       150        200       250        300       350        400       450

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

CP
U

 L
oa

d 
(%

)

110

100

90

80

70

60

50

40

30

20

10

Trgput, x100.000 packets/s                             Trgput, Gbps                             Core load

Tr
gp

ut
 (x

1
0

0
.0

0
0

 k
pa

ck
et

s 
/ 

G
bp

s)

Intel I7, f=3.6GHz, GTP-u throughput, 10 sockets, GTP payload mix=64b(50%) / 1398b(50%), IPsec AES128, SHA1

Approx. load rate (Kpackets/s)

Figure 9. Single core IPSec 
performance using the Intel® Multi-
Buffer Crypto for IPSec Library.
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of widely agreed standardized interfaces between the cloud 
infrastructure and cloud management system. There are some 
standards-based cloud management interfaces such as:

•	 CIMI (Cloud Infrastructure Management Interface), developed 
by DMTF’s Cloud Management Working Group (CMWG).

•	 OCCI (Open Cloud Computing Interface), developed by OCCI 
working group and the OpenStack Foundation.

Cloud Management in the Carrier Cloud Telecoms 
Initiative
An important and challenging aspect from the management 
point of view is the elasticity and dynamic behaviour of the 
cloud infrastructure, as in when virtual machines are started 
and stopped, along with changing traffic volume. Intelligent 
management of dynamic behaviour keeps the amount of reserved 

Figure 10. The Cloud Management System in the Carrier Cloud Telecoms Demonstration
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Figure 11. Topology Management in the Cloud Management System

and used hardware at an optimal level, so hardware is reserved and 
used only when needed. This dynamic behaviour is managed in 
the cloud management system by showing the state changes of the 
VMs and the network element instances in real-time and ensuring 
the topology of the cloud infrastructure is always up-to-date.

The Cloud Management system used within the Carrier Cloud 
demonstration provides a centralized management system for 
the telecom cloud, containing support for cloud infrastructure 
management: topology, monitoring (alarms and counters) and 
parameter management for some selected parameters used by the 
demonstration cloud infrastructure. 
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In the demonstration, VMs and network elements are deployed, 
started and stopped dynamically. This kind of elasticity and 
dynamic behaviour creates requirements for the management 
system when the active topology, current state and state changes 
of the VMs and network elements must be presented clearly for 
end-users.

The Cloud Management system contains: 

•	 A clearly visualized and easy to use Web user interface (UI).

•	 Real-time and automatic topology creation and update to 
support monitoring and parameter management.

•	 Real-time state monitoring of VMs and network elements.

•	 Real-time monitoring, including alarms and performance 
counters collected from cloud infrastructure.

•	 Configuration management, including support for a subset of 
cloud infrastructure parameters.

•	 A standard-based CIMI interface between the cloud 
infrastructure and cloud management system.

The elasticity and dynamic behaviour of the cloud infrastructure 
is visualized in the cloud management system by showing the 
state (active or inactive) information of each VM and network 
element instance in real-time. This means the end-user is able to 
see in real-time which VMs and/or network element instances are 
active at any given time, and can also see how traffic increases 
and decreases impact the behaviour of the cloud infrastructure. 
A standardised CIMI interface was used between the cloud 
infrastructure and cloud management system. It is important to 
note that the standardisation work of the CIMI interface is still 
ongoing, and it is not known which management interface will 
achieve widespread industry acceptance and deployment in the 
future.

Real Time Topology Management and VM State 
Monitoring
The cloud management system supports use cases related 
to topology, collecting alarms, collecting counter values and 
managing parameter values. The system creates, updates and 
visualizes the object topology automatically, and in real time. It 
also monitors and visualizes in real time the states, and changes 
in states of VMs and network elements. The object topology is 
updated during the demonstration; and as a result, the topology is 
always up-to-date in the cloud management system. The topology 

is presented in a Web UI for the end-user. The end user can also 
see in the Web UI which VMs and network elements are active 
ones and which are in-active. This provides the possibility for 
real-time monitoring of the usage of cloud infrastructure hardware.

Summary and Conclusions
A number of extremely useful technologies exist to address 
network resource utilization challenges in the telecoms network. 
These technologies offer the potential to evolve the network 
architecture to meet the challenges of the mobile data explosion, 
but also offer the potential to provide an environment to support 
the creation of new service and revenue streams that can take 
advantage of the phenomenal consumer and social dynamics now 
affecting the industry. These technologies have their origins in the 
IT world, and as such, they need to be tailored to the needs and 
requirements of the telecoms equipment industry. 

This paper explored the maturity of available technologies 
and investigated their potential, performance and associated 
challenges as part of a comprehensive technical initiative and 
demonstration. This collaboration by Tieto and Intel demonstrates 
the potential for these technologies to be successfully deployed in 
Cloud Telecoms. However, widespread industry adoption, and the 
pace of adoption, will require a collaborative approach between 
service providers, network equipment providers, silicon vendors 
and ISVs. 

For more information about Tieto, visit:

http://www.tieto.com/what-we-offer/rd-services

http://www.tieto.com/carriercloud

For more information about Intel® solutions for Telecoms, visit: 
www.intel.com/go/commsinfrastructure

http://www.tieto.com/what-we-offer/rd-services
http://www.tieto.com/carriercloud
http://www.intel.com/go/commsinfrastructure
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1 Two previous phases of the joint initiative have already been completed, which are known as “Cloud EPC” Phase 1 and Phase 2 respectively.
2  Benchmark testing was performed in April 2013 at Tieto A/S, Aahave Parkvej 27, 8260 Viby, Denmark.
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