
 1

Xiang Wang

Oisin O’Halloran

Subhiksha Ravisundar

Wojciech Andralojc

Declan Doherty

Heqing Zhu

Michihiro Koyama

Snort is one of the most popular open-source Intrusion Detection/Prevention Systems

(IDS/IPS). It continuously monitors network traffic to detect malicious activities and

prevents vulnerability exploits by taking well-defined actions. Snort is a compute intensive

workload requiring heavy string and regular expression (regex) matching based on pre-

configured rulesets. This major performance overhead in Snort could be significantly

reduced by Hyperscan software library optimized by Intel. Hyperscan is a high-performance

string and regex matching library. It is optimized to use single instruction multiple data

(SIMD) technology on Intel Processors to accelerate the matching performance.

Hyperscan’s integration with Snort could boost the performance by upto 3x1 on an Intel

processor-based server.

In enterprise networking, Snort is usually integrated with next-generation firewall and

installed in network security appliances. However, there is a strong trend to migrate network

security functions to cloud-based computing and network services. This brings the benefits

of scalability and elasticity to prevent ever-increasing cybersecurity threats. It also frees IT

operators from maintaining hardware equipment and adds the flexibility on usage or billing

model. Most network security vendors now offer the option of delivering their network

security software (such as IDS/IPS) as a service from public clouds. Given the offering of so

many compute instance types in the cloud, it’s not easy to choose proper ones to get best

performance under budget. Since Hyperscan uses SIMD technology (such as Intel AVX-512

instruction-sets) and its performance is sensitive to the processor used by cloud instance

types, find the right instance type is critical for Snort performance in cloud deployment.

This paper introduces Snort, optimized by Hyperscan, performance benchmarking on

various compute instance types on major public cloud service provides. The benchmarking is

fully automated with Intel Multi Cloud Networking Tool (MCNAT). This provides a solid

reference on evaluating Snort performance and picking the optimal instance type for Snort

on public cloud. Please contact authors to learn more about MCNAT.

This document is part of the Network Transformation Experience Kits.

1 See Section 4 Performance Evaluation

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 2

1 Introduction .. 1
1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview ...4
2.1 Intel SIMD & AVX-512 Instruction-sets ...4
2.2 Hyperscan .. 5
2.3 Hyperscan Integration with Snort .. 5
2.4 Multi Cloud Networking Automation Tool (MCNAT) ... 6

3 System Deployment .. 7
3.1 MCNAT Configuration ... 7
3.2 Setup Steps... 7

4 Performance Evaluation .. 8
4.1 AWS Deployment ... 8

4.1.1 Instance Type List ... 8
4.1.2 Results .. 8

4.2 Microsoft Azure Deployment .. 8
4.2.1 Instance Type List ... 8
4.2.2 Results .. 9

4.3 Google Cloud Deployment ... 9
4.3.1 Instance Type List ... 9
4.3.2 Results ... 10

4.4 Throughput per Dollar Comparison .. 10

5 Summary ... 11

Appendix A Platform Configuration... 12

Appendix B Snort Software Configuration and Command Line .. 15

Figure 1. Snort Architecture and Workflow ... 4
Figure 2. Scalar and SIMD Instructions ... 4
Figure 3. Byte Shuffle Intrinsic Usage for Table Look Up .. 5
Figure 4. MCNAT Workflow ... 6
Figure 5. Snort Performance on AWS.. 8
Figure 6. Snort Performance on Azure .. 9
Figure 7. Snort Performance on GCP .. 10
Figure 8. Relative Performance per Hourly Rate ... 11

Table 1. Terminology ... 3
Table 2. Reference Documents .. 3
Table 3. Hyperscan 5.5 New Features .. 5
Table 4. Hyperscan 5.6 New Features .. 5
Table 5. MCNAT Command Line Usage .. 7
Table 6. Instance On-demand Hour Rates ... 10

Revision Date Description

001 March 2023 Initial release.

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 3

Table 1. Terminology

Abbreviation Description
DFA Deterministic Finite Automaton

DPI Deep Packet Inspection

HTTP Hypertext Transfer Protocol

IDS/IPS Intrusion Detection and Prevention System

ISA Instruction Set Architecture

NFA Non-deterministic Finite Automaton

PCAP Packet Capture

PCRE Perl Compatible Regular Expressions Library

Regex Regular Expression

SASE Secure Access Service Edge

SIMD Single Instruction Multiple Data Technology

TCP Transmission Control Protocol

URI Uniform Resource Identifier

WAF Web Application Firewall

Table 2. Reference Documents

Reference Source

Intel® Xeon® Scalable Platform Built for Most

Sensitive Workloads

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-

platform-built-for-most-sensitive

Snort https://www.snort.org/

Snort Talos Rules https://www.snort.org/downloads#rules

Hyperscan https://www.hyperscan.io/

Hyperscan and Snort Integration https://www.intel.com/content/www/us/en/developer/articles/technical/hyperscan-

and-snort-integration.html

Hyperscan: A Fast Multi-pattern Regex Matcher for

Modern CPUs

https://www.usenix.org/conference/nsdi19/presentation/wang-xiang

Teddy: An Efficient SIMD-based Literal Matching

Engine for Scalable Deep Packet Inspection

https://dl.acm.org/doi/10.1145/3472456.3473512

Optimize Azure Cloud Security with Intel Hyperscan https://www.hyperscan.io/2020/09/28/optimize-azure-cloud-security-with-intel-

hyperscan/

Intel® 64 and IA-32 Architectures Software

Developer Manuals

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-

sdm.html

Intel® Intrinsics Guide https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Accelerating Suricata Throughput Performance

Using Hyperscan Pattern-Matching Software

https://www.intel.com/content/dam/www/public/us/en/documents/solution-

briefs/hyperscan-scalability-solution-brief.pdf

Suricata https://suricata.io/

Hyperscan in Suricata: State of the Union https://suricon.net/wp-content/uploads/2016/11/SuriCon2016_GeoffLangdale.pdf

Hyperscan in Rspamd https://www.slideshare.net/VsevolodStakhov/rspamdhyperscan

Regex Set Scanning with Hyperscan and RE2::Set https://www.hyperscan.io/2017/06/20/regex-set-scanning-hyperscan-re2set/

Hyperscan integration with Github https://github.blog/2018-10-17-behind-the-scenes-of-github-token-scanning/

https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive
https://www.intc.com/news-events/press-releases/detail/1423/intel-xeon-scalable-platform-built-for-most-sensitive
https://www.snort.org/
https://www.snort.org/downloads#rules
https://www.hyperscan.io/
https://www.intel.com/content/www/us/en/developer/articles/technical/hyperscan-and-snort-integration.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hyperscan-and-snort-integration.html
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://dl.acm.org/doi/10.1145/3472456.3473512
https://www.hyperscan.io/2020/09/28/optimize-azure-cloud-security-with-intel-hyperscan/
https://www.hyperscan.io/2020/09/28/optimize-azure-cloud-security-with-intel-hyperscan/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/hyperscan-scalability-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/hyperscan-scalability-solution-brief.pdf
https://suricata.io/
https://suricon.net/wp-content/uploads/2016/11/SuriCon2016_GeoffLangdale.pdf
https://www.slideshare.net/VsevolodStakhov/rspamdhyperscan
https://www.hyperscan.io/2017/06/20/regex-set-scanning-hyperscan-re2set/
https://github.blog/2018-10-17-behind-the-scenes-of-github-token-scanning/

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 4

Snort is a popular open-source IDS/IPS from Cisco. It is a rule-based system to detect malicious traffic according to user

configured rulesets. Cisco provides Snort Talos as an official ruleset for Snort. Figure 1 shows the overall architecture and

workflow of Snort:

1. Network traffic first passes through packet decoder which parses incoming packets.

2. Preprocessor conducts preprocessing, including HTTP URI normalization, packet defragmentation, TCP flow

reassembly, etc.

3. Detection engine uses preloaded rule database to inspect content to discover threats.

4. Logging and alerting system could trigger actions defined in the rule upon successful match and save logs.

5. Output modules save outputs in formats including log, database, XML, etc.

Figure 1. Snort Architecture and Workflow

Detection engine is the major performance bottleneck in the overall system as it is very compute intensive to match tens of

thousands of rules with fixed string keywords and regex patterns. As a high-performance regex matching software library,

Hyperscan can accelerate Snort matching performance significantly with Intel SIMD technologies, including Intel AVX-512

instruction-set, etc.

Intel SIMD technology boosts the data parallelism using advanced instruction set architecture. A SIMD instruction executes the

same operation on multiple data in parallel. As shown in Figure 2, a scalar operation with general purpose register only computes

up to 8 bytes in a time, while a SIMD operation is performed on multiple lanes of two SIMD registers independently, and the

results are stored in the third register. Modern CPU supports a number of SIMD instructions that can work on specialized vector

registers (SSE, AVX, etc.). The latest Intel AVX-512 instructions support up to 512-bit operations simultaneously.

Figure 2. Scalar and SIMD Instructions

3rd Gen Intel® Xeon® Scalable processor adds a list of powerful AVX-512 instruction sets. For example, AVX-512 Vector Byte

Manipulation Instructions (VBMI) allows byte-level permutes within 64-bytes which is useful to accelerate character class look

up in regex matching. AVX-512 Vector AES instructions significantly boost symmetric crypto performance. Developers can

refer to Intel SIMD intrinsic guide to embed SIMD intrinsic into their software to improve the performance. Figure 3 shows an

example of using shuffle intrinsic (_mm512_permutexvar_epi8) for parallel table look up where src is the 64-byte table data and

idx is the 64-byte index mask, each byte of dst contains the look up result on corresponding position specified by index mask in

data mask.

Rules

Packet
Decoder

Preprocessor

Detection
Engine

Logging and
Alerting
System

Output
Modules

Network
Traffic

Output

Alert or

Log

Scalar Instruction
General Purpose

Register X X0

 Y0

X0 OP Y0

OP

General Purpose
Register Y

General Purpose
Register Z

SIMD Register X X2 X1 X0 X3

 Y2 Y1 Y0 Y3 SIMD Register Y

X2 OP Y2 X1 OP Y1 X0 OP
Y0

X3 OP Y3 SIMD Register Z

OP OP OP OP

SIMD Instruction

https://www.snort.org/downloads#rules
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 5

Figure 3. Byte Shuffle Intrinsic Usage for Table Look Up

Hyperscan is a high-performance regular expression matching library optimized by Intel. It is a software implementation

requiring Intel SSSE instruction-set support. Hyperscan delivers support from low-end Intel Atom® processors to Intel® Xeon®

Scalable processors. It has a wide adoption with more than 40 customers and 37 open-source projects. It is a proven technology

in network security use cases, including IDS/IPS, Deep Packet Inspection (DPI), Web Application Firewall (WAF), spam filtering,

etc. The latest open-source version (BSD-3 license) of Hyperscan on Github is 5.4. Intel conducts continuous internal

development and delivers new Hyperscan releases under Intel Proprietary License (IPL) beginning from 5.5 for interested

customers. Please contact authors to learn more about getting new Hyperscan releases.

We show basic feature upgrades in below tables.

Table 3. Hyperscan 5.5 New Features

Feature Description

Universal Database It makes user care no more about platform differences in Hyperscan

compilation stage when doing clustered deployment.

Multi-literal matcher ("Harry") for medium scale

literals

It improves scanning performance by leveraging AVX-512 VBMI.

Character class matching model ("vshufti") It improves scanning performance by leveraging AVX-512 VBMI.

Table 4. Hyperscan 5.6 New Features

Feature Description

New API: redesign hs_compile_lit() and

hs_compile_lit_multi() to process pure literal rule

sets

It reunifies literal writing grammar with common regex.

New API: hs_scan_lit() for pure literal rule sets It improves average performance over traditional runtime API for pure literal ruleset

specifically.

Multi-literal matcher ("NeoHarry") for medium scale

literals

It improves scanning performance by leveraging AVX-512 VBMI2.

Multi-literal matcher ("NeoTeddy") for small scale

literals

It improves scanning performance by leveraging AVX-512 VBMI2.

64-state shuffle-based DFA engine ("Sheng64") It Improves performance via associativity property.

Shuffle-based hybrid DFA engine("McSheng64") It Improves performance via associativity property.

Shuffle-based hybrid DFA engine ("McSheng128") It improves scanning performance by leveraging AVX-512 VBMI.

Improved coverage of "Universal Database" feature It covers all different implementations of internal engines/matchers for all platforms.

It also supports pure literal APIs.

Hyperscan has tight integration for both Snort 2.9 (patch provided from Intel) and Snort 3 (Cisco default integration). The main

components to accelerate with Hyperscan includes:

• Single Literal Matching

Users define specific literals to match in rules. Snort searches each of these literals in the packets using the Boyer-

Moore algorithm. We replace this algorithm with Hyperscan to improve its matching performance.

• PCRE Matching

Snort uses Perl Compatible Regular Expressions (PCRE) as its regular expression matching engine. Hyperscan is

compatible with PCRE semantics, but it does not support a few backtracking and assertion syntaxes. To mitigate this

512 bits (64 bytes)
0 1 2 3 4 5 . . 3E 3F

3F

.

src: 64-byte data mask

idx: 64-byte index mask

dst = _mm512_permutexvar_epi8(idx, src)

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 6

issue, Hyperscan includes a PCRE preprocessing function (PCRE prefiltering) to transform unsupported PCRE rules to

supported ones. The matches produced by the original rules is a subset of the these generated by the transformed

rules. This enables Hyperscan as a prefilter. If it doesn't produce matches, the actual rules will not generate any matches

either. If there is a match, you can then use PCRE scan to confirm the match. Based on facts that Hyperscan gets better

performance than PCRE and the matching rate in Snort is usually not very high, prefiltering with Hyperscan can avoid

the excessive time cost of PCRE matching.

• Multiple Literal Matching

Snort itself embraces a prefiltering-based matching design. By extracting keywords from each rule and using multiple

literal matching to match them simultaneously, Snort can filter out rules that are not possible to match quickly. This

saves the number of rules for deeper check and thus improves overall matching performance. Snort uses the Aho-

Corasick algorithm for multiple literal matching. It is highly data dependent and does not scale well on a large number of

rules due to space inefficiency and frequent cache misses. We use Hyperscan to replace Aho-Corasick algorithm to

improve the performance significantly.

MCNAT is a software tool developed by Intel that provides automation for seamless networking workload deployment on public

cloud and offers suggestions on selecting the best cloud instance based on performance and cost. It uses open-source software

including Hashicorp Packer, Terraform and Ansible to build the automation pipeline.

Figure 4. MCNAT Workflow

There are four stages in MCNAT as shown in Figure 4:

1) Applications/Libraries packaging

Users need to package network applications/libraries with distribution package manager. For example, RPM could be

used in many Linux distributions including Fedora, CentOS, etc.

2) Image generation

Packer enables you to create identical VM images for multiple cloud platforms from a single HCL template. There are

also Ansible playbooks with roles defining instructions on how to setup software inside image.

3) Infrastructure deployment

Terraform launches completely provisioned and configured machine instances with Packer images in seconds on

targeted public cloud. This will create cloud instances and all required networking and security resources for your

application.

4) Post-deployment configuration

It uses Ansible to configure software with data that is known after deployment (mac/ip addresses, etc.) and facilitates

fully automated application deployment. This is followed by benchmarking and test data capturing.

MCNAT provides all automation setups for Snort benchmarking on major public clouds (AWS, Azure, Google Cloud, etc). We

can easily use the captured performance data to pick most proper cloud instance types for Snort.

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 7

MCNAT uses the “1-node” module to deploy and test Snort, this module allows for the creation of a single cloud instance and the

necessary networking setup. Once the Snort image is built and deployed. A full set of performance tests can run on the host

machine and the results returned in CSV format.

MCNAT is configured through a series of profiles, each defining the variables and settings required for each instance. Each

instance type has its own profile which can then be passed to the MCNAT CLI tool to deploy that specific instance type on a

given cloud service provider (CSP). Example command line usage is shown below and in Table 5.
./mcnat.py --deploy -u user -c aws -s snort -p c6i-4xlarge

Table 5. MCNAT Command Line Usage

Option Description

--deploy Instructs the tool to create a new deployment

-u Defines which users credentials to use

-c CSP to create deployment on (AWS, GCP, Azure, etc)

-s Scenario to deploy

-p Profile to use

The MCNAT Command line tool is setup to Build and Deploy Instances in a single step, this is shown below. Once the instance is

deployed the post configuration steps create the necessary SSH configuration to allow the instance to be accessed.
./mcnat.py --deploy -c aws -u <#user_name>-s snort -p c6i-4xlarge-5-5

[INFO] mcnat deploy for snort.c6i-4xlarge-5-5 on aws at 2023-01-31 16:45:31.270113

[INFO] loading config..

[INFO] User config loaded!

[INFO] CSP config loaded!

[INFO] Scenario config loaded!

[INFO] Deploying packer-env scenario with default profile on aws ...

[INFO] Successfully deployed!

[INFO] Building snort images on aws ...

[INFO] Successfully built!

[INFO] Destroying packer-env scenario with default profile ...

[INFO] subprocess.run ./tfws_deploy.py --destroy -c aws -u oohallor -s packer-env -p default

[INFO] Successfully destroyed!

[INFO] Deploying snort scenario with c6i-4xlarge-5-5 profile on aws ...

[INFO] Successfully deployed!

[INFO] Configuring snort scenario with c6i-4xlarge-5-5 profile on aws ...

[INFO] Successfully deployed!

Once MCNAT has deployed the instance, all performance tests can be run by using the “run_snort.sh” script, this script runs

snort with a given set of rules on a PCAP, while pinning a range of core counts, to gather a full set of performance numbers for

the instance under test.

When the tests are completed all the data is formatted as a csv and returned to the user.
Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz

TIME_STAMP,CSP,INSTANCE,CORES,TPUT,TPUT_HSCAN

31-01-2023 18:42:01,aws,c5n-18xlarge,1C1T,128,405

31-01-2023 18:42:01,aws,c5n-18xlarge,1C2T,187,540

31-01-2023 18:42:01,aws,c5n-18xlarge,2C2T,256,810

31-01-2023 18:42:01,aws,c5n-18xlarge,2C4T,375,1080

31-01-2023 18:42:01,aws,c5n-18xlarge,4C4T,513,1620

31-01-2023 18:42:01,aws,c5n-18xlarge,4C8T,751,2160

31-01-2023 18:42:01,aws,c5n-18xlarge,8C8T,1026,3240

31-01-2023 18:42:01,aws,c5n-18xlarge,8C16T,1514,4321

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 8

In this section, we will compare Snort performance on different cloud instances in public cloud including AWS, Azure, and

Google Cloud. This gives guidance on finding the most suitable cloud instance type for Snort based on performance and cost.

Below results on all three CSPs will include:

• Generation to generation performance gain among 1st, 2nd, 3rd Gen Intel® Xeon® Scalable processors.

• Snort performance on smaller instance types that host 16 vCPUs

• Comparing Snort performance with enabling default search engine (ac_bnfa) versus Hyperscan.

• Performance scaling with the number of vCPUs.

• Showcasing how processor core frequency plays an important role for compute bound workloads like Snort

• Performance gain with Hyper-Threading Technology enabled.

C5n-4xlarge – 1st Gen Intel® Xeon® Platinum processor instance type with 16 vCPUs

C6i-4xlarge – 3rd Gen Intel® Xeon® Platinum processor instance type with 16 vCPUs

Figure 5. Snort Performance on AWS

• Comparison from 1st Gen to 3rd Gen Intel Xeon Scalable processor servers show a performance gain of up to 23%.

• Enabling Snort with Hyperscan in place of using the default search engine gives an additional gain of up to 3.1x on c6i

instance types.

• Both instance types show very linear performance scaling with number of cores.

• Intel Xeon processor-based servers can use Hyper Threading Technology that gives an additional 33% performance

gain.

• The operating frequency of c5n is 3.4Ghz and c6i is 3.5Ghz. For this workload core frequency is very linear to the

performance.

Std-d16-v4 – 2nd Gen Intel Xeon Platinum processor instance type with 16 vCPUs

Std-d16-v5 – 3rd Gen Intel Xeon Platinum processor instance type with 16 vCPUs

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1C1T 1C2T 2C2T 2C4T 4C4T 4C8T 8C8T 8C16T 1C1T 1C2T 2C2T 2C4T 4C4T 4C8T 8C8T 8C16T

c5n-4xlarge c6i-4xlarge

Th
ro

u
gh

p
u

t
(G

b
p

s)
H

ig
h

er
 t

h
e

B
et

te
r

Snort Performance on AWS

Default Search Engine Hyperscan

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 9

Figure 6. Snort Performance on Azure

• Comparison from 2nd Gen to 3rd Gen Intel Xeon Scalable processor-based servers show a performance gain of up to

30%.

• Enabling Snort with Hyperscan in place of using the default search engine gives an additional gain of up to 3.3x on std-

v5 instances.

• Both instance types show very linear performance scaling with number of cores.

• Intel Xeon Scalable processor-based servers can use Hyper-Threading Technology that gives an additional 30%

performance gain.

N1-std-16 – Intel® Xeon® E5 v3 processor instance type with 16 vCPUs

N2-std-16 – 3rd Gen Intel Xeon Platinum processor instance type with 16 vCPUs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
1

C
1

T

1
C

2
T

2
C

2
T

2
C

4
T

4
C

4
T

4
C

8
T

8
C

8
T

8
C

1
6T

1
C

1
T

1
C

2
T

2
C

2
T

2
C

4
T

4
C

4
T

4
C

8
T

8
C

8
T

8
C

1
6T

std-d16-v4 std-d16-v5

Th
ro

u
gh

p
u

t
(G

b
p

s)
H

Ig
h

e
r

is
 B

et
te

r

Snort Performance on Azure

Default Search Engine Hyperscan

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 10

Figure 7. Snort Performance on GCP

• Comparison from Intel Xeon E5 v3 processor to 3rd Gen Intel Xeon Scalable processor-based servers shows a

performance gain of up to 50%.

• Enabling Snort with Hyperscan versus using the default search engine gives an additional gain of up to 3x on n2-std-16

instances.

• Both instance types show very linear performance with core scaling.

• Intel Xeon Scalable processor-based servers can use Hyper-Threading Technology that gives an additional 32%

performance gain on n2-std-16 instance types.

Table 6. Instance On-demand Hour Rates

Instance Type On-demand hourly rate ($)

AWS - c5n-4xlarge 0.86

AWS - c6i-4xlarge 0.68

GCP - n1-std-16 0.76

GCP - n2-std-16 0.78

Azure - std-d16-v4 0.77

Azure - std-d16-v5 0.77

Table 6 details the on demand hourly rate for all the instances mentioned in this paper. The above was the on-demand rate at the

time of publishing this paper and focuses on the US west coast. The On-demand hourly rate might vary with the region,

availability, corporate accounts, and other factors.

Sites used to get the ON-demand Pricing for each instance type:

• https://aws.amazon.com/ec2/pricing/on-demand/

• https://azureprice.net/

• https://cloud.google.com/compute/vm-instance-pricing#general-purpose_machine_type_family

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1

C
1

T

1
C

2
T

2
C

2
T

2
C

4
T

4
C

4
T

4
C

8
T

8
C

8
T

8
C

1
6T

1
C

1
T

1
C

2
T

2
C

2
T

2
C

4
T

4
C

4
T

4
C

8
T

8
C

8
T

8
C

1
6T

n1-std-16 n2-std-16

Th
ro

u
gh

p
u

t(
G

b
p

s)
H

ig
h

er
 is

 B
et

te
r

Snort Performance on GCP

Default Search Engine Hyperscan

https://aws.amazon.com/ec2/pricing/on-demand/
https://azureprice.net/
https://cloud.google.com/compute/vm-instance-pricing#general-purpose_machine_type_family

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 11

Figure 8. Relative Performance per Hourly Rate

Figure 8 compares relative performance per hour rate on all the instance types mentioned thus far. This data is also derived for

the throughput achieved with 16 vCPUs on all the instance types. We compare instance types within the same public cloud and

use the previous generation instance as the baseline. In summary, newer generation of instances powered by 3rd Gen Intel Xeon

Scalable processor always achieve better performance/hour rate.

The trend of offering network security solutions (such as IDS/IPS) as services on public cloud delivers advantage including

scalability, flexibility, ease of maintenance, etc. As more network security vendors are embracing this model, one main challenge

for such network security vendors is to find the most suitable cloud instance type in terms of performance and cost given so

many choices provided by public service providers. Different cloud instance types differ in computation power, network

bandwidth, security features, cost, etc. These are key factors that impact the performance of network security workloads. We

use Snort as the representative IDS/IPS solution and fully automate its deployment on multiple cloud instance types on different

public clouds. By comparing performance numbers, we can conclude the latest processor compute capabilities (such as SIMD

instructions) are critical to Snort as a compute intensive solution. Hyperscan boosts Snort performance by about 3x2 on public

clouds. This benchmarking gives solid references on cloud instance type selection for Snort and other similar network security

workloads.

2 See Section 4 Performance Evaluation

1

1.56

1

1.53

1

1.29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

c5n-4xlarge c6i-4xlarge n1-std-16 n2-std-16 std-d16-v4 std-d16-v5

R
el

at
iv

e
P

er
fo

rm
an

ce
/H

o
u

rl
y

R
at

e
H

ig
h

er
 Is

 B
et

te
r

Relative Performance / Hourly Rate
16 vCPUs; Performance with Hyperscan Enabled

AWS GCP Azure

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 12

Name c5n-4x-large c6i-4x-large

Time Mon Dec 12 12:51:43 UTC 2022 Mon Dec 12 12:31:36 UTC 2022

System Amazon EC2 c5n.4xlarge Amazon EC2 c6i.4xlarge

Baseboard Amazon EC2 Not Specified Amazon EC2 Not Specified

Chassis Amazon EC2 Other Amazon EC2 Other

CPU Model Intel® Xeon® Platinum 8124M CPU @ 3.00GHz Intel® Xeon® Platinum 8375C CPU @

2.90GHz

Microarchitecture Sky Lake Ice Lake

Sockets 1 1

Cores per Socket 8 8

Hyperthreading Enabled Enabled

CPUs 16 16

Intel Turbo Boost Enabled Enabled

Base Frequency 3.0GHz 2.9GHz

All-core Maximum

Frequency

3.4GHz 3.5GHz

Maximum Frequency 3.5 3.5

NUMA Nodes 1 1

Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP L2 HW, L2 Adj., DCU HW, DCU IP

Accelerators QAT:0, DSA:0, IAA:0, DLB:0 QAT:0, DSA:0, IAA:0, DLB:0

Installed Memory 42GB (1x42GB DDR4 2666 MT/s [Unknown]) 32GB (1x32GB DDR4 3200 MT/s [Unknown])

Hugepagesize 2048 kB 2048 kB

Transparent Huge Pages madvise madvise

Automatic NUMA Balancing Disabled Disabled

NIC 1x Elastic Network Adapter (ENA) 1x Elastic Network Adapter (ENA)

Disk 1x 50G Amazon Elastic Block Store 1x 50G Amazon Elastic Block Store

BIOS 1 1

Microcode 0x2006c0a 0xd000331

OS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS

Kernel 5.15.0-1026-aws 5.15.0-1026-aws

TDP

Frequency Governor

Frequency Driver

Max C-State 9 9

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 13

Name std-d16-v4 std-d16-v5

Time Mon Dec 12 16:33:27 UTC 2022 Mon Dec 12 16:56:13 UTC 2022

System Microsoft Corporation Virtual Machine Microsoft Corporation Virtual Machine

Baseboard Microsoft Corporation Virtual Machine Microsoft Corporation Virtual Machine

Chassis Microsoft Corporation Desktop Microsoft Corporation Desktop

CPU Model Intel® Xeon® Platinum 8272CL CPU @ 2.60GHz Intel® Xeon® Platinum 8370C CPU @

2.80GHz

Microarchitecture Cascade Lake Ice Lake

Sockets 1 1

Cores per Socket 8 8

Hyperthreading Enabled Enabled

CPUs 16 16

Intel Turbo Boost Enabled Enabled

Base Frequency 2.6GHz 2.8GHz

All-core Maximum

Frequency

0.0GHz 0.0GHz

Maximum Frequency 0 2.8GHz

NUMA Nodes 1 1

Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP L2 HW, L2 Adj., DCU HW, DCU IP

PPINs 0 0

Accelerators QAT:0, DSA:0, IAA:0, DLB:0 QAT:0, DSA:0, IAA:0, DLB:0

Installed Memory 1GB (1x1GB Other Unknown []); 32767MB

(1x32767MB Other Unknown []); 31745MB

(1x31745MB Other Unknown [])

1GB (1x1GB Other Unknown []); 32767MB

(1x32767MB Other Unknown []); 31745MB

(1x31745MB Other Unknown [])

Hugepagesize 2048 kB 2048 kB

Transparent Huge Pages always always

Automatic NUMA Balancing Disabled Disabled

NIC No data found. 1x MT27800 Family [ConnectX-5 Virtual

Function]

Disk 1x 30G Virtual_Disk, 1x 628K Virtual_CD 1x 30G Virtual_Disk, 1x 628K Virtual_CD

BIOS 90008 90008

Microcode 0xffffffff 0xffffffff

OS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS

Kernel 5.15.0-1021-azure 5.15.0-1021-azure

TDP

Frequency Governor Performance Performance

Frequency Driver intel_cpufreq

Max C-State 9 9

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 14

Name n1-std-16 n2-std-16

Time Fri Feb 10 17:24:05 UTC 2023 Fri Dec 9 15:54:01 UTC 2022

System Google Google Compute Engine Google Google Compute Engine

Baseboard Google Google Compute Engine Google Google Compute Engine

Chassis Google Other Google Other

CPU Model Intel® Xeon® CPU @ 2.30GHz Intel® Xeon® CPU @ 2.60GHz

Microarchitecture Haswell Ice Lake

Sockets 1 1

Cores per Socket 8 8

Hyperthreading Enabled Enabled

CPUs 16 16

Intel Turbo Boost Enabled Enabled

Base Frequency 2.0GHz 2.0GHz

All-core Maximum

Frequency

3.4GHz 3.5GHz

Maximum Frequency 2000 MHz 2000 MHz

NUMA Nodes 1 1

Accelerators QAT:0, DSA:0, IAA:0, DLB:0 QAT:0, DSA:0, IAA:0, DLB:0

Installed Memory 48GB (3x16GB RAM []); 12GB (1x12GB RAM []) 64GB (4x16GB RAM [])

Hugepagesize 2048 kB 2048 kB

Transparent Huge Pages madvise madvise

Automatic NUMA Balancing Disabled Disabled

NIC 1x device 1x device

Disk 1x 20G PersistentDisk 1x 20G PersistentDisk

BIOS Google Google

Microcode 0xffffffff 0xffffffff

OS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS

Kernel 5.15.0-1027-gcp 5.15.0-1025-gcp

TDP

Power & Perf Policy

Frequency Governor

Frequency Driver

Max C-State 9 9

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 15

Software Configuration Software version Location

Host OS Ubuntu 20.04.1 https://ubuntu.com/

Kernel 5.15.0 https://www.kernel.org/

Hyperscan 5.5.0 https://github.com/intel/hyperscan

DAQ 3.0.9 https://github.com/snort3/libdaq

Glibc 2.31 https://www.gnu.org/software/libc/

Software Configuration Details

Pcap Alexa_200

Rules snortrules-snapshot-31210

Hyperscan CMD

snort -c {{ snort_install_path }}/etc/snort/snort.lua --tweaks max_detect -r "$pcaps" -R

$rules -z $cores --lua "search_engine = { search_method = 'hyperscan'}" --daq dump --

daq-var load-mode=read-file --daq-var output=none -H -Q --warn-all -A none --pcap-loop 3

AC_BNFA CMD

snort -c {{ snort_install_path }}/etc/snort/snort.lua --tweaks max_detect -r "$pcaps" -R

$rules -z $cores --daq dump --daq-var load-mode=read-file --daq-var output=none --pcap-

loop 3 -H -Q --warn-all -A none

https://ubuntu.com/
https://www.kernel.org/
https://github.com/intel/hyperscan
https://github.com/snort3/libdaq
https://www.gnu.org/software/libc/

Technology Guide | Accelerate Snort Performance with Hyperscan and Intel Xeon Processors on Public Clouds

 16

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for

configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands

may be claimed as the property of others.

 1122/DN/WIPRO/PDF 751287-001US

http://www.intel.com/PerformanceIndex

