USER GUIDE

Intel Corporation

intel.

Closed Loop Platform Automation - Workload Resiliency

Authors

John J Browne

Emma Collins

Jabir Kanhira Kadavathu
Krzysztof Kepka

Damien Power

Sunku Ranganath

Kamil Wiatrowski

1 Introduction

With the massive influx of devices coming with 5G and IOT, there will be tremendous
pressure on next generation infrastructure. The network must scale to support billions of
devices, and a wide variety of use cases. Meeting these demands requires response times
in many areas of the network that exceed the capabilities of manual processes. The
industry is recognizing it is time to accelerate the automation journey.

The relationship between automated operations and excellent customer experience is an
area of significant interest to Service Providers. The closed loop platform resiliency demo
described in this document leverages the integration around orchestration, monitoring
software, and platform resource provisioning with the help of Closed Loop Platform
Automation that:

e Improves customer experience.

e Automates of operational processes and tasks, along with root cause analysis.

e Manages complexity and enables operations to meet upcoming efficiency demands.
e Reduces capital expenses and operating expenses.

e Identifies service level agreement violations.

This document provides instructions to create a closed loop resiliency demo that
minimizes network outage time and therefore maximizes service availability. It shows
that by using Intel® architecture platform specific metrics and events, we can monitor the
health of the platform and identify issues that may impact the end-user experience. We
use these key indicators to raise alarms and trigger the correct remediation that prevents
downtime for the customer.

Note: This document uses a virtual Broadband Network Gateway (vBNG) reference
application to showcase the resiliency of the workload with closed loop failover
capability, however the solution itself is application-agnostic.

This document is part of the Network Transformation Experience Kit, which is available
at: https://networkbuilders.intel.com/

https://networkbuilders.intel.com/

User Guide | Closed Loop Platform Automation - Workload Resiliency

Table of Contents

1
1.1
1.2
2
2.1
2.2
2.3
2.4
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.8
3.9
3.10
3.11
3.12
4
5
Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Introduction 1
JLICT 01T o =TT 3
REFEIENCE DOCUMIENTS ... SRS SRR 3
System Overview 3
SOTUD ATCNITECIUIE ...ttt s s R SRR ARt 3
HardWare REQUITEMENTScieerreerersesssessesssesssesssesssesssesssessse s sssse s s E R n 7
SOTEWAIE REGQUITEIMIENTSeeeeeteeeeeeeeeesses et sesse e esses e s et s e s Rs£EAER e ER SRR AR s AR bbbt 7
=@ @ o g =TT =« o o O 7
System Setup 8
AP PLICATION SETUP .eceueeieieeeueeureereeeeusetse e s ses et s b s s as s bR eS8 8 SRR AR A8 1A £ AR AR SRR EA RS eE AR R bbb s 8
KUDEINEES* INSTALLATION ...t 8
Install CPU Manager for Kubernetes*.. .. 10
BUILA IMI@EES....uieueueerieeenesrereesesses s eseessessessessse s s s s s RS s£e£a R8RSR R RH£ERAER SRR AR AR 4R R AR AR R n e 14
MOAiIfY aNA RUN WOTKLOGA.......o.ieeeeeirsessesssesssesssesssssssssssssssesssssseessssssessssessesssesssasssesssesssesssesssesssesssesssesssesssesssesssasssesssasssasssasssesssasssesssasssesssassnens 14
L6000 1= o o 14
LI YL T T=T oY (o T Y= (U o TP 16
Prepare Traffic GENEIATOr ON SEIVET 2 ... esseese e tsses s ssesss e sss s s A s b bR R bR Rt 16
TraffiC 8eN SErVEr ENVIFONMENT SETUP ..c e s s RRR R S R R R RRRaRasRERpanas 16
F N =T g g =Yg V== PP 18
Prometheus......

AlertHandler

QLI E ==L =T o g=Tol=T g =V o 19
L= g aTCTe [T Lo 1= ot £ o o 20
Traffic Generator Configuration Script 21
Summary 24

Closed Loop Resiliency Setup
Default Status
Error Status

Corrected Failover State
Recovery Time Calculation

(o) I IS, BNC I

Terminology
Reference Documents
Hardware Requirements
Software Requirements
BIOS Configuration

N NN ww

User Guide | Closed Loop Platform Automation - Workload Resiliency

1.1 Terminology
Table 1. Terminology
Abbreviation Description
Aodh OpenStack* alarming service project (not an acronym)
DPDK Data Plane Development Kit
MCE Machine Check Exception
RAS Reliability Availability Serviceability
SNMP Simple Network Management Protocol
TSDB Time Series Database
vBNG Virtual Broadband Network Gateway
VES VNF Event Stream
1.2 Reference Documents
Table 2. Reference Documents
Ref # Document Source
[1] Collectd Metrics and Events https://wiki.opnfv.org/display/fastpath/Collectd+Metrics+tand+Events
[2] ° https://www.intel.com/content/www/us/en/architecture-and-
Intel® Run Sure Technology -
technology/intel-run-sure-technology.html
(3] :_r:Teuc); machine check exception injection tool: MCE- https://git.kernel.org/pub/scm/utils/cpu/mce/
(4] Ziirggeter repository (containing chosen scripts from https://gerrit.opnfv.org/gerrit/gitweb?p=barometer.git
2 System Overview

This section describes the architecture of the solution and the requirements for hardware, software, and BIOS.

Note: This document uses a virtual Broadband Network Gateway (VBNG) reference application to showcase the resiliency of the
workload with closed loop failover capability, however the solution itself is application-agnostic.

2.1

Setup Architecture

The (vBNG) application is initially deployed in a “warm standby” model. We trigger a platform fault that is reflected via a platform
metric. As a part of the closed loop error detection and correction, the traffic will be switched from the active to the standby
application to maintain an uninterrupted service.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-run-sure-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-run-sure-technology.html
https://gerrit.opnfv.org/gerrit/gitweb?p=barometer.git

User Guide | Closed Loop Platform Automation - Workload Resiliency

Application host
(2nd generation Intel® Xeon® Scalable processor)

Kubernetes* . Alert , NOC
Prometheus ail—> :
master Manager mailbox

3

VBNG A

VBNG B

(standby)

(active)

3
Socket A | Socket B

®

Traffic Generators
host

Alert
Handler

Remediation_action.sh

Figure 1. Closed Loop Resiliency Setup

We run two application instances at the start of the demonstration [A] active and [B] standby, on a single server platform, each on a
separate socket. Both traffic generators are configured and providing traffic to both sockets. The application instances, created by
Kubernetes, will start processing traffic immediately the application instance becomes active.

Platform telemetry, such as resource utilization, status, and faults, is provided by collectd*. Collectd is an open source collection
daemon which publishes metrics to consumers using a plugin architecture. Collectd publishes metrics to many standard interfaces
including VES, SNMP, SYSLOG/Logstash, Ceilometer, Gnocchi, Aodh, Kafka/influxdb and Prometheus. A full list of metrics and
events is listed in Ref [1] in Table 2. The OPNFV* Barometer project leverages collectd and provides improvements and references
to collectd integration with Time Series Database (TSDB) and visualization tools. Telemetry for the demonstration platform is
published using Prometheus.

The demonstration is comprised of 3 parts.

Part 1: There are two servers. Server 1 hosts two application instances deployed by Kubernetes. Application instance 1 is in active
mode receiving traffic on socket O, the other application instance 2 is in standby on socket 1. Collectd is also running on this server
as the metric collection daemon of choice. This is integrated with Prometheus, which is a monitoring and time series database
solution. Prometheus has a component called alert manager which handles alerts sent by client applications, such as the
Prometheus server in this case.

Server 2 hosts the traffic generator for the two application instances. It also hosts the custom alert handler. The alert handler
implements automated responses to telemetry-based alerts it receives from Prometheus.

Figure 2 shows that the current state is traffic is running and there are no errors to report on the setup.

User Guide | Closed Loop Platform Automation - Workload Resiliency

Closed Loop Automation Resiliency Demo — part 1

Kubernetes* iﬁ: collectd* 9 Prometheus*

Platform
Metrics

Socket 0 Socket 1

App 2
(Standby)

App 1

(Active)

Server 1 .
Server 2
Traffic Traffic Pr°':leet:;e“s
Gen 1 Gen 2 Handler
Traffic
Config
Script

Figure 2. Default Status

Part 2: We trigger the error scenario by injecting an Intel® architecture specific Reliability Availability Serviceability (RAS) fault [Ref 2
in Table 2], which will incur a DIMM failure on socket 0. Using an MCE error injection tool [Ref 3 in Table 2], we inject 5 correctable
memory errors. This counter is picked up by collectd and sent to Prometheus where the alert manager identifies the failure
scenario. We have set a threshold in the Prometheus alert manager that if we receive at least 5 errors in the last 5 seconds, an alarm
is raised to alert the NOC via email that a DIMM requires maintenance. The alarm also triggers the remediation action. Refer to

Figure 3.

Closed Loop Automation Resiliency Demo — part 2

Kubernetes* j§$§ collectd* - 9 Prometheus*
Platform
Metrics

!Errgr * * * * * Socket 0 Socket 1
Injection p—————————b

Tool
App 1 i App 2
(Active) H (Standby)

Traffic Traffic Prometheus
Alert

Gen 1 Gen 2 Handler

Traffic
Config
Script

Figure 3. Error Status

User Guide | Closed Loop Platform Automation - Workload Resiliency

Part 3: Prometheus sends a notification to Prometheus alert handler to indicate the threshold has been breached. On receiving a
JSON packet from Prometheus describing the alert, PAH calls a traffic config script, quickly adapting the system to the change in its
state. In this instance, the remediation action is to stop traffic on application instance 1 and start it on application instance 2, service
resumes as normal, and there is minimal disruption to the service for the customer. Refer to Figure 4.

Closed Loop Automation Resiliency Demo - part 3

Kubernetes* “,qii collectd* 9 Prometheus*

Platform
Metrics
Socket 0 Socket 1 M
App 1 App 2 Email to
(To be repaired) (Active) N.O.C.
: Y
y
Traffic Traffic Prometheus
Gen 1 Gen 2 Handler
]]
Stop traffic I Start traffic Traffic
Config
Script

Figure 4. Corrected Failover State

The key system metrics for Resiliency and Availability scenarios are indicated in Figure 5. The goal of efficient resiliency closed
loops is to minimize the outage time, which in turn maximizes the availability of the service. System Metrics include Reaction Time
(includes detection), Repair Time, Recovery Time, and Outage Time. The unprotected period refers to period in which there is no
‘dual active/standby’ because the faulty equipment has not been replaced. The demo provides a visual of the recovery time. While
still a short period, the recovery time has not been optimized for speed, which is beyond the scope of this document.

Goal: Minimize Outage Time to Maximize Service
Availability I
Unprotected Period

. (If part of a protected Pair)
Outage Time

Recovery Tim.le

Failure Resumption or Restart
of service

> Time

First reaction Faulty unit repaired

Reaction Time

Repair Time

Figure 5. Recovery Time Calculation

User Guide | Closed Loop Platform Automation - Workload Resiliency

2.2 Hardware Requirements

Table 3. Hardware Requirements

Hardware Components Server 1 Server 2

CPU Intel® Xeon® Platinum 8276 CPU @ 2.20GHz Intel® Xeon® Platinum 8276 CPU @ 2.20GHz
CPU(s) 112 112

Thread(s) per Core 2 2

Core(s) per Socket 28 28

Socket(s) 2 2

Memory 196798 MB 181249 MB

NIC 2 x Intel® Ethernet Network Adapter XXV710-DA2 2 x Intel® Ethernet Network Adapter XXV710-DA2
NIC Mbps 25000 25000

2.3 Software Requirements

Table 4. Software Requirements

Software Component Details

Operating system (OS) Ubuntu* 18.04.1 LTS

Kernel Version 4.15.0-43-generic

Software Version DPDK-18.11

Application We used a virtual Broadband Network Gateway (vBNG) reference application, however the solution itself
is application-agnostic.

Docker* 18.06.1-ce

Kubernetes* V1.11.0

140e 2.7.12

140evf 3.6.10

2.4 BIOS Configuration

Table 5. BIOS Configuration

BIOS Parameter Optimized Configuration
Hyper Threading (Advanced>Processor configuration) <Enabled>

Intel® VT Directed I/O (Advanced>Integrated /O Configuration) <Enabled>

CPU Power and Performance (Advanced > Power n Performance) Performance

Intel Turbo boost Technology (Advanced>Power n Performance>CPU P State Control) Disabled

Enhanced Intel Speed step Technology (Advanced>Power n Performance>CPU P State Control) Enable

Package C-State (Advanced>Power n Performance>CPU C State Control) CO/C1 State

User Guide | Closed Loop Platform Automation - Workload Resiliency

3

System Setup

The demo is application-agnostic. For this demo, we used a DPDK based vBNG reference application that leverages a DPDK IP
pipeline application.

3.1

Application Setup

The reference application was set up in the following manner:

Core allocation:

root@<Hostname>:~# scpu | grep NUMA

NUMA node(s): 2

NUMA nodeO CPU(s): 0-27,56-83

NUMA node1 CPU(s): 28-55,84-111

Downlink Cores: ("3,59" "4,60" "31,87" "32,88")

Uplink Cores: ("5" "61" "6" "62" "33" "89" "34" "90")

Note: Uplink Instances are stacked two per core, 1 on the physical core and the second one on the hyper-threaded pair.
Example from above ("5" "61") shows one UL on core 5 and one UL on its hyper-threaded pair 61.

Core assignments are made in the application configuration file. Allocation for the application instances in this scenario are

listed below. Note that these allocations may vary, because the core allocation is managed by the CPU Manager for Kubernetes,

which takes the cores from available pool of cores.

Instance_0_O (Instance A: Socket 0): DL: 3, 59 UL: 5, 61 Instance_1_0 (Instance B: Socket 1): DL: 31, 87 UL: 33,89

SR-IOV port allocation:

3.2

PCle* addresses:

Host-config.sh is preconfigured for a system with 8PFs. Add PCle addresses of NIC PF and VFs for the local environment.
Note: For NIC PFs, only specify the ports that are physically present.

NIC PF ports to use (2 x NIC devices, 4 x PF"s)

NIC VF ports to use for Control Plane, Downlink & Uplink Instances (3 VFs per PF)

1 VF for Control Plane per PF

1 VF for Downlink per PF

1 VF for Uplink per PF

export NB_VFS=3
Application Instance Ports:
Add the ports used for running each Application Instance. These are used to run and attach to each instance.
downlink ports
declare -a pipeline_ports_dI=("8086" "'8087' "'8088' "'8089')
uplink ports
declare -a pipeline_ports_ul=("8094" "'8095'" *'8096' "'8097'")
Configure Cores to be used for running Application Instances:
Master Core

declare -a master_core=0

NOTE: Master Core is CPU (0/1) and SKU specific

Kubernetes* Installation

On Server 1, perform the following steps as root user.

1.

Application Server Preparation & Component Installation

IFf you installed the OS via Lab Express provisioning, then your
machine hostname and FQDN is most likely configured incorrectly.
Set hostname and configure the host name resolution.

hostnamectl set-hostname <Your serverl hostname>

cat >/etc/hosts <<EOL

127.0.0.1 localhost. localdomain localhost

127.0.1.1 <Your serverl hostname>

The following lines are desirable for IPv6 capable hosts
I localhost ip6-localhost 1p6-loopback

ff02::1 ip6-allnodes

f02::2 ip6-allrouters

EOL

Confirm that the hostname and FQDN have been set
hostname
hostname —f

User Guide | Closed Loop Platform Automation - Workload Resiliency

3.

Confirm Set Proxies, when your system is behind a network proxy.

export http_proxy="ADD YOUR PROXY HERE

export https_proxy=$http_proxy

export my_ip=$(ip addr show | grep "First 2 octets of IP address, eg: 192.168" | awk "{print
$237)

export no_proxy=$(hostname) ,$(hostname -f),$my ip,127.0.0.1

Download packages required to build CNI plugins.

cd $MYHOME/k8s/

Downlload the required package. We used Go from: https://dl.google.com/go/gol.9.7.1inux-
amd64 .tar.gz

tar xzvf gol.9.7.l1inux-amd64.tar.gz
export PATH=$PATH: “pwd~/go/bin
Install Kubernetes.
Note: If your server is behind a network proxy, be sure to configure the proxy accordingly.
a. Install Docker.
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "‘deb [arch=amd64] https://download.docker.com/linux/ubuntu bionic
stable™
sudo apt -y install docker-ce=18.06.1~ce~3-0~ubuntu
b. Install Kubernetes.
Use the installation procedure that is specific to your platform.
c. Verify that the services below are running correctly.
etcd.service - Etcd Server
Loaded: loaded (/lib/systemd/system/etcd.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 12:49:01 GMT; 21h ago

kube-apiserver.service - Kubernetes API Server
Loaded: loaded (/lib/systemd/system/kube-apiserver.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 12:49:10 GMT; 21h ago

kube-scheduler.service - Kubernetes Scheduler Plugin

Loaded: loaded (/lib/systemd/system/kube-scheduler.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 16:05:25 GMT; 18h ago

kube-controller-manager.service - Kubernetes Controller Manager

Loaded: loaded (/lib/systemd/system/kube-controller-manager.service; enabled; vendor preset:
enabled)

Active: active (running) since Tue 2018-11-06 16:05:51 GMT; 18h ago

docker.service - Docker
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/docker.service.d
L_http-proxy.conf
Active: active (running) since Tue 2018-11-06 12:49:27 GMT; 21h ago

kubelet.service - Kubernetes Kubelet Server
Loaded: loaded (/lib/systemd/system/kubelet.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 12:49:27 GMT; 21h ago

flanneld.service - Flanneld overlay address etcd agent
Loaded: loaded (/lib/systemd/system/flanneld.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 12:49:23 GMT; 21h ago

kube-proxy.service - Kubernetes Kube-Proxy Server
Loaded: loaded (/lib/systemd/system/kube-proxy.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-11-06 12:49:11 GMT; 21h ago

d. Change directorytocd $MYHOME/k8s.

User Guide | Closed Loop Platform Automation - Workload Resiliency

3.3

Install CPU Manager for Kubernetes*

In our setup, we used CPU Manager for Kubernetes* version 1.3.0.

We assume that isolated CPU"s and hugepages kernel options have been

set In the GRUB_CMDLINE_LINUX DEFAULT line. GRUB line example:

Pods tailored to use 2K Huge Pages - 2GB Per Pod required

GRUB_CMDLINE_L INUX_DEFAULT=""default_hugepagesz=2M hugepagesz=2M hugepages=20024 ipv6.disable=1
intel_pstate=disable rhgb intel_iommu=on iommu=pt isolcpus=3-27,59-83,31-55,87-111 nr_cpus=112
intel_pstate=disable™

Install CPU Manager for Kubernetes (core pinning and isolation).

1.

git
git

clone https://github.com/intel/CPU-Manager-for-Kubernetes.git
checkout 4607e629d3034266e129250c1d7edd341a9f8a6bq

cd CPU-Manager-for-Kubernetes

Add
vim

proxies, for example:
Dockerfile

FROM python:3.4.6

ADD HTTP PROXY HERE
#ENV http_proxy=
ADD HTTPS PROXY HERE
#ENV https_proxy=

ADD
RUN

ADD

requirements.txt /requirements.txt
pip install -r /requirements.txt

. /cmk

WORKDIR /cmk

RUN

RUN
RUN
RUN
RUN

RUN

chmod +x /cmk/cmk.py

tox -e lint

tox -e unit

tox -e integration
tox -e coverage

/cmk/cmk.py --help && echo

ENTRYPOINT ["*/cmk/cmk.py*]

Build Docker image.
make

cd

Install RBAC Rules and Service Account.

a.

b.

Edit
a.

Remove any previous built cmk pods.

-/scripts/remove-cmk.sh hostname

Create RBAC rules.

kubectl delete -f CPU-Manager-for-Kubernetes/resources/authorization/cmk-rbac-rules.yaml
kubectl create -f CPU-Manager-for-Kubernetes/resources/authorization/cmk-rbac-rules.yanml
Create Service Account.

kubectl delete -f CPU-Manager-for-Kubernetes/resources/authorization/cmk-serviceaccount.yaml
kubectl create -f CPU-Manager-for-Kubernetes/resources/authorization/cmk-serviceaccount.yaml
NOTE:

- IT the following Error occurs:

"The connection to the server IP:6443 was refused - did you specify the right host or port?"
- Solve by removing the old config: rm -rf ~/_kube/config
CPU-Manager-for-Kubernetes/resources/pods/cmk-cluster-init-pod.yaml.

Find the following line:

"/cmk/cmk.py cluster-init --host-list=nodel,node2,node3 --saname=cmk-serviceaccount --cmk-
img-pol=1fNotPresent"

Replace --host-list=nodel,node2,node3 with --all-hosts

The following should correspond to the isolcpu settings:

—--num-exclusive-cores=<num> Number of data plane cores [default: 4].
--num-shared-cores=<num> Number of control plane cores [default: 1].

Add --exclusive-mode=spread --shared-mode=spread. If you have spread enabled, it will allow you to equally
assign cores across NUMA nodes.

10

User Guide | Closed Loop Platform Automation - Workload Resiliency

E.g-:
root@Serverl:~/vBNG/k8s# cat CPU-Manager-for-Kubernetes/resources/pods/cmk-cluster-init-
pod.yaml
apiVersion: vl
kind: Pod
metadata:
labels:
app: cmk-cluster-init-pod
name: cmk-cluster-init-pod
#namespace: user-supplied-namespace
spec:
serviceAccountName: cmk-serviceaccount
containers:
- args:

Change this value to pass different options to cluster-init.

- "/cmk/cmk.py cluster-init --exclusive-mode=spread --shared-mode=spread --all-hosts -
-num-exclusive-cores=20 --num-shared-cores=2 --saname=cmk-serviceaccount —--cmk-img-
pol=1fNotPresent"

command:

- "/bin/bash"

- "_C"

image: cmk:v1.3.0

name: cmk-cluster-init-pod

restartPolicy: Never

root@<Hostname>:~/vBNG/k8s#
root@Serveril:~/vBNG/k8s#

6. Modify the API Server.
cd CPU-Manager-for-Kubernetes
vim /etc/kubernetes/apiserver

a.

b.

Ensure it contains MutatingAdmissionWebhook,ValidatingAdmissionWebhook as shown in the example below:
KUBE_ADMISSION_CONTROL=""--admission-
control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,Defa
ultTolerationSeconds,MutatingAdmissionWebhook,Val idatingAdmissionWebhook""

Restart services.

systemctl restart kube-apiserver kube-scheduler kube-controller-manager kube-proxy kubelet

7. Remove Taints.

cd
a.

Retrieve node name.
kubectl get nodes
NAME STATUS ROLES AGE VERSION
<hostname> Ready <none> 1d v1.11.0
kubectl taint nodes <hostname> cmk-
kubectl create -f CPU-Manager-for-Kubernetes/resources/pods/cmk-cluster-init-pod.yaml
NOTE: 1f issues occur with cmk-cluster init Pods not being
able to connect to the api-server run following commands:
(Flush iptables)

systemctl stop docker

systemctl stop flanneld

systemctl stop kube-proxy

systemctl stop kubelet

iptables -P INPUT ACCEPT

iptables -P FORWARD ACCEPT

iptables -P OUTPUT ACCEPT

iptables -F

iptables -X

iptables -t nat -F

iptables -t nat -X

iptables -t mangle -F

iptables -t mangle -X

iptables -t raw -F

iptables -t raw -X

systemctl restart docker

systemctl restart flanneld

systemctl restart kube-proxy

systemctl restart kubelet

11

User Guide | Closed Loop Platform Automation - Workload Resiliency

8. Check if cores are isolated.
kubectl logs pod/cmk-init-install-discover-pod-<hostname> init
a. Checkif all CMK components are deployed.
kubectl get all --all-namespaces

NAMESPACE NAME READY
STATUS RESTARTS AGE

default pod/cmk-cluster-init-pod 0/1
Completed 0 im

default pod/cmk-init-install-discover-pod-<hostname> 0/2 Completed 0
Im

default pod/cmk-reconcile-nodereport-ds-<hostname>-mzd8m 2/2 Running 0
Im

default pod/cmk-webhook-podod 1/1
Running 0 50s

9. Install Device Plugin.
Assuming PF ports have been bound to DPDK®"s igb_uilo driver and 3 VF"s
per PF have been created and bound to igb_uio:
a. Createmkdir /etc/pcidp.
i. Populate Downlink-rootDevice below to match host-config.sh vf_ports_dl.
ii. Populate Uplink-rootDevice below to match host-config.sh vf_ports_ul.
cat > /etc/pcidp/config.json <<EOL
root@Serverl:~/vBNG# cat /etc/pcidp/config.json

{
“"resourceList':
[
{
""resourceName'": ""Downlink_s0",
“rootDevices™: [""0000:18:02.1'],
"sriovMode': false,
“deviceType': "uio™
3
{
"resourceName'": "Uplink_s0",
“rootDevices™: ['"0000:18:02.2"],
"sriovMode': false,
“deviceType': "uio™
3
{
“resourceName™: ""Downlink_s1™,
"rootDevices'": ["0000:af:02.1"],
"'sriovMode': false,
"deviceType': "uio"
3
{
“"resourceName™: "Uplink_s1",
"rootDevices': [''0000:af:02.2"],
"'sriovMode: false,
"deviceType': "uio"
}
1
}

root@Serveril:~/vBNG#

EOL

12

User Guide | Closed Loop Platform Automation - Workload Resiliency

b.

Build and run cd docker-image-pci-dev-plugin.
i. Before running docker build, ensure your proxies are still set.
ii. Run the following command (it may take a while to build image):

docker build -t pci-device-plugin-image . --build-arg http_proxy=$http_proxy --build-arg
https_proxy=$https_proxy
NOTE:

- IT following error occurs:
"Get https://registry-1.docker.io/v2/: net/http: request canceled while waiting for

connection (Client.Timeout exceeded while awaiting headers)™

- Add your proxies to /etc/systemd/system/docker.service.d/http-proxy.conf
Check if image created successfully.
docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
pci-device-plugin-image latest aebdf60c4alf 29 minutes ago 924MB
Create Daemonset.
kubectl create -f pcidp-daemonset-pktgen.yaml
cd ..
Check that the device plugin is running.
kubectl get all --all-namespaces

NAMESPACE NAME READY
STATUS RESTARTS AGE

default pod/cmk-cluster-init-pod 0/1
Completed 0 1h

default pod/cmk-init-install-discover-pod-<hostname> 0/2 Completed 0

1h

default pod/cmk-reconcile-nodereport-ds-<hostname>-mzd8m 2/2 Running 0

1h

default pod/cmk-webhook-pod 1/1

Running 0 1h

default pod/pci-device-plugin-xt9hg 1/1

Running 0 21s

NAMESPACE NAME TYPE CLUSTER-1P EXTERNAL-1P PORT(S)
AGE

default service/cmk-webhook-service ClusterIP 10.254.242.123 <none> 443/TCP
1h

default service/kubernetes ClusterIP 10.254.0.1 <none> 443/TCP
1d

NAMESPACE NAME

DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

default daemonset.apps/cmk-reconci le-nodereport-ds-<hostname> 1 1 1

1 1 <none> 1h

default daemonset.apps/pci-device-plugin

NOTE: Both CMK & pci-device-plugin should now be fully operational

10. Create NFS.

a.

If you do not have nfs-kernel-server installed:

sudo apt-get install nfs-kernel-server
mkdir /test

chmod 777 /test

Create Kubernetes master files and copy to NFS folder.
cd ..

cd cli_generation/

vim config-generate.ini

Modify inst_path to match your $MYHOME directory.
Generate config files for your application Pods.

Copy configs to NFS folder.

cd $MYHOME/<Your application>-config/kubernetes/
cp -r dl_master/ ul_master/ /test

cd ..

cp -r <Your application>_configs/ /test/

13

User Guide | Closed Loop Platform Automation - Workload Resiliency

f. Add following lines to Zetc/exports
/test *(rw,sync,no_subtree_check)
exportfs -a
g. Make sure NFS is running.
service nfs-kernel-server status
h. Modify nfs/nfs_volume.yaml to include your host name.
cd $MYHOME/k8s
vim nfs/nfs_volume.yaml
E.g.:
nfs:
server: <hostname>
path: **/test
i. Create nfs volume.
kubectl create -f nfs/nfs_volume.yaml

34 Build Images

1. Build all images.

2. Ensure images are built.
docker images

REPOSITORY TAG IMAGE ID CREATED SI1ZE
vbng-cloud-pktgen-init latest 8957d814089¢e 57 seconds ago 259MB
vbng-cloud-vbng-init latest 8957d814089e 57 seconds ago 259MB
vbng-pktgen latest 8957d814089¢e 57 seconds ago 259MB
vbng-pod latest 8957d814089e 57 seconds ago 259MB

3.5 Modify and Run Workload

Note: This example uses a virtual Broadband Network Gateway (vVBNG) reference application to showcase the resiliency of the
workload with closed loop failover capability, however the solution itself is application-agnostic.
1. Set up PF-Init for the application.
a. Change to socket_O or socket_1 directory depending on which NUMA node you want to run on your Applications on.
Socket O Example:
The First 3 NUMA node cores are used as follows:
- core 0O:system, core l:cli-core, core 2:pf-init-core

2. Label Node to Application.

kubectl get node (get your Node name)

NAME STATUS ROLES AGE VERSION
<hostname> Ready <none> 2h vl.11.0

kubectl label node <hostname> application=true

3. Setup application pods.
Socket 0 Example:
a. Ensure the following is set as described below:
vim vbng-pods/socket 0/k8s-application-pod-config-0-X-ul.yaml && vim k8s-application-pod-
config-0-X-dl .yaml
4. Setup routes.
Create specific routes for ingress/egress traffic on your application pods.
5. Run pf_initand application instances.
Pass socket number to script to launch instances on that socket based on the application you run on each socket.

3.6 Collectd
1. Apply the collectd patch.
Note: dpdk_telemetry patch is not yet open sourced. It will be available soon.
#git clone https://github.com/collectd/collectd.git
#cd collectd
#git checkout FFf795c9846bd8fedbc7f76bcd83a2b8cefb4525
#cp ../collectdpatch/telemetry-add-collectd-plugin-patch.patch ./
#patch -pl < telemetry-add-collectd-plugin-patch.patch

14

User Guide | Closed Loop Platform Automation - Workload Resiliency

2.

Build and install.
#./build.sh
#./configure --enable-write_prometheus
#make -jJ && make install
Note: Collectd will be installed by default in Zopt/collectd
Configure collectd.
Note: collectd.conf is optimised for 16 vVBNG instances because our example deploys 8 vBNG instances on socket 1.
#cd ../collectdpatch/
a. Comment out socket O in collectd.conf.
b. Copy the config file over to /opt/collectd/etc
cp collectd.conf /opt/collectd/etc/
c. Confirm that the following lines are uncommented in order to load the following plugins:
vim /opt/collectd/etc/collectd.conf
LoadPlugin syslog
LoadPlugin logfile
LoadPlugin csv
LoadPlugin dpdk_telemetry

Example of the dpdk_telemetry stanza for both uplink and downlink for 2 VvBNG instances.
Collectd.conf should contain 8 VvBNG instances & will have 16 <Host> blocks configured.
<Plugin dpdk_telemetry>
HH A L nstance 0 on socket O
<Host "ip_pipeline_ul_0 0>
ClientSocketPath "“/var/run/._telemetry client ul_0 0"
DpdkSocketPath */var/run/dpdk/ip_pipeline_ul_0 0O/telemetry"
</Host>
<Host "ip_pipeline_dl_0 0>
ClientSocketPath "“/var/run/._telemetry client_dl_0O 0"
DpdkSocketPath */var/run/dpdk/ip_pipeline_dl_0 _O/telemetry"
</Host>
HHHHHHHHHHHHHHHHHHH A Instance O socket 1
<Host "ip_pipeline _ul_1 0>
ClientSocketPath "/var/run/.telemetry_client ul_1 0"
DpdkSocketPath */var/run/dpdk/ip_pipeline_ul_1 O/telemetry"
</Host>
<Host *“ip_pipeline_dl_1 0>
ClientSocketPath "/var/run/.telemetry_client_dl_1 0"
DpdkSocketPath **/var/run/dpdk/ip_pipeline_dl_1_0O/telemetry™
</Host>
HHHHHHHHHHHHHHHHHHHHHHHHHH
d. Copy the Application types database.
cp <Your application>_types.db /opt/collectd/share/collectd/
e. Ensure the following lines are present in Collectd’s config file (under line 18):
vim /opt/collectd/etc/collectd.conf

TypesDB */opt/collectd/share/collectd/types.db™
TypesDB "/opt/collectd/share/collectd/vbng_types.db"

f. The Collectd interval is set to 10s by default. Set it according your configuration's requirements (line 43).
Interval 1

Run collectd.

NOTE: Before deploying Collectd, ensure traffic is successfully returning to your Traffic
Generator.

IFf, for any reason, one of the vBNG Pods crash, all the vBNG Pods will need to be restarted,
as well as the Collectd daemon as, due to a Telemetry APl and plugin limitation,

Collectd is unable to reconnect to the Pod which crashed and restarted.

cd /opt/collectd
sbin/collectd —f
Confirm that the stats are being reported and written to CSV files.

Is —lisa /opt/collectd/var/lib/collectd/vbng X ul/dpdk_telemetry-
upstream/

Is —lisa /opt/collectd/var/lib/collectd/vbng X dl/dpdk_telemetry-
downstream/

Deploy a cron job to clean up old telemetry stats.

crontab -e

Add following line to file : 0 0 * * * rm -rf /opt/collectd/var/lib/collectd/*
crontab -1 to ensure changed has been added

15

User Guide | Closed Loop Platform Automation - Workload Resiliency

7.

3.7

Enable and configure Prometheus endpoint by adding to collectd.conf.
LoadPlugin write_prometheus
<Plugin write_prometheus>
Port 9103
</Plugin>

Traffic Generator Setup

3.71 Prepare Traffic Generator on Server 2

Configure boot settings similar to Server 1 and install required Linux* packages.

1.

3.7

Install packages as follows using the Linux package manager.

apt-get install build-essential

apt-get install libpcap-dev

apt-get install dtach

Note: Python packages already installed can be listed using pip list.
pip install fabric -U --force-reinstall

pip install paramiko -U --force-reinstall

pip install cryptography -U --force-reinstall

Note: Install the following Intel® Network Adapter Drivers for PCle.
140e-2.7.12

wget https://downloadmirror.intel.com/28381/eng/i40e-2.7.12_tar.gz
tar -zvf 140e-2.7.12_tar.gz

cd i140e-2.7.12/src/

make install

loading the new module:

rmmod 140e; modprobe 140e

HHHFHHFH

i140evf-3.6.10

wget https://downloadmirror.intel.com/28382/eng/i40evf-3.6.10.tar.gz
tar -zvf 140evf-3.6.10.tar.gz

cd i140e-3.6.10/src/

make install

loading the new module:

rmmod 140evf; modprobe i140evf

HFHHFEHHHR

2 Traffic gen server environment setup

Note: This example uses a virtual Broadband Network Gateway (VBNG) reference application to showcase the resiliency of the

workload with closed loop failover capability, however the solution itself is application-agnostic.
Get traffic gen source for your application and untar the source.
Configure the vBNG Pkt-gen environment. Refer to Section 4 for the full pktgen-config.sh. script.
a. Setthe PKTGEN_HOST environment variable.
export PKTGEN_HOST=y
b. Go to vBNG directory and update pktgen-config.sh for the local environment.
cd /root/vBNG
vi pktgen-config.sh
¢. Run the main environment script which also runs pkgen-config.sh.
source $MYHOME/env.sh
Download and build DPDK v18.11.
cd $MYHOME
git clone http://dpdk.org/git/dpdk
cd dpdk
git checkout v18.11
Ensure the DPDK environment variable settings are correct in $MYHOME/pktgen-config.sh.
export RTE_SDK=$MYHOME/dpdk
export DPDK DIR=$RTE_SDK
Build DPDK.
cd $DPDK_ROOT_RELEASE
make install T=x86_64-native-Ilinuxapp-gcc
export RTE_TARGET=x86_64-native-linuxapp-gcc
export DPDK_BUILD=$RTE_SDK/$RTE_TARGET
Download and Build DPDK Pkt-gen and download and checkout PktGen v3.5.4.
cd $MYHOME
git clone http://dpdk.org/git/apps/pktgen-dpdk
cd pktgen-dpdk
git checkout pktgen-3.5.4

16

User Guide | Closed Loop Platform Automation - Workload Resiliency

7.

10.

11.

12.

13.

14.

15.

Patch Pktgen.
cd $PKTGEN_ROOT
patch -pl < $MYHOME/dpdk 18.11 patches/v1-0001-pktgen-mac-set.patch
Note: Ignore the whitespace warnings that are reported.
Build Pkt-gen.
make
Build PF Init Application.
Note: Ensure you have run source env.sh.
source $MYHOME/env.sh
build_pf_init_app
Bind PFs to DPDK.
a. Source env.sh.
Note: Ensure you have run source env.sh.
source $MYHOME/env.sh
b. Load igb_uio kernel module.

iIns
c. Bind PFs.

bind_pf_dpdk
Create VFs.

create_vfs_dpdk
Bind VF Ports to DPDK on vBNG Pkt-gen server.
Note: NIC PF port addresses have already been set in pktgen-config.sh.

Bind NIC VFs:
bind_vf_dpdk

Note: Function check_ports_bound_status can be used to check if ports needed have bound to DPDK successfully.

check_ports_bound_status
Note: Modify your pktgen application in such way that it can start the traffic in PF's for both sockets.
Run Pkt-gen PF init app.
running pf init for pktgen takes In two arguments
#1: is the position of the pf in pf array in pktgen-config.sh
#2: is the base instance to start at (used in mac addressing)
Example to run Pktgen Instance 0 and then run Pktgen Instance 1
Note: Running per PF brings up and sets MAC addresses for both DL and UL VFs for the corresponding PF.
run_pf_init 0 0 O ## this is to initialize the pf on socket O
run_pf_init 110 ## this is to initialize the pf on socket 1
Note: To run in background:
run_pf_init 0 0 0 &
run_pf_init 1 1 0 &

Run 4 instances of pktgens as below. 2 are for instance A (Instance in socket 0) and 2 are for instance B (Instance in socket 1).

Instance A:

run_pktgen_with_pcap_0 0 vbng_dl_r_4k pppoe.pcap d
run_pktgen_with_pcap_0 0 vbng_ul_r_4k pppoe.pcap u
Instance B:

run_pktgen_with_pcap_1 0 vbng_dl_r_4k pppoe.pcap d
run_pktgen_with_pcap_1 0 vbng_ul_r_4k pppoe.pcap u
Run pktgen_simpl.py to start/stop the traffic on pktgen sessions.

Start traffic on instance A
-/vbng_traffic_cmd.py 0 1

Stop traffic on instance A

-/vbng_traffic_cmd.py 0 O

Start traffic on instance B
-/vbng_traffic_cmd.py 1 1

Stop traffic on instance B

-/vbng_traffic_cmd.py 1 0

17

User Guide | Closed Loop Platform Automation - Workload Resiliency
3.8 Alertmanager
Alertmanager will take care of triggering webhooks or distribute notification via mail when alert occurs. Deploy it on Server 1.

Download the alertmanager package (version 0.16.1 or later), unpack it, and go into package folder:

cd $WORKSPACE

wget https://github.com/prometheus/alertmanager/releases/download/v0.16.1/alertmanager-
0.16.1.1inux-amd64.tar.gz

tar xzf alertmanager-0.16.1.1inux-amd64.tar.gz

cd alertmanager-0.16.1.1inux-amd64

Configure alertmanager by modifying webhook to point to alerthandler host on port 29000.

You can also modify groups timings according to your needs. For more information, refer to:
https://prometheus.io/docs/alerting/configuration/

Example alertmanager.yml:
global:
resolve_timeout: 5m

route:
group_by: ["alertname"]
group_wailt: 1s
group_interval: 30s
repeat_interval: 1m
receiver: “web.hook®
receivers:
- name: “web._hook*"
webhook_configs:
- url: "http://<alerthandler_host>:29000/"
inhibit_rules:
- source_match:
severity: “critical”
target_match:
severity: “warning”
equal: [“alertname®, "dev", "instance®]

Run alertmanager with:
-/alertmanager --config.file="alertmanager.yml®

3.9 Prometheus

Prometheus scrapes telemetry from collectd, stores it and evaluates against rules to create an alert when an issue occurs. Deploy it

on Server 1.

Download the Prometheus package (version 2.7.2 or later), unpack it, and go into package folder:

cd $WORKSPACE

wget https://github.com/prometheus/prometheus/releases/download/v2.7.2/prometheus-2.7.2_1inux-
amd64.tar.gz

tar xzf prometheus-2.7.2_1inux-amd64.tar.gz

cd prometheus-2.7.2.1inux-amd64

Configure Prometheus by adding alertmanager url, including rules file and pointing the scrape job to collectd. To react faster,
change the scrape and evaluation interval to 1s.

For more information, refer to: https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Example prometheus.yml:

Global config

global:
scrape_interval: 1s # Default is every 1 minute.
evaluation_interval: 1s # Evaluate rules. The default is every 1 minute.
scrape_timeout is set to the global default (10s).

Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- 127.0.0.1:9093 # alertmanager host

Load rules once and periodically evaluate them according to the global “evaluation_interval®.

18

https://prometheus.io/docs/alerting/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

User Guide | Closed Loop Platform Automation - Workload Resiliency

rule_files:
- "example_rules.yml™

A scrape configuration
scrape_configs:
- job_name: “collectd”
static_configs:
- targets: ["localhost:9103"]

Define an alert rule. In our scenario, we watch for the number of corrected memory errors to reach 5 in the previous 5 seconds. For
more information, refer to: https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Example example_rules.yml:
groups:
- name: alert._rules
rules:
- alert: mcelog_memory_error
expr: increase(collectd _mcelog_errors_total{type="corrected_memory_errors",
mcelog=""SOCKET_0O_CHANNEL_O DIMM_any"}[5s]) > 5
labels:
severity: “critical”
annotations:
summary: ‘‘corrected memory error occured™
description: "corrected memory error occured on {{ $labels.mcelog }} at {{
$labels.exported_instance }}"

Run Prometheus with:
-/prometheus --config.file="prometheus.yml*

3.10 AlertHandler

AlertHandler implements automated responses to telemetry-based alerts enabling the system to adapt to state change. It listens on
a port, waiting for incoming JSON packet describing alerts via webhook. On receiving an alert, it triggers an action or a user-
configured script. Deploy it on Server 2.

Clone the alertHandler repository and build it:

https://github.com/intel/alert-handler-for-custom-metrics

cd $WORKSPACE

git clone https://github.com/intel/alert-handler-for-custom-metrics
cd alert-handler-for-custom-metrics

go build

Configure alertHandler to listen on port (29000) for particular alerts (mcelog_memory_error) and bind them with triggering proper
scripts (action.sh).

Example alert-handler-config. json:

{
“port' 29000,
"url-path™:""/",
script-directory™ :*scripts/",
"alerts" : {
“mcelog_memory_error™ : {
"name" : "mcelog_memory_error",
“summary':"'mcelog_memory_error™,
“status'': "firing",
"script-type': "bash",
“script-name' : "action.sh™,
"args': ["argl',"arg2']
}
}
}
Run alertHandler with:
-/alertHandler

3.11 Trigger error scenario

To trigger the error scenario, we inject memory errors into socket O of the system using a script. The number of errors to be injected
can be passed as a parameter while running the script. The Prometheus alert manager is notified if the number of errors goes
beyond the threshold (=5) in last 5 seconds.

19

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/intel/alert-handler-for-custom-metrics

User Guide | Closed Loop Platform Automation - Workload Resiliency

root@<Hostname>:~# cat trigger_mem_err_sO0.sh

#1/bin/bash

Copyright (C) 2019 Intel Corporation

SPDX-License-ldentifier: MIT

checks for input parameter

if [[$# -ne 1]]; then
echo "Invalid number of parameters (expected number of errors to inject)"
exit 1

fi

num_of _errors=$1

if ! [[${num_of _errors} =~ ~[0-9]+$ 1]1; then
echo "Invalid parameter (expected number of errors to inject)"
exit 1

fi

echo "Injecting $num_of _errors errors ..."

cd /root/mce-inject/ # configure place of your mce-inject
modprobe mce-inject
for ((c=1; c<=$num_of _errors; c++))
do
echo "Injecting error $c"
./mce-inject test/corrected_sO
done

How to run the script:
#_/trigger_mem_err_sO.sh <number of errors to be iInjected>

3.12 Remediation action

Remediation action is triggered when a threshold is breached and the system should move the service traffic from instance A on
socket O to instance B on socket 1. In this setup, when the alert handler receives an alert from the alert manager in Server 1, it
triggers a remediation action script (action.sh) that stops the traffic towards instance A and starts traffic in instance B, simulating
reroute of service traffic.

root@agl3-15-clx:~# cat /root/alertHandler/scripts/action.sh

#1/bin/bash

Copyright (C) 2019 Intel Corporation

SPDX-License-ldentifier: MITexec 3>&1 1>>/root/alertHandler/log 2>&1

cd /root/

date

python vbng_traffic _cmd.py 0 O ## to Stop traffic on instance A (Socket 0)

echo **°

date

python vbng traffic _cmd.py 1 1 ## to Start traffic on instance B (Socket 1)

echo **°
root@agl3-15-clx:~#

The remediation action script internally calls a pktgen script that looks for the pktgen socket number opened and performs a traffic

start/stop.
cat vbng_traffic_cmd.py

vbng_traffic_cmd.py <instance_num> <start/stop>

This script is example of how you can manage traffic of
your pktgen instances running in warm standby mode.

import socket
import sys

check input args

if len(sys.argv) I= 3:
print(Tinvalid number arguments, expected instance_num[0-1] and action[0O-stop, 1l-start]")
sys.exit(l)

for 1 in range(l, 3):
if sys.argv[i] not in ["0", "1°]:

20

User Guide | Closed Loop Platform Automation - Workload Resiliency

print(Tinvalid arguments, expected instance_num[0-1] and action[O-stop, l-start]")
sys.exit(l)

int(sys.argv[1l]) # 0/1

INSTANCE =
= int(sys.argv[2]) # 0 = stop / 1 = start

ACTION

START_RATE = "pktgen.start(\"all\');"
STOP_RATE = "‘pktgen.stop(\"all\™);"
PKTGEN_HOSTNAME = "127.0.0.1"

MY_PORTS = [[8086, 8094], [8081, 8090]] # configure your pktgen instances ports here
SOCKET_ARRAY = []

print("'Executing Rate change to pktgens on:'" + PKTGEN_HOSTNAME)

open the socket ports for the UL and DL pktgen

for 1 in range(2):
print(*'Opening Socket™, PKTGEN_HOSTNAME, MY_PORTS[INSTANCE][i])
sock = socket.socket(socket. AF_INET, socket.SOCK_STREAM)
sock.connect((PKTGEN_HOSTNAME, MY_PORTS[INSTANCE][i]))
SOCKET_ARRAY .append(sock)

print(SOCKET_ARRAY)

send in the start/stop command
for 1 in range(2):
if ACTION == O:
SOCKET_ARRAY[i]-sendal I (STOP_RATE)
else:
SOCKET_ARRAY[i]-sendal I (START_RATE)

Close the ports

for 1 in range(2):
SOCKET_ARRAY[1] -shutdown(1)
SOCKET_ARRAY[i]-close()

4 Traffic Generator Configuration Script

This script is provided for reference only.
cat pktgen-config-sh
#1/usr/bin/env bash

HHHHBHRH AR AR A AR R A AR R AR AR R AR AR
HHHH PKTGEN HOST CONFIGURATION HHHAH
HHHHBHRH AR AR A AR R A AR R AR AR R AR R

HHHHBHRH AR AR AR R AR R A AR R R A AR R AR AR
HHHH ENVIRONMENT VARIABLED FOR PKTGEN SETUP HHHAH
HHHHBHRH AR R R A R AR R A AR R R A R AR R AR R

Root directory where files have been unpacked
export MYHOME="/root/vBNG"

export DPDK_HOME="/root/vBNG/dpdk"

export RTE_SDK=$DPDK_HOME

export RTE_TARGET=x86_64-native-linuxapp-gcc
export DPDK_DIR=$RTE_SDK

export DPDK_BUILD=$RTE_SDK/$RTE_TARGET
export DPDK_ROOT_RELEASE="$DPDK_HOME"

export DPDK_ROOT_DEBUG=""$DPDK_HOME/dpdk-dbg"*
export PKTGEN_ROOT="$MYHOME/pktgen-dpdk"
export VBNG_ROOT="$MYHOME/vbngd"

This directory contains pcaps
export PCAP_ROOT_DL=""$MYHOME/pcap/dl_pcaps"

export PCAP_ROOT_UL=""$MYHOME/pcap/ul_pcaps"

21

User Guide | Closed Loop Platform Automation - Workload Resiliency

Pktgen cores to use on socket 0, first is master core
export CORES_s0="1-27,57-83"

Pktgen cores to use on socket 1, first is master core
export CORES_s1="29-55,85-111"

Set to include Cores

#export PKTGEN_CORE_LIST=""$CORES_sO0" # uncomment if using just socket O
#export PKTGEN_CORE_LIST=""$CORES_s1" # uncomment if using just socket 1
export PKTGEN_CORE_LIST_O="$CORES_sO0" # uncomment if using both sockets
export PKTGEN_CORE_LIST 1="$CORES_s1" # uncomment if using both sockets

Memory on both sockets
export PKTGEN_SOCKET_MEM=''1024,1024"

Memory to be used for PCAP pkt size scaling test
#export PKTGEN_SOCKET_MEM="2048,0"

#export PKTGEN_SOCKET MEM=''1024,0"

Set Application Type
set to 1 for BNG or set to 2 for pkt_fwd
export APP_TYPE=1

Set the base instance traffic generator is starting at
export BASE_INSTANCE=0

HHAHHH A H AR R AR
H#HH PKTEGN INSTANCE ASSIGNMENT H#HHH
HHHH SETUP FOR 8 DL & 8 UL Instances HHHAH
HHA A AR A R R R R R R R R R R R R R

PF ports to use on socket O
declare -a pf_ports_s0=(''18:00.0" **18:00.1')

PF ports to use on socket 1
declare -a pf_ports_si1=("af:00.0" "af:00.1")

VF Ports for DL to use if using socket 0O
declare -a vf_ports_dl_s0=("18:02.0" "18:0a.0")

VF Ports for UL to use if using socket 0O
declare -a vf_ports_ul_s0=("18:02.1" "18:0a.1")

VF Ports for DL to use if using socket 1
declare -a vf_ports_dl_s1=("af:02.0" "af:0a.0")

VF Ports for UL to use if using socket 1
declare -a vf_ports _ul_s1=("af:02.1" "af:0a.1")

Socket O Ports to use for Downlink
declare -a pktgen_ports_dl_s0=("'8086" ''8087' ''8088" '"8089'")

Socket 0 Ports to used for Uplink
declare -a pktgen_ports_ul_s0=("'8094" *8095" 8096 "8097')

Socket 1 Ports to use for Downlink
declare -a pktgen_ports_dl_s1=("'8081" ''8082'" ''8083" '"8084')

Socket 1 Ports to used for Uplink
declare -a pktgen_ports_ul_s1=('8090" *8091" 8092 *8093")

Downlink Pktgen instances running on socket O cores
declare -a pktgen_inst_cores_dl_sO0=("[2:58]-.0" "[3:59]-0")

Uplink Pktgen instances running on socket 0 cores
declare -a pktgen_inst_cores_ul_sO0=("[4:60].0" "[5:61]-0")

22

User Guide | Closed Loop Platform Automation - Workload Resiliency

Downlink Pktgen instances running on socket 1 cores
declare -a pktgen_inst _cores_dl_s1=("[30:86].0" *"[31:87]-0")

Uplink Pktgen instances running on socket 1 cores
declare -a pktgen_inst_cores_ul_s1=(""[32:88].0" "[33:89].-0")

Set num of VFS for pktgen
export NB_VFS=2

HHHAHHH R H AR R AR AR
B T
HHHAHHH A H AR R AR AR

HHHHHH A H AR
T COMBINE ALL ARRAYS INTO 1 COMMON ARRAY FOR SETUP HHHH
HHHH DECLARE PCAP FILE DIRECTORIES HHHH
T R A R R A T T R R R R R R

PF Ports for both sockets
declare -a pf_ports=()
pf_ports+=C"${pf_ports_sO[@]}" "${pf _ports_si[@]}")

Downlink VF Ports for both sockets
declare -a vf_ports_dI=(
vf_ports_dl+=("${vf_ports_dl_sO[@]}" "${vf_ports_dl_si[@]}")

Uplink VF Ports for both sockets
declare -a vf_ports _ul=Q
vf_ports_ul+=("${vf_ports_ul_sO[@]}" "${vf_ports_ul_si[@]1}")

Downlink Cores for both sockets
declare -a pktgen_inst_cores_dI=()
pktgen_inst_cores_dl+=("${pktgen_inst_cores_dl_sO[@]}" "${pktgen_inst _cores_dl_s1[@]}")

Uplink Cores for both sockets
declare -a pktgen_inst_cores_ul=Q
pktgen_inst_cores_ul+=("${pktgen_inst_cores_ul_sO[@]}" "${pktgen_inst _cores ul_s1[@]}")

PCAPS: a list of pcap files that can be used for both DL & UL
declare -a pcaps_dI=Ccd ${PCAP_ROOT DL} && Is -1 *_.pcap’)

declare -a pcaps_ul=Ccd ${PCAP_ROOT_UL} && Is -1 *_.pcap’)
echo $pcaps

HHHHHH A H AR
T R R R R R A T T R R R R R R
HHHHHH A

A
HHHH PF INIT APP SETTINGS HHHH
A
export PF_INIT_LCORE_0=27

export PF_INIT_COREMASK_0=0x8000000

export PF_INIT_SOCKET MEM_0="1024,0"

export PF_INIT_SOCKET MEM_LIMIT_0="1024,1"

export PF_INIT_LCORE_1=55

export PF_INIT_COREMASK_1=0x80000000000000

export PF_INIT_SOCKET MEM_1="0,1024"

export PF_INIT_SOCKET MEM_LIMIT 1="1,1024"

export PF_INIT_NUM DL_VFS=1

export PF_INIT_NUM_UL_VFS=1
e
e
e

User Guide | Closed Loop Platform Automation - Workload Resiliency

5 Summary

This document has described a closed loop resiliency demo that uses a virtual Broadband Network Gateway (vBNG) reference
application to showcase closed loop failover capability. The solution itself is application-agnostic and other workloads can be
implemented.

It is now becoming a strategic imperative for Comms Service Providers to automate their networks. With the exponential growth in
devices that must be managed in the network, closed loop automation is required for efficiency gains, cost reduction, and most
importantly productivity improvement. For CSPs, ensuring the customer experience remains impeccable is a top priority. They need
to be able to minimise network downtime and increase service availability.

With this demo, closed loop failover capability is now possible. The demo uses Intel server platform features and metrics to identify
when issues occur and to immediately react to limit any outage time. Closed loop systems are the starting point for tomorrow's
next-generation self-healing and self-optimizing networks.

intel.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree
to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
http://www.intel.com/ or from the OEM or retailer.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
No computer system can be absolutely secure.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 0619/DN/PTI/PDF 338936-002US

24

http://www.intel.com/design/literature.htm
http://www.intel.com/

	1 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2 System Overview
	2.1 Setup Architecture
	2.2 Hardware Requirements
	2.3 Software Requirements
	2.4 BIOS Configuration

	3 System Setup
	3.1 Application Setup
	3.2 Kubernetes* Installation
	3.3 Install CPU Manager for Kubernetes*
	3.4 Build Images
	3.5 Modify and Run Workload
	3.6 Collectd
	3.7 Traffic Generator Setup
	3.7.1 Prepare Traffic Generator on Server 2
	3.7.2 Traffic gen server environment setup

	3.8 Alertmanager
	3.9 Prometheus
	3.10 AlertHandler
	3.11 Trigger error scenario
	3.12 Remediation action

	4 Traffic Generator Configuration Script
	5 Summary

