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Introduction 

As telecommunications traffic bandwidth demand continues to rise dramatically, and 
more sophisticated processing of this traffic is required by service providers, network 
functions are becoming more complex. This increased load means that Intel® 
architecture based implementations, such as those found in a virtual network function, 
typically require multiple processor cores, and new approaches are required to 
optimize such deployments. 

This paper is for customers of multi-core Intel® architecture products who use software 
queuing structures extensively. Topics include traffic trends, along with the 
requirements and limitations of software queuing strategies for load balancing and 
traffic distribution. 

Intel proudly introduces the Intel® Dynamic Load Balancer (Intel® DLB) solution. This 
white paper discusses Intel DLB features, goals, advantages and future product 
intercepts. Included is a summary of how Intel DLB is enabled with software and 
aligned with Data Plane Development Kit (DPDK) and Network Function Virtualization 
(NFV) readiness, providing insight on how DPDK customers can transition to Intel DLB. 

Core-to-Core Communications in Software 

The number of CPU cores on a modern processor has 
increased to double figures, and commonplace 
scenarios require cores to communicate with each 
other. Software-managed queues (or rings) in shared 
memory are a standard solution. See Figure 1. Queues 
connect a producer/consumer pair so that the producer 
inserts new elements at the tail of the ring, while the 
consumer removes older elements from the head of the 
ring. Each ring element typically references an event, 
such as a network packet or some other construct. The 
head and tail pointers are shared variables between 
producer and consumer—the producer modifies the tail 
only but must read the head to verify that the ring is not 
full, while the consumer does the converse. 
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Memory-based Queuing in Intel® Architecture Systems 

Modifying a pointer involves getting an exclusive copy in local 
core cache. The difficulty occurs when this has to be shared with 
the queue partner. Modern CPU cores are extremely performant 
when operating from their local cache, which can have read 
latencies in the 3 ns to 7 ns range. But the latency to fetch (or 
invalidate) the head/tail pointer from the local cache of a 
different core is in the 50 ns range, and the CPUs are not 
designed to handle this sort of latency without incurring stalls. 

The latency issue affects pointers for both producer and 
consumer—each must get a shared copy of a line the other is 
modifying, and an exclusive copy of a line the other is reading. 
The case where a single queue connects two entities in this 
manner is referred to as single producer/single consumer 
(SP/SC), and is generally manageable in software. Any 
performance loss is typically mitigated using schemes to keep 
local copies of the shared pointers. But these schemes also have 
some drawbacks, including extra branching. Batching at either 
end also reduces cost-per-event, but it increases latency. 
Therefore, prefetching is not effective, since the queuing partner 
can share and access data at any moment, unlike other 
scenarios where latency is a known factor (for example, when 
fetching blocks of data from high-latency storage). 

The case where multiple producers are involved is referred to as 
multi producer/single consumer (MP/SC). In this case, latency 
implications are more severe. Individual producers must update 
the tail pointer in an atomic manner to ensure consistency by 
locking the corresponding cache line, which incurs a cycle cost. 
Replacing a MP/SC queue with multiple SP/SC queues makes 
things simpler for the producers, but the burden is simply 

shifted to the consumer that must instead poll and manage 
multiple queue heads. 

Cases with multiple consumers (MP/MC) impose the same 
locking requirements for the head pointer. These cases are even 
more complex if task order must be maintained. 

As the number of cores/die grows, the cross-core latencies 
trend upwards relative to local cache latencies, and the 
likelihood of lock contention increases. The actual impact a 
software thread will see depends on the activity at the other end 
of the queue and, possibly, cache occupancy. As such, software-
based queuing tends not to have very deterministic 
performance especially if multiple producers/consumers are 
involved. 

Work Distribution 

In many applications running on modern processors with a large 
number of cores, workloads must be distributed across a 
number of such cores. Consider packet processing as an 
example in this regard. As traffic bandwidth increases at a 
higher rate than compute availability, a good work distribution 
scheme is essential to optimize the available compute 
resources. 

In packet processing, streams of incoming packets can exceed 
the capacity of any single core. So they are divided between 
available workers. Each packet stream contains individual flows, 
whose number and bandwidth varies and rapidly changes. 
Software must access and modify data structures unique to a 
flow in order to process the packets common to that flow. It is 
typically required that order should be maintained per flow 
(though not between individual flows) on an end-to-end basis. 
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There are two ways to split the workload: 

• Pipelining breaks the processing flow into stages and places 
distinct stages on separate cores in a daisy chain fashion. 
Unfortunately, not all packets have the same processing flow, 
and flows are not typically decomposed easily into stages of 
equal size. 

• Distribution/load balancing is a parallel approach where 
packets are sprayed across multiple workers that may be 
executing the same processing stage. 

Many systems employ a hybrid approach whereby each packet 
encounters multiple pipelined stages with distribution across 
multiple workers at each individual stage. 

Static Versus Dynamic Distribution 

At this point it is useful to distinguish between static sharing 
and dynamic load balancing: 

• In static sharing, a producer of work may share work across 
multiple consumers (i.e., workers) without regard to the state 
or occupancy of the individual workers. For example, the 
producer may statically assign individual flows to cores based 
on some flow identifier. An example of this is the receive side 
scaling (RSS) scheme employed by modern network interface 
cards (NICs). Such schemes are simple to implement but have 
several drawbacks: 

– They cannot guarantee that worker cores are equally busy, 
particularly if the number of significant flows is low. 

– The largest flow that can be handled is limited to the 
capacity of a single core. 

– If packet compute time varies, it is difficult to prevent 
packets getting stuck behind a burst of other traffic and 
suffering significant latency penalties. Prioritization can 
help but even high-priority traffic can get delayed behind 
traffic of a similar level. 

– The scheme is only as good as its least performant worker. 
This can be difficult to predict. Some cores may be subject 
to more interruptions than others or simply poorer caching 
effects. 

– It is necessary to keep all workers available in such 
schemes. They cannot reliably sleep for long durations, 
even with low traffic rates. The next arriving packet could 
be destined for any worker, unless there is a moderately 
complex work handoff scheme implemented. 

• In dynamic load balancing, the producer attempts to 
distribute work with regard to the state/occupancy of the 
workers in an effort to ensure that they are approximately 
equally busy and used to their fullest extent. High-bandwidth 
flows are spread across multiple cores—but often, the 
original flow order must be restored thereafter. While this 
type of scheme overcomes many of the above drawbacks, it is 
more complex to implement. For example, to optimize power 
if traffic is below the provisioned rates, some cores can be 
taken offline to low power states. See Power-Aware Load 
Balancing on page 4. 

As traffic bandwidth continues to increase, a good load 
balancing system is an essential requirement for packet 
processing. 

Types of Load Balancing 

In a packet-processing flow context, there are three types of 
distributions. 
1. Unordered distribution sprays the packets across multiple 

worker cores. Software alone is not assumed to preserve 

the flow order when packets from the same flow go to 

different workers. Furthermore, multiple packets from the 

same flow may be outstanding on different workers 

simultaneously. This may require expensive 

synchronization mechanisms in the software. This type of 

processing is really only useful if there is no requirement to 

preserve order within a flow. 

2. Ordered distribution is similar to unordered, except that the 

system provides a means of restoring the original flow 

order. Synchronization mechanisms may still be required in 

the software. This type of processing is useful if the 

bandwidth of individual flows approaches or exceeds the 

capability of individual cores. For use cases where the 

application is stateless, ordered distribution can achieve the 

best load balancing and performance. 

3. Atomic distribution ensures that packets from a given flow 

can only be outstanding on a single core at a given time. It 

dynamically pins flows to cores, migrating flows between 

cores to load balance when required. This preserves flow 

order and allows the processing software to operate in a 

lock-free manner. As such, this type of distribution is highly 

desirable in modern packet processing equipment. 

Implementations of the atomic and ordered distribution 
schemes require close cooperation between the producer and 
the workers/consumers. In schemes implemented in software, 
this sort of communication is implemented using multiple 
queuing structures and becomes subject to the performance 
limitations and non-determinism described above. 

Current Performance of Load Balancing in Software 

DPDK is an open source community based on software libraries 
originally developed by Intel. DPDK libraries include 
performance-optimized implementations of software queue 
management and work distribution. These libraries substantially 
reduce the cost of operations and successfully enable Intel® 
architecture customers. But with increased cores, the burden of 
software queue management increases accordingly. And since 
throughput rates increase faster than available compute, the 
cycles/packet budget shrinks. Because of these two factors, 
queue management is once again becoming a relatively 
expensive and performance-limiting operation. 

On current CPUs, the performance of atomic load balancing is in 
the region of 15 M to 30 M decisions per second. Packet 
reordering cost is similarly expensive. CPU instructions-per-
cycle improvements and batching (if the application allows) can 
lift this performance. But the basic limitation of cross-core 
latency will continue to increase with the number of cores/CPU. 

Packet throughput expected from a system is increasing far 
more rapidly than core count; therefore, dedicating cores for 
load balancing is not sustainable. The performance impact is 
not limited to the cores doing the distribution work. All worker 
cores incur queue management costs in communicating with 
the distributor software and this can substantially affect worker 
performance. 
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Intel® Dynamic Load Balancer (Intel® DLB) 

Introduction 

The Intel DLB is a hardware managed system of queues and 
arbiters connecting producers and consumers. It is a PCI device 
in the CPU package. Intel DLP interacts with software running on 
cores and potentially other devices. Intel DLB implements the 
load balancing features outlined earlier, including the following: 

• Lock-free multi-producer/multi-consumer operation. 

• Multiple priorities for varying traffic types. 

• Various distribution schemes. 

Data-plane software communicates with Intel DLB using 
standard (PCI) memory mapped interfaces in a simple, low 
cycle-cost way that is enabled with DPDK. 

Intel DLB supports virtualization using industry-standard 
techniques, and is exposed as part of the Virtual Network 
Function Infrastructure on an Intel® architecture platform. Intel 
DLB further allows finer grained isolation between individual 
applications if necessary. 

Basic Intel DLB Operation 

Intel DLB operates with the concept of resources, of which there 
are several kinds: 

• Ports are memory mappable areas that enqueue to, or 
dequeue from, Intel DLB. 

• Queue IDs (QIDs) are internal queues within the Intel DLB 
itself. A QID is a logical destination for a stream of packets 
that may be distributed across a number of workers according 
to each packet’s load-balanced scheduling type. A QID 
maintains atomic and ordered distribution packets in order, at 
least on a per-flow and per-priority basis. The application 
specifies the QID it wishes to send a packet to at enqueue 
time. 

Driver software allocates these resources to applications/VMs, 
which can in turn allocate to their individual threads as 
necessary. Properly configured, Intel DLB prevents cross 
application interference by discarding illegal traffic and ensuring 
each application cannot consume traffic to which it should not 
have access. 

Performance 

The rate at which Intel DLB distributes work determines overall 
system performance. The goal is to achieve a richer feature set 
and significantly greater performance than could be offered by 
software solutions. 

Power-Aware Load Balancing 

Intel DLB can rapidly vary the number of workers processing 
traffic dynamically according to traffic levels. Workers that are 
not in use can enter low-power states or can be made available 
for other tasks. 

Enabling Intel DLB 

Discovery and Enumeration 

Within a running system, the Intel DLB instances, both physical 
function (PF) and virtual function (VF), are owned and controlled 
by a kernel driver. All device discovery and enumeration is 
handled by the kernel infrastructure for PCI devices. The kernel 
driver makes Intel DLB resources, such as ports, QIDs and 
credits available to applications in user space as they are 
requested by those applications. 

DPDK Eventdev 

DPDK offers a number of work distribution and load balancing 
schemes that can be used by applications. In many cases 
significant benefits can be realized by switching from using 
these existing schemes to using Intel DLB. 

For data plane use, Intel DLB is enabled in DPDK as an instance 
of a class of a work/event scheduling device called an eventdev. 
This library was originally released in DPDK 17.05. The eventdev 
infrastructure is similar to that of the ethdev and cryptodev 
device types, in that a high-level API provides a common 
interface layer supported by individual drivers underneath it. 
Packets, or other events such as timer expiration, are enqueued 
by the application software to the eventdev device, which 
performs appropriate scheduling and prioritization. The 
scheduled events are retrieved by software when it calls the 
eventdev dequeue function. For the Intel DLB driver, each event 
to be scheduled corresponds to a queue entry (QE) inside the 
hardware. 

Note 
Intel DLB is not the only device supported under the 

eventdev device type. Ahead of the Intel DLB being 

generally available, multiple software implementations 

of an eventdev have been released, allowing 

applications to be developed and deployed on 

hardware without an Intel DLB. Those applications can 

then be transparently accelerated without any 

application code changes when deployed on a 

platform with an Intel DLB available. 

For more details on the eventdev library, refer to the Event 
Device Library section of the DPDK programmer’s guide1. 
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Transitioning from Software Load Balancing to Intel DLB 

DPDK includes the following main components: 

• A software eventdev poll-mode driver (PMD) that mirrors the 
features of Intel DLB. 

• A generic API for configuring and interfacing to an eventdev, 
with implementations for both the Intel DLB and software 
eventdev PMDs. 

Prior to introducing eventdev in 2017, DPDK supported 
software load balancing through its packet distributor library2. 
This library dedicates one core to distribute packets to all other 
cores, which receive packets from the distributor and operate 
on them. Converting an application using the DPDK packet 
distributor to using eventdev does not involve significant 
reworking of the application packet handling code, as the basic 
principles of dynamic scheduling remain the same in both cases. 
To use Intel DLB, the initial setup code in the application 
configures the Intel DLB/eventdev queues and ports. But 
thereafter, the common runtime APIs, such as 
rte_distributor_get_pkt(), can be converted directly into 
equivalent eventdev APIs. After this is done, the application can 
be further changed, as needed, to take advantage of additional 
Intel DLB features. 

DPDK eventdev Userspace API Overview 

The eventdev device class was introduced in DPDK 17.05 after 
months of discussion and development by many stakeholders, 
including Intel. Although minor changes in the APIs may occur 
as contributors submit new drivers, the eventdev API is not 
expected to change significantly. eventdev drivers are already 

present, including a software implementation from Intel. This 
allows application development to be done using the eventdev 
API, the major functions of which are shown in Figure 2. Certain 
aspects of Intel DLB behavior, such as the credit scheme, may 
not be visible in the API as they are specific to the device. 

The following APIs query event management sources. 

rte_event_dev_count()  // Get number of event 
                                devices available 
rte_event_dev_info_get() // Get device 
                                parameters 

The following APIs configure queues and ports. 

rte_event_dev_configure() // Configure an event 
                                device 
rte_event_queue_setup() // Allocate/configure a 
                                queue 
rte_event_port_setup() // Allocate/configure a 
                                port 
rte_event_port_link()  // Map a queue to a 
                                port 

The following APIs send or receive events. 

rte_event_enqueue_burst()  // Burst enqueue 
rte_event_dequeue_burst()  // Burst dequeue 

For more detailed information on the eventdev API, refer to the 
eventdev API documentation3. 
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Intel DLB Usage without DPDK 

To support applications that do not wish to use DPDK, Intel DLB 
can also be enabled through a stand-alone client library named 
libdlb. While either eventdev or libdlb can be used to write Intel 
DLB-based applications, they differ in two key ways: 
1. libdlb is independent of DPDK. This makes it appropriate 

for applications that can benefit from Intel DLB hardware 

but do not want to use the full DPDK framework. However, 

this means libdlb can only run on systems that have Intel 

DLB hardware; whereas eventdev applications are portable 

to a wide range of systems through the use of software-

based event schedulers. libdlb could be extended with a 

software implementation in the future. 

2. The libdlb API is tailored specifically to Intel DLB. It lacks 

the eventdev abstractions that are necessary to support a 

range of hardware and software event schedulers. Fewer 

abstractions generally leads to improved performance. This 

library also exposes a few Intel DLB concepts that do not 

exist in the eventdev API. 

Optimizing Software Costs 

An important aspect of any device like Intel DLB is the cost to 
software of interacting with the device. For dataplane software 
there are a few aspects to look at. The Intel DLB design, in 
conjunction with new ISA technologies, minimizes these costs 
resulting in a very efficient system. 

IPsec Router Example 

An IPsec router can be implemented using Intel DLB. Gateways 
are becoming increasingly complex but for simplicity this 
example considers VPN termination and clear text routing. 
Furthermore, only one traffic direction is considered, as shown 
in Figure 3. 

The NIC can identify and filter IPsec packets and some may be 
capable of performing the decryption/authentication steps in 
advance of the packet reaching software. Otherwise, this step is 
performed in software or by using a look-aside accelerator. This 
example assumes that software (such as AES-NI) is used for the 
cryptographic operations. 

One important parameter is the number and bandwidth of the 
IPsec tunnels. There are at least two possibilities here: 

• In an enterprise application, the gateway may be terminating 
large numbers of VPNs of comparatively low bandwidth. The 
number of active tunnels is considered to be high and it may 
be feasible to use the NIC RSS scheme for initial per flow 
distribution, though it is still possible that some flows may 
have burst behavior which could cause load balancing issues. 

• In a wireless edge application, the inverse is typically the case. 
The device is expected to terminate a comparatively small 
number of high bandwidth tunnels. RSS is not going to be 
very effective in this scenario. 

Current Implementations 

Several options are available in current Intel® architecture 
platforms. For the enterprise, RSS distribution is considered 
because there is no obvious need to incur the cost of core-to-
core communications. Therefore, a run-to-completion model is 
assumed, where all processing for a given packet is executed on 
a single core. 

There is no core-to-core communications penalty here and 
almost no locking is required in software, as long as there is no 
interdependency between IPsec tunnels. A possible exception is 
the NIC Tx stage, where a lock could be required for insertion 
into a Tx queue if such had to be shared. 

This model has been successfully deployed, though it has 
drawbacks: 

• RSS can still give imperfect distribution. Therefore, 
performance must be guard-banded, which limits overall 
guaranteed performance. 

• More sophisticated gateways may require more advanced 
schemes. For example, it may be required to atomically 
process VPN traffic in both directions, which is not possible 
using this setup. 

• It is not trivial to group disparate inner tunnels together for 
atomic processing such as may be required for traffic shaping. 

The wireless use case is more difficult to address; RSS may be 
insufficient and the higher bandwidth tunnels may overwhelm a 
single core. This could necessitate splitting the processing 
pipeline across multiple cores in an SP/SC manner. But this will 
typically create considerable inequality in core utilization. 

Intel DLB Based Implementation 

In a system with Intel DLB, a number of options are available. In 
the simplest case, the NIC RSS scheme can be replaced by an 
ingress core running the poll mode driver to fetch Rx 
descriptors and then submitting the packets to Intel DLB for 
atomic load-balancing. The workers can then resubmit to Intel 
DLB for a direct processing stage to a dedicated Tx core. 

The advantage of this over the software-only scheme is higher 
guaranteed performance due to better load balancing 
compared to RSS. 

If the bandwidth of a single large IPsec tunnel could overwhelm 
a core, ordered distribution may be necessary. This typically 
results in a more complex approach with multiple passes 
through Intel DLB for each packet. The worker cores can be 
broken into one or more groups that may be active at differing 
stages on the pipeline. 

In the example above, the first ordered stage allows a high 
bandwidth IPsec tunnel to be load-balanced across multiple 
cores. These packets are put back in their original order by Intel 
DLB on resubmission to the following stage. Subsequent stages 
are atomic, as it is assumed that locks are to be avoided, with 
the same direct stage to Intel DLB at the end. 

This example shows how additional stages, with each stage 
essentially a QID, can be added for flow creation (setup of new 
table entries), traffic shaping, or other more complex features. In 
NFVs that provide more complex functions than routing, this is 
the expected usage. 
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Summary 

The Intel DLB is a decapsulation new device on Intel platforms. It offers new mechanisms for core-to-core communication with built-
in load balancing capability. Advantages expected for packet processing applications using Intel DLB are as follows: 

• Much higher load-balancing performance than existing software schemes 

• Cost to worker cores lower than in software schemes 

• Lock free multi-producer to single-consumer optimization 

• Better determinism 

• Built in priority 

• Built in performance monitoring 

• Better flexibility and granularity 

Intel DLB can be enabled under DPDK APIs. DPDK customers should see a pain-free transition to new hardware from the software 
eventdev PMD. 

1 https://doc.dpdk.org/guides/prog_guide/eventdev.html 
2 https://doc.dpdk.org/guides/prog_guide/packet_distrib_lib.html 
3 https://doc.dpdk.org/api/rte__eventdev_8h.html 
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