
Table of Contents

1 Introduction. 1

1.1 Audience and Purpose. 1

1.2 Abstract 1

1.3 Motivation. 2

2 NFV Related Technology
Overview . . 2

2.1 Data Plane Development
Kit (DPDK) . . 2

2.2 Open vSwitch (OvS) and
its Caching Mechanisms. 3

1 Introduction

1.1 Audience and Purpose
Intel delivers engineering guidance and ecosystem-enablement support to
encourage widespread adoption of Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV) solutions in telco*, enterprise, and cloud
applications.

The primary audience for this white paper are architects and engineers interested
in the Intel® Resource Director Technology (Intel® RDT) and how the technology
can be used to achieve service assurance, security, predictable latency and
improve throughput in their NFV deployments with key software ingredients such
as Open vSwitch (OvS) with Data Plane Development Kit (DPDK) and Kernel-Based
Virtual Machine (KVM) on a Fedora* platform.

1.2 Abstract
Service assurance, security, and deterministic performance (predictable latency
and throughput) are system qualities that are important for communications
service providers, cloud service providers and enterprise NFV deployments. This
document provides a brief description on how they can be greatly improved by
using the Intel® RDT. Full software enablement in open source projects such as
the Linux* Kernel, DPDK, OpenStack* are in progress. However, Intel is taking the
opportunity to provide a preview of the Intel® RDT technology using the pqos
utility in deployments with DPDK, OvS and KVM.

Elements of the Intel® RDT, Cache Allocation Technology (CAT), Cache Monitoring
Technology (CMT), Code and Data Prioritization (CDP) and Memory Bandwidth
Management (MBM) are introduced. The important concept of VNF profiling
using Cache Allocation Technology is detailed showcasing the key performance
tuning aspects of the Class of Service (COS) in order to have the Virtual Network
Functions (VNFs) function successfully with optimal performance. Based on
the deductions from this profiling, two commonly deployed NFV environments
are characterized, PHY-VM-PHY and PHY-VM-VM-PHY, under noisy neighbor
conditions. The benefits of using CAT for the above two NFV deployments under
noisy neighbor situations are demonstrated by preserving throughput, latency,
and predictability in performance. The paper is concluded by suggesting the NFV
workload profiling methods using CAT to help achieve deterministic performance.

Authors

Joseph Gasparakis
Sunku Ranganath
Edwin Verplanke

Priya Autee

Contributors

Adrian Hoban
Mark D. Gray
Ciara Loftus

Yunhong Jiang
Michelle Smekal

Deterministic Network
Functions Virtualization
with Intel® Resource
Director Technology

white paper

2.2.1 Open vSwitch (OvS)
Flow Caching. 4

2.3 Real-Time Kernel and
KVM4NFV. . 4

2.3.1 Minimal Interrupt
Latency. . 4

2.3.2 Operating System
Configuration. 5

2.4 Intel® RDT Overview. 6

2.4.1 Cache Monitoring
Technology and Memory
Bandwidth Management. 6

2.4.2 Cache Allocation
Technology and Code and
Data Prioritization. 6

2.4.3 The intel-cmt-cat
Software Package. 6

2.4.4 Intel® RDT Enabling
in OpenStack. 7

3 VNF Profiling. 7

3.1 Last Level Cache
Occupancy. . 7

3.2 Class of Services 9

3.3 Overlapped vs. Isolated
Classes of Service. 9

3.3.1 Difference in
Throughput. 10

3.3.2 Difference in Latency. . . . 10

3.3.3 Determinism in Latency. . 11

3.4 Analysis of Determinism. . . . 13

4 Test Results. 13

4.1 PHY-VM-PHY with Noisy
Process on the Hypervisor 13

4.1.1 Throughput. 14

4.1.2 Latency 15

4.1.3 Deterministic
Predictability Analysis. 15

4.2 PHY-VM-PHY with Noisy
Process inside a VM
(Noisy Neighbor) 17

4.2.1 Throughput 18

4.2.2 Latency. 18

4.2.3 Deterministic
Predictability Analysis. 19

4.3 PHY-VM-VM-PHY with
Noisy Process inside a VM
(Noisy Neighbor) 20

4.3.1 Throughput 21

1.3 Motivation
As market adoption of NFV is taking place, it is crucial that during the migration
from fixed functions to consolidated virtual functions, both service delivery and
service assurance continues to be guaranteed. This paper documents how Intel®
RDT can be used to meet these goals. The last level cache is an example of a
shared resource that is important for packet processing applications to maintain
throughput and latency requirements, while at the same time it can affect the
performance of VMs and potentially create issues with service assurance in
enterprise and cloud environments. Aggressors or noisy neighbors causing
evictions of packet processing code and data while executing in parallel can affect
service delivery and service assurance. Both cache monitoring technology and
cache allocation technology are used to monitor and control respectively the last
level cache occupancy to create a deterministic environment while consolidating a
variety of workloads.

2 NFV Related Technology Overview
This section describes some key technologies (both hardware and software) that
are crucial for packet processing in an NFV environment.

Network Functions such as firewalls, routers, Intrusion Prevention Systems (IPS),
Intrusion Detection Systems (IDS), Deep Packet Inspection (DPI) systems, WAN
acceleration and so on, all require some form of packet inspection/movement/
processing. Traditionally fixed function physical appliances are designed to meet
peak performance, even at a time frames where this is not required. They are
complex to scale back the resource requirements. This is one of key advantages
of NFV that helps customize the deployment on the general purpose processor
based hardware. However, after consolidation on a general purpose processor,
it is crucial that both the performance and deterministic requirements of Service
Level Agreements (SLAs) are met. Therefore, data plane performance is important
and hence Data Plane Development Kit (DPDK) is crucial for achieving high
performance.

For service deployment agility and flexibility a soft switch that allows switching of
the packets between virtual ports (for VMs) and/or physical ports (physical network
interfaces) is an important element of the Commercial off-the-shelf (COTS)
server platform. However, for some use cases (mainly telco), it needs to meet the
performance of network functions, specifically the small packet performance
throughput and latency. For this reason various soft switch developments with
enhanced packet processing capabilities are under development and/or available
in the open source communities such as OpenvSwitch (OvS), BESS*, Snab,
Lagopus*, etc. This paper focuses on the usage of OvS with the DPDK data path.

Lastly, Intel® RDT is covered in some depth. After meeting the performance using
DPDK and OvS-DPDK, it is crucial that to meet the latency and deterministic needs
as well. Intel® RDT is briefly mentioned to help with these needs and what hardware
features are available to both monitor and enforce policies to meet SLAs.

2.1 Data Plane Development Kit (DPDK)
DPDK is an open source project and its webpage is http://www.dpdk.org. It is a
set of libraries and drivers (mostly in user space) that allow more efficient packet
processing.

Figure 1 shows, in high level, two networking applications and the software stacks
involved. On the left, a typical socket-based Linux* networking application is
shown. The packets are being received by the physical networking interface, then
through the driver and New API (NAPI), with a combination of interrupt (expensive
context switching in terms of performance) and polling mode driven interface.
Then the packets are bubbled up to the Linux kernel networking stack and finally
through to the socket interface. The packets will be copied over to the user space
from where the application will receive the data for the specific protocol it opened
the socket for. It should be noted that this copy of the packets from kernel into
user space is expensive in terms of CPU cycles, and this negative effect is being
magnified on higher data speeds and smaller packet sizes.

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

2

http://www.dpdk.org

Transmitting packets is similar, where the application is sending the packet data
down into the kernel through the socket (again, performing an expensive buffer
copy), where the data will be encapsulated by the right headers on the different
layers of the kernel network stack, and through the driver the fully structured
packet will be written to the write descriptor of the networking interface. Finally
having the hardware push it out on the wire.

On the right side, a typical DPDK based networking application is shown. The
memory space of the networking interface is being mapped in the user space
through the user space I/O (UIO) facility of the kernel (other options also available
such as Virtual Function I/O* (VFIO*). The user space Poll Mode Driver (PMD) is
reading the packets from the mapped descriptor (no interrupt) and the application
will receive the raw packet. Then using the optimized packet processing libraries,
it will modify the packet and write it out to the memory mapped write descriptor,
letting the hardware push it out to the physical network.

2.2 Open vSwitch (OvS) and its Caching Mechanisms
OvS is an open source project that is hosted in http://openvswitch.org/.

The above figure is showing the high-level architecture of OvS with its main
software components shown as blocks.

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 1. Comparison of the Kernel Data Path vs. User Space Data Path

Figure 2. High-Level Architecture of Open vSwitch

4.3.2 Latency. 22

4.3.3 Deterministic
Predictability Analysis. 23

5 Conclusions and
Deployment Considerations. 23

A Appendix. . 24

A.1 Hardware Components 24

B Appendix. . 25

B.1 Software Components. 25

C Appendix. . 25

C.1 Test Setup 25

C.1.1 Test Procedures 25

C.1.2 Physical Setup. 26

C.2 Software Setup 26

C.2.1 Hypervisor Setup. 26

C.2.2 DPDK and OvS Setup. . . . 29

C.2.3 PQoS Setup. 32

C.2.4 Guest (VM Under Test)
Setup. . 33

C.3 Noisy Neighbor Setup. 33

C.3.1 Hypervisor as Noisy
Neighbor. . 33

C.3.2 VM as a Noisy Neighbor. . 33

D Acronyms and Abbreviations . . 34

D.1 Acronyms and
Abbreviations. 34

E References. 35

E.1 References. 35

Figures . . 36

Tables. . 36

3

http://openvswitch.org/

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

The data path component is the component that is
forwarding frames from one port to another. These ports
can be physical or virtual. There are two options in terms
of data path (shown as a dotted arrow), one is kernel based
(grey block called Kernel Data Path) and the other is DPDK
based, shown in yellow boxes on the left. For the UIO/VFIO
yellow block, refer to section Data Plane Development Kit
(DPDK), noting that it is only used to map the address space
of the device to user space, and no software involvement is
required.

When the data path, either implemented in kernel or DPDK,
receives a frame from a new flow that has not been seen
before, it sends it to ovs-vswitchd. The vSwitch daemon
inspects the frame and programs the data path to forward
it to the right port (again, virtual or physical). From that
point on the data path will be able to handle the rest of
the packets of the flow without having to push them to the
daemon using the available flow cache.

The daemon has a backend server, ovsdb-server that
accesses the database ovsdb that holds forwarding (just
in terms of persistency, this is not part of the hot-path) and
configuration data. The blue components are tools that
allow configuration, debugging and programming of the
data paths (mainly using ovsdb and OpenFlow protocols).

2.2.1 Open vSwitch (OvS) Flow Caching
When a packet is received by the OvS data path its cache
of flows is consulted to perform associated actions. For
example, to modify the headers or forward the packets, if
the relevant entry is found. Otherwise, the packet is passed
to ovs-vswtichd to execute the OpenFlow pipeline on
the packet and calculate the associated action. Then, it
is sent back to fast path for forwarding, and a flow cache
entry is installed so similar packets in future can use this
rule and avoid expensive flow rule calculations.

This is accomplished using the concept of Microflow cache
and Megaflow caches. Interior details of each of these OvS
caches is outside the scope of this paper. However, the
implementation of these caches using a set of flow tables
and its hierarchy is briefly discussed. It is important to
understand the OvS table hierarchy while considering CPU
cache segmentation and allocation for ovs-vswitchd
process.

OvS Table Hierarchy:

1. Extra Match Cache (EMC):

•	 This is the first table consulted for a packet to 		
determine its fate of actions.

•	 The comparisons are done for exact match of
parameters.

•	 The EMC is allocated as a single table per data path
thread.

•	 There are 8192 entries per thread with each entry of
size

2. Data Path Classifier:

•	 If the matching action is not found in the EMC, the next
comparison is done in data path classifier.

•	 Dynamically created based on flow rule setup and
entries do not have a fixed structure

•	 Entries can have wildcard matches.

•	 Single table per data path thread

•	 There can be maximum of 65536 entries.

•	 Lookup cost increases from the EMC with data path
classifier

3. ofproto Classifier:

•	 If the matching action is not found in the data path
classifier, the ofproto classifier is used.

•	 Up to 255 OpenFlow tables are in pipeline per the OvS
bridge.

•	 Wildcard matches are used.

•	 Cost of lookup is highest with the ofproto classifier.

2.3 Real-Time Kernel and KVM4NFV
The NFV hypervisors provide crucial functionality in
the NFV Infrastructure (NFVI). The existing hypervisors,
however, are not necessarily designed or targeted to meet
the requirements for the NFVI. Open Platform for NFV
(OPNFV) is a carrier-grade, integrated, open source platform
to accelerate the introduction of new NFV products and
services, the details of which are beyond the scope of
this paper. The KVM4NFV project, under OPNFV, is a
collaborative development project in OPNFV making efforts
toward enabling the existing hypervisors for NFV features to
provide crucial functionality in the NFV Infrastructure.

In the KVM4NFV project, the focus is on the KVM hypervisor
to enhance it for NFV, by looking at the following areas:

1.	 Minimal Interrupt latency variation for data plane VNFs
that includes:

a.	 Minimal timing variation for timing correctness of
real-time VNFs and

b.	 Minimal packet latency variation for data-plane
VNFs.

2.	 Fast live migration (outside of current scope)

2.3.1 Minimal Interrupt Latency
Processing performance and latencies depend on a
number of factors, including CPUs (frequency, power
management features, etc.), micro-architectural resources,
the cache hierarchy and sizes, memory (and hierarchy, such
as NUMA) and speed, inter-connects, I/O and I/O NUMA,
devices and other factors. There are two separate types
of latencies to minimize: 1) minimal timing variation for
timing correctness of real-time VNFs – timing correctness
for scheduling operations (such as radio scheduling), and
2) minimal packet latency variation for data-plane VNFs –
packet delay variation, which applies to packet processing.
For a VM, interrupt latency (time between arrival of H/W
interrupt and invocation of the interrupt handler in the VM),
for example, can be either of the above or both, depending
on the type of the device. Interrupt latency with a (virtual)
timer can cause timing correctness issues with real-time
VNFs even if they only use polling for packet processing.

4

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

The assumption is that the VNFs are implemented properly
to minimize interrupt latency variation within the VMs, but
there are additional causes of latency variation on KVM:

1.	 Asynchronous (e.g., external interrupts) and
synchronous (e.g., instructions) VM exits and handling
in KVM (and kernel routines called), which may have
loops and spin locks.

2.	 Interrupt handling in the host Linux and KVM,
scheduling and virtual interrupt delivery to VNFs.

3.	 Potential VM exit in the interrupt service routines in
VNFs.

4.	 Exit to the user-level (e.g., QEMU).

While these items require software development and/
or specific hardware features there are also some
adjustments that need to be made to system configuration
information, like hardware, Basic Input/Output (BIOS),
Operating System (OS), etc. Achieving low latency with
the KVM4NFV project requires setting up a special
test environment. This environment includes the BIOS
settings, kernel configuration, kernel parameters and
the run-time environment. Not only are special kernel
parameters needed but a special run-time environment
is also required. The correct configuration is critical for
improving the NFV performance/latency. Even working
on the same codebase, configurations can cause wildly
different performance/latency results. There are
many combinations of configurations, from hardware
configuration to operating system configuration and
application level configuration. Also, there is no one simple
configuration that works for every case. To tune a specific
scenario, it is important to know the behaviors of different
configurations and their impact.

Platform Configuration: Some hardware features can
be configured through firmware interface (like BIOS),
but others may not be configurable (e.g., SMI on most
platforms).

•	 Power Management: Most power management related
features save power at the expensive of latency. These
features include: Intel® Turbo Boost Technology,
Enhanced Intel SpeedStep® Technology, processor C
states and P states. Normally, they should be disabled,
but depending on the real-time application design and
latency requirements, some features can be enabled if
the impact on deterministic execution of the workload
is small.

•	 Hyper-Threading: The logical cores that share
resource with other logical cores can introduce latency,
so the recommendation is to disable this feature for
real-time use cases.

•	 Legacy USB Support/Port 60/64 Emulation: These
features involve some emulation in firmware and can
introduce random latency. It is recommended that they
are disabled.

•	 System Management Interrupt (SMI): SMI runs
outside of the kernel code and can potentially cause
latency. There is a global SMI enable/disable bit
that can be used to disable all SMI events, but it
is not recommended to do so as the BIOS/UEFI is
responsible for handling a number of critical tasks that

help to avoid serious harm to the processor. Instead
there are usually BIOS/UEFI dependent options that
can minimize the SMI impact such as disable USB
mouse and keyboard, use ACPI, disable the TCO
watchdog timer, lockdown GPIOs, and disable periodic
SMIs. Configuring these items should only be done
after consulting the BIOS/UEFI vendor.

2.3.2 Operating System Configuration
•	 CPU isolation: To achieve deterministic latency,

dedicated CPUs should be allocated for real-time
application. This can be achieved by isolating
CPUs from kernel scheduler. Refer to http://lxr.
free-electrons.com/source/Documentation/kernel-
parameters.txt#L1608 for more information.

•	 Memory allocation: Memory should be reserved for
real-time applications and usually huge pages should
be used to reduce page faults/TLB misses.

•	 IRQ affinity: All the non-real-time IRQs should be
affinitized to non-real-time CPUs to reduce the impact
on real-time CPUs. Some OS distributions contain an
irqbalance daemon which balances the IRQs among
all the cores dynamically. It should be disabled as well.

•	 Device assignment for VM: If a device is used in a VM,
then device pass through is desirable. In this case, the
IOMMU should be enabled.

•	 Tick less: Frequent clock ticks cause latency.
CONFIG _ NOHZ _ FULL should be enabled in the Linux
kernel. With CONFIG _ NOHZ _ FULL, the physical CPU
will trigger many fewer clock tick interrupts (currently,
1 tick per second). This can reduce latency because
each host timer interrupt triggers a VM exit from guest
to host which causes performance/latency impacts.

•	 Time Stamp Counter (TSC): Mark TSC clock source
as reliable. A TSC clock source that seems to be
unreliable causes the kernel to continuously enable
the clock source watchdog to check if TSC frequency
is still correct. On recent Intel platforms with constant
TSC/Invariant TSC/Synchronized TSC, the TSC is
reliable so the watchdog is useless but cause latency.

•	 Idle: The poll option forces a polling idle loop that can
slightly improve the performance of waking up an idle
CPU.

•	 RCU_NOCB: Read-Copy-Update (RCU) is a kernel
synchronization mechanism. Refer to http://lxr.free-
electrons.com/source/Documentation/RCU/ what is
RCU.txt for more information. With RCU _ NOCB, the
impact from RCU to the VNF will be reduced.

•	 Disable the RT throttling: RT throttling is a Linux
kernel mechanism that occurs when a process or
thread uses 100% of the core, leaving no resources
for the Linux scheduler to execute the kernel/
housekeeping tasks. RT throttling increases the
latency so should be disabled.

•	 NUMA Configuration: To achieve the best latency.
CPU/memory and device allocated for real-time
application/VM should be in the same NUMA node.

5

http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt#L1608
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt#L1608
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt#L1608
http://lxr.free-electrons.com/source/Documentation/RCU/
http://lxr.free-electrons.com/source/Documentation/RCU/

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

2.4 Intel® RDT Overview
Intel® RDT is a set of Intel technologies, namely CMT,
CAT, Code, and CDP and MBM that provide the hardware
framework to monitor and control the utilization of shared
resources, like Last Level Cache (LLC) and main (DRAM)
memory bandwidth. As multithreaded and multicore
platform architectures continue to evolve, running
workloads in single-threaded, multithreaded, or complex
virtual machine environment such as in NFV, the last
level cache and memory bandwidth are key resources
to manage and utilize based on the nature of workloads.
Intel introduces CMT, MBM, CAT and CDP to manage these
various workloads across shared resources. Although this
document strictly focuses on CAT and CMT, more details
on all of the aforementioned technologies and Intel® RDT in
general are in Appendix C.1: Test Setup.

2.4.1 Cache Monitoring Technology and
Memory Bandwidth Management
CMT and Memory MBM are features that allows an
Operating System (OS) or hypervisor or Virtual Machine
Monitor (VMM) to determine the usage of cache and
memory bandwidth by applications running on the
platform. Use CMT and MBM to do the following:

•	 To detect if the platform supports these monitoring
capabilities (via CPUID).

•	 For an OS or VMM to assign an ID for each of
applications or VMs that are scheduled to run on a
core. This ID is called the Resource Monitoring ID
(RMID).

•	 To monitor cache occupancy and memory bandwidth
on a per-RMID basis.

•	 For an OS or VMM to read LLC occupancy and memory
bandwidth for a given RMID at any time.

2.4.2 Cache Allocation Technology and
Code and Data Prioritization
CAT and CDP are features that allows an OS, hypervisor,
or VMM to control allocation of a CPU’s shared LLC. Once
CAT or CDP is configured, the processor allows access
to portions of the cache according to the established
COS. The processor obeys the COS rules when it runs an
application thread or application process. This can be
accomplished by performing these steps:

•	 Determine if the CPU supports the CAT and CDP
feature.

•	 Configure the COS to define the amount of resources
(cache space) available. This configuration is at
the processor level and is common to all logical
processors.

•	 Associate each logical processor with an available COS.

•	 Run the application on the logical processor that uses
the desired COS.

Following SKUs of Intel® Xeon® processors support both
CAT and CMT:

•	 Intel® Xeon® Processor E5 2658 v3

•	 Intel® Xeon® Processor E5 2658A v3

•	 Intel® Xeon® Processor E5 2648L v3

•	 Intel® Xeon® Processor E5 2628L v3

•	 Intel® Xeon® Processor E5 2618L v3

•	 Intel Xeon Processor E5 2608L v3

•	 All SKUs of Intel® Xeon® Processor D Product Family

•	 All SKUs of Intel® Xeon® Processor E5-2600 v4
Product Family

2.4.3 The intel-cmt-cat Software
Package
The intel-cmt-cat is a software package that provides
basic support for CMT, MBM, CAT, and CDP Technology,
and includes the Platform Quality of Service (PQoS) utility.
Refer to https://github.com/01org/intel-cmt-cat for specific
information with regard to CMT, MBM, CAT and CDP
software package details.

After compilation, the PQoS executable can be used
to configure the last level cache allocation feature and
monitor the last level cache occupancy as well as memory
bandwidth. The compilation and execution details are
provided in the README file of the package.

The PQoS utility can be used by typing the following
commands:./pqos -h

Figure 3. Allocating and Associating Cache Segments per
Process Using CAT

6

https://github.com/01org/intel-cmt-cat

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

This option will display extensive help page. Refer to "-h"
option for usage details.

./pqos –s	 Shows current CAT, CMT and MBM
configuration.

./pqos –T	 Provides top like monitoring output.

./pqos –f FILE Loads the commands from selected file.

2.4.4 Intel® RDT Enabling in OpenStack
OpenStack is a leading open-source software suite for
creating private and public clouds. The functionality
provided can be, for the most part, classified under
similarly intentioned names such as Cloud Operating
System or Virtualized Infrastructure Manager (VIM).
OpenStack is used to manage pools of computer,
networking, and storage infrastructure. These
infrastructure resources are typically based on industry-
standard, high volume servers and can be partitioned and
provisioned for the user in an on-demand style by means
of a Command Line Interface (CLI), RESTful API, or a web
interface. OpenStack was released to the open-source
community in 2010 and has since grown in popularity with
an active community of users and contributors. The code is
released under an Apache 2.0 license.

The OpenStack compute service is called Nova*. It is
responsible for managing all compute infrastructure in an
OpenStack managed cloud. Multiple hypervisor drivers are
supported including QEMU*/KVM* (by means of libvirt),
Xen*, and VMware vSphere* Hypervisor (VMware ESXi*).
Nova contains the scheduling functionality that is used
to select which compute host runs a particular workload.
It filters all available platforms to a suitable subset of
platforms based on the input requirements, and then
selects a platform from the subset based on a weighting
routine.

Intel is collaborating with others in the OpenStack
community to enable Intel® RDT. It is anticipated that
CMT will be enabled in the OpenStack Newton release.
This will enable OpenStack users to access to CMT data
via Ceilometer, the OpenStack data collection service.
Ceilometer will receive the data from Nova when the
QEMU/KVM hypervisor is configured. The OpenStack
Ocata release is the target intersect for enabling CAT,
CDP and MBM. Details on how CAT, CDP and MBM will
be leveraged with OpenStack Ocata will be published in
conjunction with the Ocata release.

Note: The anticipated releases of OpenStack that will
contain Intel® RDT are subject to change.

3 VNF Profiling
In order to provide a performance guarantee it is important
to profile the workload/VNF before deployment. To find
the required last level cache for optimum performance,
developers or system administrator would have to monitor
the last level cache occupancy before deployment.
Subsequently, in production cache allocation can be used
to isolate to appropriate amount of last level cache for
guarantee performance. The next two sections will describe
this process. Refer to Appendix A: and Appendix B: for the
hardware and software configuration of the setup.

3.1 Last Level Cache Occupancy
As mentioned earlier, the performance of the VNFs, and
generally speaking all the other software components, on
the platform can be affected by the size of LLC. Logic needs
to be applied in order to determine the conditions as to
when a VNF will require the maximum cache size, and how
much that maximum size would be for optimal performance.
In other words, one needs to be able to determine the
worst case conditions in order to push the VNF or software
component to require as much LLC as possible while
not affecting the overall performance. Most certainly it
will be required to stress the platform with a networking
workload at highest throughput rate possible and with the
type of traffic that would be expected to be seen in the
production environment. While the platform is under the
maximum sustainable stress, without any cache allocations,
CMT can be used to measure/monitor the profile of these
components.

In the Intel case, 64, 256, 1024 and 1518 byte size packets
were injected at a 10 Gb/s rate. Using the RFC2544
methodology, the throughput was measured for the
acceptable rate loss (0.1%) and measured the maximum
LLC occupancy using CMT for the software infrastructure
components under two different test cases of PHY-VM-
PHY and PHY-VM-VM-PHY. The software infrastructure
components are OVS vSwitched daemon, two DPDK Poll
Mode Drivers (PMD) running on the host and VMs (QEMU
threads). Table 1 below shows the results, and The LLC
occupancy information provides profile of extent of cache
occupied by each SW component used. Out of the total
of 30 MB of LLC cache available (for Intel® Xeon® E5-2658
processor), Table 1 indicates maximum occupancy at
optimal throughput conditions by various packet sizes.
This information is later used to calculate the cache class of
service associations.

Figure 4 shows the graphs of the LLC occupancy –vs- each
component. The different colors of the bars denote the
different packet sizes as per the legend at the bottom of the
graph. Refer to Appendix C for more details about the setup
and software infrastructure details.

The LLC occupancy information provides profile of extent
of cache occupied by each SW component used. Out of
the total of 30 MB of LLC cache available (for Intel® Xeon®
E5-2658 processor), Table 1 indicates maximum occupancy
at optimal throughput conditions by various packet sizes.
This information is later used to calculate the cache class of
service associations.

7

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Packet
Size in
Bytes

Test Case vswitchd PMD1 PMD2 VM1 OS VM1 PMD2 VM1 PMD2 VM2 OS VM2 PMD1 VM2
PMD2

64 Single VM 1200 7104.00 6768.00 384.00 1824.00 816.00 - - -

Two VM 1824 8160.00 7536.00 144.00 192.00 1296.00 624.00 192.00 192.00

256 Single VM 1248 7392.00 7296.00 144.00 576.00 336.00 - - -

Tw0 VM 1536 7440.00 6720.00 96.00 288.00 864.00 480.00 192.00 288.00

1024 Single VM 720.00 11856.00 12144.00 144.00 720.00 48.00 - - -

Tw0 VM 1008.00 9360.00 9600.00 48.00 96.00 144.00 192.00 144.00 240.00

1518 Single VM 672.00 11952.00 11376.00 240.00 336.00 96.00 - - -

Tw0 VM 1200.00 11424.00 11616.00 48.00 336.00 240.00 192.00 144.00 144.00

Table 1. LLC Occupancy in KB by Processes at Maximum Throughput as per RFC2544

Figure 4. LLC Occupancy by Processes at Maximum Throughput as per RFC2544

8

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Based on Intel profile, the following software infrastructure
components were found to require the following maximum
LLC occupancies for each of the SW infrastructure
components under maximum sustainable throughput. This
data is further used to divide the COS classes that allocates
LLC usage per component.

3.2 Class of Services
The term Class of Services is used widely in Quality of
Service (QoS), where it denotes logical pipes with different
priorities. In a similar fashion for CAT, class of service
denotes a segment of LLC that is assigned for the sole use
of one or more cores of the same CPU die. In other words,
when this particular core or cores are executing memory
reads or writes, their data get cached in these cache
segments. This also means that the other cores of the same
CPU die, when executing read or write transactions, they
read or write outside of the cache segments belonging to
the class of service.

The size of classes of service is measured by number of
cache ways. For the specific CPU SKU that was used, the
cache way has size of 1.5 MB. These cache ways can be
overlapped or isolated as discussed in the next section.

3.3 Overlapped vs. Isolated Classes of
Service
Knowing the required COS per software component is
one part of the characterization. The next part requires
identifying the type of allocation schema that will yield

a better performance. Usually, consider if the software
components will work better sharing or isolating their
caches. Although considering these interactions might
allow better prediction, experimental analysis is required
to verify. Figure 5 gives an example of how the default
COS case differs from overlapped and isolated COS cases.
More details can be found in Intel® Architecture Software
Developer Systems Programming Manual at: http://www.
intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-
system-programming-manual-325384.pdf

Note: COS distribution provided in Figure 5 are independent
of the current platform and provided only as an example.

For the processor used in current study, Intel® Xeon® E5-
2658 v3, has 20 cache ways in LLC. The Table 3 shows the
COS distribution of cache ways for each SW component
used. The size in MB signifies the amount of cache available
for corresponding SW component. The bitmask value in hex
signifies the corresponding cache size made available for
the SW component.

Table 2. (Maximum) LLC Profiling Required per Component

Component Maximum LLC Footprint

Vswitchd 2 MB

DPDK PMDs in the hypervisor 12 MB

VM (L2 forwarding) 2 MB

Figure 5. Example of Cache Allocation with Overlapped and
Isolated COS

ovs-vswitchd/PMDs VM Under Test Noisy Neighbor VM Operating System

Overlapping Case 1 24 MB (0xFFFF0) 6 MB (0x00F00) 6 MB (0x000F0) 6 MB (0x0000F)

Isolated Case 1 12 MB (0xFF000) 6 MB (0x00F00) 6 MB (0x000F0) 6 MB (0x0000F)

Overlapping Case 2 24 MB (0xFFFF0) 3 MB (0x000C0) 3 MB (0x00030) 6 MB (0x0000F)

Isolated Case 2 18 MB (0xFFF00) 3 MB (0x000C0) 3 MB (0x00030) 6 MB (0x0000F)

Table 3. Division of Cache Ways for Isolated and Overlapped COS Test Cases

Based on the above schemas, a DPDK-OvS based platform was deployed and VMs were spawned as shown in Figure 15.
The throughput and latency are obtained at maximum acceptable packet loss (0.1%) with VM under test configured as a L2
forwarder and a second VM is acting as noisy neighbor with memtester. The results are detailed below.

Note: Having non zero packet loss might introduce some inaccuracies in latency measurement by the tools used.

9

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

The naming scheme used below is <Type of COS> Case# (PMD’s Cache size in MB – VM1’s Cache size in MB – Noisy
Neighbor VM’s Cache size in MB – Operating System’s cache size in MB). For example, “Overlapping Case 1 (24-6-6-6)” can be
deconstructed as:

•	 Overlapping: It is an overlapping class of service allocation type.

•	 Case 1: First case of its type

•	 24: PMDs in this case have 24-MB of cache allocated.

•	 6: VM1 (or VM under test) has 6-MB of cache allocated.

•	 6: Noisy neighbor VM (with memtester) has 6-MB of cache allocated.

•	 6: Operating System (and rest of the processes) has 6-MB of cache allocated.

This can be expanded for rest of the cases used below.

3.3.1 Difference in Throughput

Table 4. Throughput in Packets per Second Comparison in PPS with Varying COSes

Figure 6. Throughput Comparison in PPS with Varying COSes

Based on Figure 6 results, it is apparent that throughput is not affected by the different allocation schemas. This stems from
mainly the fact that the profile of the L2 forwarding VM is only 2-MB and the allocated cache is sufficient that throughput
is not impacted. The only exception seems to be the isolated case 1 for 256B packets which exhibited about 70 kpps lower
performance. This performance degradation however is 1.8% which in many cases would be considered negligible.

3.3.2 Difference in Latency

Packet Sizes
in Bytes

Overlapping Case 1
(24-6-6-6)

Isolated Case 1
(12-6-6-6)

Overlapping Case 2
(24-3-3-6)

Isolated Case 2
(18-3-3-6)

64 3,980,656 3,980,658 3,980,655 3,980,656

256 3,873,691 3,803,639 3,873,695 3,873,691

1024 2,394,630 2,394,617 2,394,626 2,394,614

1518 1,625,485 1,625,484 1,625,484 1,625,484

Packet Sizes
in Bytes

Overlapping Case 1
(24-6-6-6)

Isolated Case 1
(12-6-6-6)

Overlapping Case 2
(24-3-3-6)

Isolated Case 2
(18-3-3-6)

64 61 80 59 51

256 175 202 165 160

1024 224 327 256 633

1518 104 141 108 119

Table 5. Latency Comparison in µsecs with Varying COSes

10

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

In terms of latency, it becomes apparent that the Isolated Case 2 (yellow) can be problematic for 1024B packets. Also, the
Isolated Case 1 seems to be not favorable as it exhibits the highest latency for 256B and 1518B packets while it is the second
worst case for 1024B packet sizes. Both Overlapping Cases 1 and 2 seem to be equivalent, with small average differences
between them, one being best option for smaller packet sizes (case 1), and the other being the best option for bigger packet
sizes (case 2).

3.3.3 Determinism in Latency
After looking at the performance that each schema yields, the deterministic latency predictability was looked into of the
platform based on the same schemas. Latency bins was used that show concentration of the packet latencies. Apparently
the narrower the concentration is, the more deterministic the performance is and the more these concentrations are
towards the left, the lower (better) latency obtained. Latency bin information is shown for 64B and 1518B packets to cover
typical telco or cloud/enterprise type traffic’s packet sizes.

3.3.3.1 COS for 64B Packets

Figure 7. Latency Comparison in µsecs with Varying COS’es

Latency Bins
in µsecs

Overlapping Case 1
(24-6-6-6)

Isolated Case 1
(12-6-6-6)

Overlapping Case 2
(24-3-3-6)

Isolated Case 2
(18-3-3-6)

5 µs – 10 µs 0 78 0 26

10 µs – 25 µs 2232945 1785229 1980879 1731249

25 µs – 50 us 54615309 9982799 68762669 61899614

50 µs – 75 µs 148829151 74247866 152705307 157655376

75 µs – 100 µs 31391425 134770032 15198439 17524017

100 µs – 150 µs 1733897 18042127 191992 29004

150 µs – 200 µs 4896 9586 0 0

200 µs – 250 µs 5653 1569 0 0

250 µs – 500 µs 26010 0 0 0

Table 6. 64B Latency Bins Comparison in µsecs with Varying COSes

11

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 8 shows Overlapping Case 1 and Isolated Case 1 span into more latency buckets, whereas Overlapping Case 2 is the
best in terms of predictability (spans into the least number of low latency buckets) and Isolated Case 2 is the close second
option.

3.3.3.2 COS for 1518B Packets

For the 1518B packet sizes in Figure 9, Isolated Case 1 seems the least predictable option and Overlapping Case 2 is
the best (spans into least number of buckets). Isolated Case 2 and Overlapping Case 1 exhibit similar results in terms of
predictability.

Figure 8. 64-B Latency Bins Comparison in µsecs with Varying COSes

Table 7. 1518B Latency Bins Comparison in µsecs with Varying COSes

Latency Bins
in µsecs

Overlapping Case 1
(24-6-6-6)

Isolated Case 1
(12-6-6-6)

Overlapping Case 2
(24-3-3-6)

Isolated Case 2
(18-3-3-6)

5 µs – 10 µs 0 0 0 0

10 µs – 25 µs 11 27 1 18

25 µs – 50 us 111 95 4 226

50 µs – 75 µs 9400 267 1379 308

75 µs – 100 µs 37598684 937 34177318 20034386

100 µs – 150 µs 59920862 71371436 63348353 77437736

150 µs – 200 µs 190 26156345 2203 56584

200 µs – 250 µs 0 151 0 0

250 µs – 500 µs 0 0 0 0

12

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

3.4 Analysis of Determinism
Based on the performance analysis the two best (and similar
in terms of results) schemas were the two overlapping
cases. From the deterministic predictability analysis, it is
made clear that Overlapping Case 2 is the one that yields
the most predictable results. Therefore, Overlapping Case 2
(24-3-3-6) was chosen to move forward and execute the set
of tests with a noisy software component (either noisy VM
or noisy application in the hypervisor) using this schema.

4 Test Results
This section describes how the technology can be used to
achieve considerably lower and much more predictable
latency in a VM with a (simulated) noisy neighbor. It might
be worth mentioning that the noisy neighbor can be either
another VM/VNF that just happens to generate a lot of
traffic, or it can be a malicious neighbor trying to starve the
forwarding VM from resources such as cache and affect its
performance. In this case, it is shown below that CAT can
protect and isolate VMs/VNFs from each other avoiding the
negative effects of an intentionally malicious (or not) noisy
neighbor. The noisy neighbor in our study is simulated using
memtester software tool. Memtester is a userspace utility
for stress testing memory subsystem. We use memtester
to stream synthetic traffic upto 12 Gbytes/s per core from
memory there by quickly polluting LLC.

Having performed the tests the same way as previously
discussed (of finding the throughput rate that yields
acceptable percentage loss, and then measuring the average
latency and latency buckets at that rate) with a L2 forwarding
VM acting as the VNF under test, the following results were
obtained. It should be noted that three configurations are
used for each test case:

1.	 NoCAT-NoMemtester: No cache allocations (using
CAT) were set and no memtester was running to act as
noisy application (to yield the performance impact in
the standard default configuration). This is the default
setup of the platform.

2.	 NoCAT-Memtester: No cache allocations (using CAT)
were set but memtster was running to act as noisy
application either in hypervisor or in the VM, based

on the case (to yield the performance impact in the
standard configuration with noisy application).

3.	 WithCAT-Memtester: CAT was used with specific COS
and memtester was running to act as noisy application
either in hypervisor or in the VM, based on the case (to
showcase the impact of CAT with a noisy application).

Refer to Appendix A: and Appendix B: for the hardware and
software configuration of the setup.

4.1 PHY-VM-PHY with Noisy Process on the
Hypervisor
This test setup is being used to emulate an application in
the hypervisor that is being aggressive with cache to the
point where it has the potential to make the VNF(s) or VM(s)
starve in terms of cache. For this purpose, one COS for all
the processes of the operating system, including memtester
was created. The other infrastructure and forwarding VM
components would have a COS on their own. The following
figure shows the COS allocations and core affinities on the
platform.

Figure 9. 1518B Latency Bins Comparison in µsecs with Varying COSes

Figure 10. Core Affinities and Cache Association for the
PHY-VM-PHY Setup with Memtester in Hypervisor as a
Noisy Neighbor (NN)

13

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

4.1.1 Throughput

Table 8. Core Associations and Overlapping Cache Allocations for Hypervisor Processes

Table 9. Throughput Comparison in Packets per Second with Memtester as Noisy Neighbor in Hypervisor

Physical Core(s) Process COS Bit Mask Cache Restored

1 ovs-vswitchd 0xFFF00 18 MB

2 PMD1 0xFFF00 18 MB

3 PMD2 0xFFF00 18 MB

7, 8, 9 Qemu 0xFFF00 18 MB

11 Memtester 0x000FF 12 MB

0, 4-6, 10 OS 0x000FF 12 MB

Packet Size in Bytes NoCAT-No Memtester NoCAT-Memtester WithCAT-Memtester

64 3,980,656 3,980,649 3,750,465

256 3,803,620 3,663,501 3,663,526

1024 2,394,611 2,394,584 2,394,605

1518 1,625,478 1,625,468 1,625,484

Figure 11. Throughput comparison in Packets per Second with Memtester as Noisy Neighbor in Hypervisor

4.1.2 Latency

Packet Size in Bytes NoCAT-No Memtester NoCAT-Memtester withCAT-Memtester

64 48 56 30

256 119 161 117

1024 688 1388 809

1518 421 739 121

Table 10. Average Latency comparison in µsecs with Noisy Neighbor in Hypervisor

14

Table 8 shows the COS with its size in software component level.

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 12. Average Latency Comparison with Noisy Neighbor in Hypervisor

The above results leads to conclude that the use of CAT is highly beneficial with or without the presence of a noisy
application running in the hypervisor. Without a noisy application, the results demonstrate a good level of latency reduction,
which is magnified in the presence of a running noisy application. In the case where a noisy application is running in parallel,
there is an improvement of 27% in worst case and a huge improvement of 84% in the best case. It is worth noting that in
some cases, the latency with CAT present is even lower than the latency without CAT and without a noisy neighbor.

In terms of throughput, the performance stayed the same in all cases with the only exception where the noisy application
reduced the throughput by less than 6% in presence of a noisy application for the 64B packets. Also for the 256B packets,
the presence of noisy neighbor had a negative effect in the throughput of all the other cases by less than 4%.

4.1.3 Deterministic Predictability Analysis

Table 11. 64B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor

Latency Bins in µsecs NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

5 µs – 10 µs 0 1664 9842

10 µs – 25 µs 1830 16019176 42170855

25 µs – 50 µs 142808621 54466586 181468399

50 µs – 75 µs 95908820 146951007 1377672

75 µs – 100 µs 84378 19872346 1134

100 µs – 150 µs 6822 893301 0

150 µs – 200 µs 6648 173521 0

200 µs – 250 µs 7035 198978 0

250 µs – 500 µs 15132 222275 0

500 µs – 750 µs 0 14499 0

750 µs – 1000 µs 0 9531 0

1000 µs - max 0 15803 0

15

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 13. 64B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor

Figure 14. 1518B Packets Latency Bins Comparison with Noisy Neighbor in Hypervisor

Latency Bins in µsecs NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

10 µs – 25 µs 0 0 23

25 µs – 50 µs 1 0 100

50 µs – 75 µs 0 2 270

75 µs – 100 µs 1 0 1833590

100 µs – 150 µs 189 0 95675501

150 µs – 200 µs 256 128 19774

200 µs – 250 µs 416 128 0

250 µs – 500 µs 97528395 1024 0

500 µs – 750 µs 0 80741326 0

750 µs – 1000 µs 0 16786631 0

Table 12. 1518B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor

16

In terms of determinism, the presence of CAT, without a question, improved the predictability:

•	 For 64B packets the latency variation became 5 to 100 µsecs –vs- 5 µsecs to above 1 msec in the presence of a noisy
neighbor.

•	 For 1518B packets the latency variation became 10 to 200 µsecs –vs- 50 µsecs to 1 msec in the presence of noisy
neighbor

4.2 PHY-VM-PHY with Noisy Process inside a VM (Noisy Neighbor)
This setup emulates the case where a VM is acting as a noisy neighbor in the platform. Figure 15 shows running the
memtester inside a VM. There is one COS for the Operating System, one for the vSwitch including the PMDs and one for each
of the forwarding VM and the noisy neighbor that runs memtester.

The COS test example has been allocated using overlapping COS as shown in Table 13 below and based on Section 3.4,
Analysis of Determinism detailed above.

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Table 13. Core Affinities and Overlapping Cache Associations

Figure 15. Core Affinities and Cache Association for the PHY-VM-PHY Setup with VM as a Noisy Neighbor (NN)

Physical Core Process COS Bit Mask Cache Restored

1 ovs-vswitchd COS0:0xFFFF0 24 MB

2 PMD1 COS0:0xFFFF0 24 MB

3 PMD2 COS0:0xFFFF0 24 MB

4,5,6 VM1 (Qemu) COS1:0x00F00 3 MB

7,8,9 VM2 (Qemu) COS2:0x000F0 3 MB

0 OS COS3:0x0000F 6 MB

17

The results below show the impact of CAT and noisy neighbor in the networking performance.

4.2.1 Throughput

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Table 14. Throughput in Packets per Second for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor

Figure 16. Throughput in Packets per Second for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor

Packet Sizes in Bytes NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

64 3,980,660 3,980,620 3,980,655

256 3,943,753 3,661,738 3,873,695

1024 2,394,625 2,394,582 2,394,626

1518 1,625,483 1,625,470 1,625,484

4.2.2 Latency

Packet Sizes in Bytes NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

64 42 85 55

256 214 458 166

1024 277 1,323 257

1518 151 649 121

Table 15. Average Latency in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor

Figure 17. Average Latency in µsecs for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor

18

From the above results, it can be seen that in this case too, throughput stays constant with small variations, while in the
256B packets with noisy neighbor and without CAT exhibits the greatest performance degradation where the throughput
has been reduced by slightly over 7% (which CAT reduces this negative impact to less than 2%).

In terms of average latency, there is a huge positive impact in the presence of a noisy neighbor which CAT reduces by 36%
in the worst case (64B packets) or 81% in the best case (1518B packets). The average latency with CAT was improved even
compared to the non-CAT and non-noisy neighbor case for all packet sizes apart from 64B (in which case the improvement
of CAT was 36% in the presence of noisy neighbor).

4.2.3 Deterministic Predictability Analysis

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Latency bins in µsecs NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

5 µs – 10 µs 0 0 72

10 µs – 25 µs 382782 0 1998304

25 µs – 50 µs 209446984 3051813 85616436

50 µs – 75 µs 28635855 47704660 137741020

75 µs – 100 µs 298295 167458985 13153634

100 µs – 150 µs 25244 19306825 329564

150 µs – 200 µs 4509 225009 256

200 µs – 250 µs 4245 240335 0

250 µs – 500 µs 24614 784480 0

500 µs – 750 µs 16758 38641 0

750 µs – 1000 µs 0 26424 0

Table 16. 64B Packets Latency Bins in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor

Figure 18. 64B Packets Latency Bins for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor

19

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Latency bins in µsecs NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

10 µs – 25 µs 7 1 19

25 µs – 50 µs 88 24 110

50 µs – 75 µs 125 26 450

75 µs – 100 µs 164 19 11943917

100 µs – 150 µs 47069316 137 84649818

150 µs – 200 µs 50458887 203 934944

200 µs – 250 µs 671 189 0

250 µs – 500 µs 0 1734 0

500 µs – 750 µs 0 97526925 0

Table 17. 1518B Packets Latency Bins in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor

Figure 19. 1518B Packets Latency Bins for Best CAT association for PHY-VM-PHY with VM as Noisy Neighbor

In terms of determinism for networking workloads, the presence of CAT reduced the latency variation in the presence of a
noisy neighbor from 25 µsecs to 1 msec, to just 5 to 200 µsecs for 64B packets and from 25 to 750 µsecs, to 10 to 200 µsecs
for 1518B packets. This is a huge improvement.

4.3 PHY-VM-VM-PHY with Noisy Process inside a VM (Noisy Neighbor)
This setup emulates the case where a VM is acting as a noisy neighbor in the platform while there are two VMs acting as L2
forwarding VMs. Figure 20 shows a running memtester application inside a VM. There is one COS for the operating system,
one for the vSwitch including the PMDs and one for each of the VMs under test, the two forwarding VMs. However, for the
noisy neighbor VM that runs memtester only two cores were allotted due to lack of sufficient core count and due to limitation
of only four COSes for this processor, it had to share the COS with hypervisor operating system.

20

The COS have been allocated using overlapping COS as shown in Table 18 below and based on the Overall Analysis Results
detailed above.

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Process Physical Cores COS Bit Mask Cache Restored

ovs-vswitchd 1 COS0: 0xFFFF0 24 MB

PMD 1 2 COS0: 0xFFFF0 24 MB

PMD 2 3 COS0: 0xFFFF0 24 MB

VM1 (Qemu) 4,5,6 COS1: 0x00F00 3 MB

VM2 (Qemu) 7,8,9 COS2: 0x000F0 3 MB

Operating System 0 COS3: 0x0000F 6 MB

Figure 20. Core Affinities and Cache Association for the PHY-VM-VM-PHY Setup with VM as a Noisy Neighbor

Table 18. Core Associations and Overlapping Cache Allocations for Hypervisor Processes

4.3.1 Throughput

Packet Sizes in Bytes NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

64 1,908,947 1,908,938 1,908,947

256 1,912,078 1,912,059 1,912,081

1024 1,209,252 801,778 1,172,220

1518 984,105 682,523 908,846

Table 19. Throughput Comparison in Packets per Second with PHY-VM-VM-PHY Case with VM as Noisy Neighbor

21

In this case, where the VM density is higher, it can be seen that the presence of the noisy neighbor creates issues in the
throughput, dropping the rate significantly for the larger packet sizes (approx. 33% and 31% decrease in the throughput
of the VM chain for 1024B and 1518B packets respectively). Using CAT improved the performance and almost completely
restored the throughput for these packet sizes.

4.3.2 Latency

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 21. Throughput Comparison in Packets per Second with PHY-VM-VM-PHY Case with VM as Noisy Neighbor

Table 20. Average latency comparison in µsecs for PHY-VM-PHY case with VM as Noisy Neighbor

Packet Sizes in Bytes NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

64 46 49 49

256 78 98 104

1024 148 34 168

1518 2,305 32 688

Figure 22. Average latency comparison in µsecs for PHY-VM-PHY case with VM as Noisy Neighbor

One important aspect to be noted in these latency figures is that the fact that the throughput of 1024B and 1518B packets
was reduced in presence of a noisy neighbor had a knock-on effect on the average latencies for these packets lowering the
values to a high degree. However, the fact that they are lower should not be interpreted as an improvement. If anything, the
improvement in these results is the drop of average latency for the 1518B packets by 70% in the presence of CAT, even if
there was a noisy neighbor in the platform, compared to default set up without noisy neighbor and without CAT.

22

4.3.3 Deterministic Predictability Analysis
White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Table 21. 64B Packets Latency Bins Distribution Comparison for PHY-VM-VM-PHY Case with VM as Noisy Neighbor

Packet Sizes NoCAT-NoMemtester NoCAT-Memtester withCAT-Memtester

10 µs – 25 µs 4929 221 219

25 µs – 50 µs 82971821 60402251 65317469

50 µs – 75 µs 31370646 53034755 48750717

75 µs – 100 µs 186442 1078451 467902

100 µs – 150 µs 2731 4971 523

150 µs – 200 µs 261 1080 0

200 µs – 250 µs 0 1249 0

250 µs – 500 µs 0 5005 0

500 µs – 750 µs 0 3662 0

750 µs – 1000 µs 0 3593 0

1000 µs – max µs 0 961 0

Figure 23. 64B Packets Latency Bins Distribution Comparison for PHY-VM-VM-PHY Case with VM as Noisy Neighbor

In terms of determinism, the figure above shows again the same scenario: the presence of memtester is spreading the
concentration into multiple buckets from 10 µs all the way up to 1 ms and beyond, and the presence of CAT is significantly
reducing the spread from 10 µs to 200 µs. There is no point showing the latency buckets for 1518B as for that packet size
the throughput was negatively affected.

5 Conclusions and Deployment Considerations
Intel Resource Director Technology, in this example, cache allocation technology can provide a better platform service
assurance. Using the technology helps cloud service providers or communication service providers meet their SLAs with
varied set of VNFs that can be deployed general purpose COTS server platforms. It helps optimize the precious hardware
resources allocation while helping achieve a predictable deterministic performance. Extending its usage to a dynamically
orchestrated environment can further help the deployment to be resource (like LLC) aware and enable VNF schedulers to be
intelligent enough to achieve service assurance. With the overall data detailed in earlier sections it is safe to say Intel® RDT
helps achieve determinism in NFV environments that are sensitive to performance considerations.

Using CAT networking data access latency is reduced and becomes more deterministic, especially in conditions where noisy
neighbors exist in the same platform. Intel Resource Director Technology also provides a strong security aspect as VMs can be
safeguarded from malicious noisy neighbors which deploy Denial of Service (DoS) attack techniques and starve legitimate VMs
from their cache resources.

23

It is important to determine the profile (size of cache segments and allocation schema) of the software infrastructure and
VNFs with workloads as close as possible to production in a test setup and then deploy with this in mind. In case of strict
performance SLAs, it might be worth doing a static deployment, meaning obtain the profile in a test bed, and deploy based
on that profile in production and not reconfigure the platform in terms of Intel® RDT again. However, if VM density is more
important while the performance SLAs are more relaxed, it might be worth considering monitoring LLC utilization with CMT
and in conjunction with some other metrics (like LLC misses, or measuring local network latency) provide a more “elastic”
approach where the size of the COSes varies (but most probably not to be allowed to get bigger than the profile).

A Appendix
A.1 Hardware Components

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Table 22. Intel® Xeon® Processor E5-2658 v3 Platform Hardware Ingredients

Item Description

Server Platform Intel® Server Board S2600WTT, Formerly Wildcat Pass

2 x PCIe* 3.0 x16 slot, 1 x PCIe 3.0 x8 slot

Processor Intel® Xeon® Processor E5-2658 v3

2.20 GHz

2 Sockets (NUMA Nodes),

12 cores/Socket, 12 threads, 2.2 GHz, 30 MB Last Level Cache

Memory 64 GB 1600 MHZ DDR3L ECC CL11 SODIMM 1.35V

BIOS SE5C610.86B.01.01.0011.081020151200

Hyper-Threading technology: Disabled

Intel® Virtualization Technology (Intel® VT-x): Enabled

Intel® Virtualization Technology for Directed I/O (Intel® VT-d): Disabled

CPU C-State: Disabled

CPU P-State Control Enhanced Intel SpeedStep® Technology: Disabled

Fan PWM Offset: 100

CPU Power and Performance Policy: Performance

QPI/DMI: Auto

Legacy USB Support: Disabled

Port 60/64 Emulation: Disabled

Network Interfaces 1 x Intel® Ethernet X710-DA4 Adapter (Total: 4 Ports)

http://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4

Tested with Intel® FTLX8571D3BCV-IT transceivers

Local Storage Intel® SSD DC S3500 Series

Formerly Wolfsville SSDSC2BB120G4 120 GB SSD 2.5in SATA 6 Gb/s

Security options UEFI Secure Boot

24

http://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Table 23. Software Versions

B Appendix

B.1 Software Components
Table 23 describes functions of the software ingredients along with their version or configuration. For open source
components, a specific commit ID set is used for this deployment. Note that the commit IDs detailed in the table are used as
they are the latest working set at the time of this release

Software Component Function Version/Configuration

Fedora* 23 Host Operating System Fedora 23 Server x86_64

KVM4NFV Kernel Host Operating System Kernel 4.1.10-rt10, KVM4NFV kernel, Bramhaputra.1.0 tag

Fedora 20 Guest Operating System Kernel Real Time kernel: 3.14.16-rt34-M_L_E_X2-VM

QEMU-KVM* Virtualization technology QEMU-KVM version: 2.3.1-7.fc22.x86_64

libvirt version: 1.2.13.1-3.fc22.x86_64

DPDK Network stack bypass and libraries for packet

processing; includes user space vhost drivers

DPDK Release 2.2.0 commit id:

a38e5ec15e3fe615b94f3cc5edca5974dab325ab

Open vSwitch vSwitch OvS Release 2.5.0, commit id:

at61c4e39460a7db3be7262a3b2af767a84167a9d8

Used for Open vSwitch 2.5 with DPDK

Cache Allocation Technology

(CAT)/Cache Monitoring

Technology (CMT)

Resource Director Technology components intel-cmt-cat commit id:

1c473f93a2639f9d564ed7869bd1ef7a725bd513

Intel® Ethernet Drivers Ethernet drivers Driver Version: i40e 1.4.25

Firmware Version: 5.02 0x80002284 0.0.0

C Appendix

C.1 Test Setup

C.1.1 Test Procedures
Benchmark methodology in both profiling and test runs:

•	 Three trials for each test case

•	 RFC2544 settings with 2000 bi-directional flows

•	 Maximum throughput at 0.1% packet loss

•	 60 sec traffic duration for latency related measurements

•	 Average latency and latency bins with varying granularity levels were measured. For example: 5 µs-10 µs, 10 µs-25 µs,
25 µs-50 µs, 50 µs-75 µs, 75 µs-100 µs, 100 µs-150 µs, 150 µs-200 µs, 200 µs-250 µs, 250 µs-500 µs, 500 µs-750 µs,
750 µs-1000 µs, and 1000 µs-maximum

•	 L2 Forwarding in the VMs

25

Execute following test cases with above methodology and based on findings in profiling

•	 PHY-VM-PHY with Memtester in hypervisor

•	 PHY-VM-PHY with VM as a noisy neighbor

•	 PHY-VM-VM-PHY with VM as a noisy neighbor

C.1.2 Physical Setup
The physical setup included connecting the Ixia traffic generator with 10 GbE ports back to back with the compute node
under test, as shown in Figure 24. IxNetwork* software was used to configure the test scenario with 2000 bi-directional
flows. UDP packets of sizes 64B, 256B, 1024B, and 1512B were used for the test.

C.2 Software Setup

C.2.1 Hypervisor Setup
Follow the instructions below to configure the hypervisor that has Fedora23:

1.	 Download the KVM4NFV kernel from github and reset to Bramhaputra.1.0 release tag

$ cd /usr/src/kernels

$ git clone https://gerrit.opnfv.org/gerrit/p/kvmfornfv.git

$ cd kvmfornfv

$ git reset -–hard branhmaputra.1.0

2.	 Compile the real time kernel using instructions from below and reboot:
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

3.	 Install all the required packages:

dnf install -y gdb glibc-devel libtool make pkgconfig strace byacc ccache cscope ctags
elfutils indent ltrace libffi-devel fuse-devel glusterfs bridge-utils ebtables libffi-devel
openssl-devel virt-install libvirt-daemon-config-network libvirt-daemon-kvm qemu-kvm virt-
manager virt-viewer libguestfs-tools virt-top python-libguestfs autoconf automake binutils
bison flex gcc-c++ gcc deltarpm libselinux-python psacct socat ntp libxslt-devel vim qemu
msr-tools
dnf group install with-optional virtualization

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Figure 24. Example Setup of PHY-VM-VM-PHY with VM as Noisy Neighbor Case with Ixia* Traffic Generator

26

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

4.	 Copy the existing kernel config file to real time kernel folder:

cp /usr/src/kernel/ 4.2.3-300.fc23.x86 _ 64/.config /usr/src/kernel/kvmfornfv/

cd /usr/src/kernel/kvmfornfv

make menuconfig

5.	 Enable the following:

a.	 Enable the high resolution timer: General Setup > Timers Subsystem > High Resolution Timer
Support (This option is selected by default.)

b.	 Enable the max number SMP: Processor type and features > Enable Maximum Number of SMP
Processor and NUMA Nodes

c.	 Enable PREEMPT-RT: Processor type and features > Preemption Model > Fully Pre-emptible
Kernel (RT)

d.	 Set the high-timer frequency: Processor type and features > Timer frequency > 1000 HZ (This option is
selected by default.)

e.	 Exit and save.

6.	 Compile the kernel: # make –j `grep –c processor /proc/cpuinfò && make modules_install && make install

7.	 Make changes to boot sequence, reboot and login to real time kernel:

grep ^menuentry /boot/grub2/grub.cfg

grub2-set-default "the desired default menu entry"

grub2-editenv list

8.	 Use the following script to setup real time kernel variables:

a. #!/bin/bash

b. #RT Throttling is to be disabled

c. echo -1 > /proc/sys/kernel/sched _ rt _ runtime _ us

d. echo -1 > /proc/sys/kernel/sched _ rt _ period _ us

e. #Interrupt binding is done to ensure no interrupts will be routed to isolated CPUs. This is achieved by pinning
IRQs to cores note being used by vSwitch/vCPUs.

for irq in /proc/irq/* ; do

if [-d ${irq}] && ! grep - ${irq}/smp _ affinity _ list > /dev/null ; then

 al=̀ cat ${irq}/smp _ affinity _ list`

 if [[${cpu[*]} =~ ${al}]] ; then

 echo 0 > ${irq}/smp _ affinity _ list

 cat ${irq}/smp _ affinity _ list

 fi

 fi

done

#Minimise System stats collection

echo 10 > /proc/sys/vm/stat _ interval

#Disable Softlockup detection

echo 0 > /proc/sys/kernel/watchdog _ thresh

echo 0 > /proc/sys/kernel/watchdog

echo 0 > /proc/sys/kernel/nmi _ watchdog

27

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Choose the CPUs that are isolated in grub config

host _ isolcpus=1,2,3,4,5,6,7,8

i=0

for c in `echo $host _ isolcpus | sed 's/,/ /g'̀ ; do

 tid=̀ pgrep -a ksoftirq | grep "ksoftirqd/${c}$" | cut -d ' ' -f 1̀

 echo "Chaning chrt value of 2 for ksoftirq tid" ${tid}

 chrt -fp 2 ${tid}

 tid=̀ pgrep -a rcuc | grep "rcuc/${c}$" | cut -d ' ' -f 1̀

 echo "Changing chrt value of 3 for rcuc tid" ${tid}

 chrt -fp 3 ${tid}

 cpu[$i]=${c}

 i=̀ expr $i + 1̀

done

Change RT priority of rcub kernel threads

	 for tid in `pgrep -a rcub | cut -d ' ' -f 1̀ ; do

	 chrt -fp 3 ${tid}

	 echo "changing chrt value of rcub for tid" ${tid}

	 done

9.	 Stop and disable the interrupt requests (IRQ) balance, firewall, iptables, SELinux*, address space layout
randomization and IPv4 forwarding:

killall irqbalance

systemctl stop irqbalance.service

systemctl disable irqbalance.service

systemctl stop firewalld.service

systemctl disable firewalld.service

systemctl stop iptables.service

sed -i 's/SELINUX=enabled/SELINUX=disabled/g' /etc/selinux/config

echo "kernel.randomize _ va _ space=0" >> /etc/sysctl.d/aslr.conf

echo "# Enable IPv4 Forwarding" > /etc/sysctl.d/ip _ forward.conf

echo "net.ipv4.ip _ forward=0" >> /etc/sysctl.d/ip _ forward.conf

systemctl restart systemd-sysctl.service

echo "randomize _ va _ space value:"

cat /proc/sys/kernel/randomize _ va _ space

echo "ip _ forward value:"

cat /proc/sys/net/ipv4/ip _ forward

10.	 Remove the following modules:

rmmod ipmi _ si

rmmod ipmi _ devintf

rmmod ipmi _ ssif

rmmod ipmi _ msghandler

rmmod eventfd _ link

rmmod ioeventfd

28

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

11.	 Set the kernel boot parameters with huge pages and isolate the required set of CPUs in the /etc/default/grub file:

GRUB _ CMDLINE _ LINUX="rd.lvm.lv=fedora-server/root rd.lvm.lv-fedora-server/swap default _
hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048 intel _ iommu=off
isolcpus=1-11 nohz _ full=1-11 rcu _ nocbs=1-11 rcu _ nocb _ poll=1 tsc=reliable idle=poll
irqaffinity=0 selinux=0 enforcing=0 rhgb quiet"

Note: The number of CPUs to be isolated will depend on the test case with the number of VMs under test. All the cores
used in the report only use CPUs from Socket0. Also CPU0 is not used in the list of isolated cores so OS can use it.
Purpose of the real time options used are detailed below:

nohz _ full=<…>; Mark cpus as adaptive-ticks cpus

rcu _ nocbs=<…>; Mark cpus to offload RCU callbacks to kthreads

rcu _ nocb _ poll=1; Kthreads perform polling so offloaded CPUs don’t need to do wakeups.

tsc=reliable; Disable clocksource stability checks for TSC

idle=poll; Turn off C States

irqaffinity=0; Assuming core 0 is an OS core and not being used by the vSwitch/vCPUs

Selinux=0 enforcing=0; Disable SE Linux to improve performance

The range indicated by <…> is the comma-separated list of CPUs being used in the particular test by both the
vSwitch and the vCPUs in the guest.

12.	 Save the file and update the GRUB config file:

grub2-mkconfig –o /boot/grub2/grub.cfg

13.	 Reboot the host machine and check to make sure 1GB and 2MB hugepage sizes are created:

ls /sys/devices/system/node/node0/hugepages/hugepages-*

14.	 Mount 1-GB and 2-MB hugepages and verify:

mkdir -p /mnt/huge

mkdir -p /mnt/huge _ 2mb

mount -t hugetlbfs nodev /mnt/huge

mount -t hugetlbfs nodev /mnt/huge _ 2mb -o pagesize=2MB

mount

C.2.2 DPDK and OvS Setup
Instructions below will help to setup DPDK and OvS based on the Intel test case:

1.	 Download and compile DPDK with following configuration:

git clone http://dpdk.org/git/dpdk

cd dpdk

git reset --hard a38e5ec15e3fe615b94f3cc5edca5974dab325ab

make install T=x86 _ 64-native-linuxapp-gcc

cd x86 _ 64-native-linuxapp-gcc

sed -i 's/CONFIG _ RTE _ BUILD _ COMBINE _ LIBS=n/CONFIG _ RTE _ BUILD _ COMBINE _ LIBS=y/g'
.config

sed -i 's/CONFIG _ RTE _ LIBRTE _ VHOST=n/CONFIG _ RTE _ LIBRTE _ VHOST=y/g' .config

sed -i 's/CONFIG _ RTE _ LIBRTE _ VHOST _ USER=n/CONFIG _ RTE _ LIBRTE _ VHOST _ USER=y/g' .config

make -j20 –Ofast

export $DPDK _ BUILD=/root/dpdk/x86 _ 64-native-linuxapp-gcc/

2.	 Insert the required modules:

modprobe msr

modprobe uio

insmod /$DPDK _ BUILD/kmod/igb _ uio.ko

29

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

3.	 Check the PCI ID for the 10-GbE NIC ports, for example:

lspci | grep Ethernet

06:00.0 Ethernet controller: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ (rev 01)

06:00.1 Ethernet controller: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ (rev 01)

06:00.2 Ethernet controller: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ (rev 01)

06:00.3 Ethernet controller: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ (rev 01)

4.	 Bind the two ports connected to traffic generator to DPDK.

cd $DPDK _ BUILD

python tools/dpdk _ nic _ bind.py --bind=igb _ uio 0000:06:00.0

python tools/dpdk _ nic _ bind.py --bind=igb _ uio 0000:06:00.1

python tools/dpdk _ nic _ bind.py --status

5.	 Download, compile and start OvS.

rm -rf /usr/local/var/run/openvswitch

rm -rf /usr/local/etc/openvswitch/

rm -f /tmp/conf.db

mkdir -p /usr/local/etc/openvswitch

mkdir -p /usr/local/var/run/openvswitch

git clone https://github.com/openvswitch/ovs.git

cd ovs

git reset --hard 61c4e39460a7db3be7262a3b2af767a84167a9d8

cd /root/ovs/

./boot.sh

./configure --with-dpdk=/root/dpdk/x86 _ 64-native-linuxapp-gcc

make 'CFLAGS=-Ofast -march=native'

./ovsdb/ovsdb-tool create /usr/local/etc/openvswitch/conf.db ./vswitchd/vswitch.ovsschema

./ovsdb/ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock
--remote=db:Open _ vSwitch,Open _ vSwitch,manager _ options --pidfile --detach

./utilities/ovs-vsctl --no-wait init

6.	 Set real time priority for ovs-vswitchd process with SCHED _ FIFO as policy. Start vSwitchd process on CPU1, hex
equivalent being 0x2.

chrt -f 95 ./vswitchd/ovs-vswitchd --dpdk -c 0x2 -n 4 --socket-mem 2048,0 --

unix:/usr/local/var/run/openvswitch/db.sock –pidfile

Note: The value for “–c” option is specific to platform and should be used based on CPU enumeration

7.	 Tune the OvS to set 2 PMD cores, on CPU2 and CPU3 using pmd-cpu-mask option:

cd ovs/

./utilities/ovs-vsctl set Open _ vSwitch . other _ config:pmd-cpu-mask=C

#./utilities/ovs-vsctl set Open _ vSwitch . other _ config:max-idle=30000

8.	 Add the bridges and required ports.

a. For PHY-VM-PHY case:

cd ovs/

#./utilities/ovs-vsctl add-br br0 -- set bridge br0 datapath _ type=netdev

30

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

./utilities/ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk

./utilities/ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk

./utilities/ovs-vsctl add-port br0 vhost-user0 -- set
Interface vhost-user0 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user1 -- set
Interface vhost-user1 type=dpdkvhostuser

./utilities/ovs-vsctl show

b. For PHY-VM-VM-PHY case:

cd ovs/

./utilities/ovs-vsctl add-br br0 -- set bridge br0
datapath _ type=netdev

./utilities/ovs-vsctl add-port br0 dpdk0 -- set
Interface dpdk0 type=dpdk

./utilities/ovs-vsctl add-port br0 dpdk1 -- set
Interface dpdk1 type=dpdk

./utilities/ovs-vsctl add-port br0 vhost-user0 -- set
Interface vhost-user0 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user1 -- set
Interface vhost-user1 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user2 -- set
Interface vhost-user2 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user3 -- set
Interface vhost-user3 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user4 -- set
Interface vhost-user4 type=dpdkvhostuser

./utilities/ovs-vsctl add-port br0 vhost-user5 -- set
Interface vhost-user5 type=dpdkvhostuser

./utilities/ovs-vsctl show

9.	 Add the openflow rules based on the test case:

a. For PHY-VM-PHY case:

cd ovs/

./utilities/ovs-ofctl add-flow br0
in _ port=1,dl _ type=0x800,idle _ timeout=0,action=output:3

./utilities/ovs-ofctl add-flow br0
in _ port=2,dl _ type=0x800,idle _ timeout=0,action=output:4

./utilities/ovs-ofctl add-flow br0
in _ port=3,dl _ type=0x800,idle _ timeout=0,action=output:1

./utilities/ovs-ofctl add-flow br0
in _ port=4,dl _ type=0x800,idle _ timeout=0,action=output:2

./utilities/ovs-ofctl dump-flows br0

a. For PHY-VM-PHY case:

cd ovs/

./utilities/ovs-ofctl add-flow br0
in _ port=1,dl _ type=0x800,idle _ timeout=0,action=output:3

./utilities/ovs-ofctl add-flow br0
in _ port=3,dl _ type=0x800,idle _ timeout=0,action=output:1

./utilities/ovs-ofctl add-flow br0
in _ port=4,dl _ type=0x800,idle _ timeout=0,action=output:5

./utilities/ovs-ofctl add-flow br0
in _ port=5,dl _ type=0x800,idle _ timeout=0,action=output:4

31

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

./utilities/ovs-ofctl add-flow br0
in _ port=2,dl _ type=0x800,idle _ timeout=0,action=output:6

./utilities/ovs-ofctl add-flow br0
in _ port=6,dl _ type=0x800,idle _ timeout=0,action=output:2

./utilities/ovs-ofctl dump-flows br0

C.2.3 PQoS Setup
Basic details of the PQoS tool and its usage are provided in Section 2.4.3, The intel-cmt-cat Software Package. The class of
service configurations used in the report are detailed out in this section. PQoS tools uses a .cfg file to allocated cache based
on user specified class of service configuration. Examples configuration files are found under “configs” directory in the pqos
package. Following configurations were used based on their corresponding test cases:

Configuration used for Overlapping case 1 24-6-6-6:

alloc-class-set: llc:0=0xffff0;llc:1=0x00f00;llc:2=0x000f0;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=5-7

alloc-assoc-set: llc:2=8-10

alloc-assoc-set: llc:3=0,4,11

Configuration used for Isolated case 1 24-6-6-6:

alloc-class-set: llc:0=0xff000;llc:1=0x00f00;llc:2=0x000f0;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=4-6

alloc-assoc-set: llc:2=7-9

alloc-assoc-set: llc:3=0,10,11

Configuration used for Overlapping case 2 24-3-3-6:

alloc-class-set: llc:0=0xffff0;llc:1=0x000C0;llc:2=0x00030;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=4-6

alloc-assoc-set: llc:2=7-9

alloc-assoc-set: llc:3=0,10,11

Configuration used for Isolated case 2 24-3-3-6:

alloc-class-set: llc:0=0xfff00;llc:1=0x000C0;llc:2=0x00030;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=4-6

alloc-assoc-set: llc:2=7-9

alloc-assoc-set: llc:3=0,10,11

Configuration used for Phy-VM-Phy with noisy neighbor in the hypervisor:

alloc-class-set: llc:0=0xffff0;llc:1=0xff000;llc:2=0x00ff0;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=5-7

alloc-assoc-set: llc:2=8-10

alloc-assoc-set: llc:3=0,4,11

Configuration used for Phy-VM-Phy with noisy neighbor VM:

alloc-class-set: llc:0=0xffff0;llc:1=0x000C0;llc:2=0x00030;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=4-6

32

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

alloc-assoc-set: llc:2=7-9

alloc-assoc-set: llc:3=0,10,11

Configuration used for Phy-VM-VM-Phy with noisy neighbor VM:

alloc-class-set: llc:0=0xffff0;llc:1=0x000C0;llc:2=0x00030;llc:3=0x0000f

alloc-assoc-set: llc:0=1-3

alloc-assoc-set: llc:1=4-6

alloc-assoc-set: llc:2=7-9

alloc-assoc-set: llc:3=0,10,11

C.2.4 Guest (VM Under Test) Setup
The guest is configured with following options:

•	 Assign 3 vCPUs to the guest, two for the guest application (test-pmd) and one for the OS

•	 Affinitise the threads of test-pmd with taskset, ensuring the cores assigned to the application are those isolated in the
kernel boot parameters

•	 Assign a scheduling policy and high priority to the test-pmd process and threads.

An example of related options of VMs under test booted with its corresponding real time priority is given below:

$HUGE _ DIR=/dev/hugepages

$SOCK _ DIR=/usr/local/var/run/openvswitch

$PORT0 _ NAME=vhost-user0

$PORT1 _ NAME=vhost-user1

chrt -f 5 taskset 0xE0 qemu-system-x86 _ 64 -name us-vhost-vm1 -cpu host -enable-kvm -m
4096 -vnc :12 -object memory-backend-file,id=mem,size=4096M,mem-path=$HUGE _ DIR,share=on
-numa node,memdev=mem -mem-prealloc -smp 3 -drive file=/root/RT _ FC20.qcow2 -chardev
socket,id=char0,path=$SOCK _ DIR/$PORT0 _ NAME -netdev type=vhost-user,id=mynet1,chardev=char0
,vhostforce -device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mrg _ rxbuf=off -chardev
socket,id=char1,path=$SOCK _ DIR/$PORT1 _ NAME -netdev type=vhost-user,id=mynet2,chardev=ch
ar1,vhostforce -device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mrg _ rxbuf=off –
nographic

The CPU affinity values for each of the VMs are set using the taskset option and the values can be found in the figures
detailed in earlier sections corresponding to the test case.

After booting into the VM install and boot into real time kernel 3.14.16-rt34-M_L_E_X2-VM. Then follow the steps detailed
in Sections 12.4, 12.5, 12.6, 12.7 and 12.8 to bootstrap the VM and deploy DPDK from the ONP2.0 performance test report
available at: https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Performance_Test_Report_
Rev1.0-1.pdf.

Then tune the Qemu processes of the VM under test using the process provided in Section10.5 of the Intel® ONP2.0
Performance Test Report.

Note: The number of cores for the VMs under test have always been three cores per VM.

C.3 Noisy Neighbor Setup

C.3.1 Hypervisor as Noisy Neighbor
Memtester application was used as a hypervisor application to act as a noisy neighbor. Either insert the memtester module
or download and build the memtester package from http://linux.softpedia.com/get/Utilities/memtester-27174.shtml.

Use the memtester application to access 100 MB of memory using:

./memtester 100M > /dev/tmp

C.3.2 VM as a Noisy Neighbor
The noisy neighbor VM is booted with similar options detailed in Appendix C.3.4. Either insert the memtester module or
download and build the memtester package from http://linux.softpedia.com/get/Utilities/memtester-27174.shtml.

1.	 Use the memtester application to access 100 MB of memory using:

./memtester 100M > /dev/tmp

33

https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Performance_Test_Report_Rev1.0-1.pdf
https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Performance_Test_Report_Rev1.0-1.pdf
http://linux.softpedia.com/get/Utilities/memtester-27174.shtml
http://linux.softpedia.com/get/Utilities/memtester-27174.shtml

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

2.	 Then tune the Qemu processes of the VM under test using the process provided in Section10.5 of the ONP 2.0
Performance Test Report.

Note: The number of cores used for the noisy neighbor VM were dependent on the test case:

•	 In PHY-VM-PHY case: 3 cores

•	 In PHY-VM-VM-PHY case: 2 cores

D Acronyms and Abbreviations
D.1 Acronyms and Abbreviations

Term Description

BIOS Basic Input/Output System

CAT Cache Allocation Technology

CDP Code and Data Prioritization

CLI Command Line Interface

CMT Cache Monitoring Technology

COS Class of Service

COTS Commercial off-the-shelf

DoS Denial Of Service

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EMC Extra Match Cache

EOI End of Interrupt

IDS Intrusion Detection Systems

Intel® ONP Intel® Open Network Platform

IPS Intrusion Prevention Systems

KVM Kernel-Based Virtual Machine

LLC Last Level Cache

MBM Memory Bandwidth Management

NAPI New API

NFV Network Functions Virtualization

NN Noisy Neighbor

NUMA Uniform Memory Access

OS Operating System

OvS OpenVSwitch

PMD Poll Mode Driver

PQoS Platform Quality of Service

QEMU Quick EMUlator

QoS Quality of Service

RCU Read-Copy-Update

Intel® RDT Intel® Resource Director Technology

RMID Resource Monitoring ID

34

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

E References
E.1 References

SDN Software-Defined Networking

SLA Service Level Agreement

SMI System Management Interrupt

TSC Time Stamp Counter

UIO I/O

VFIO* Virtual Function I/O*

VIM Virtualized Infrastructure Manager

VNFs Virtual Network Functions

VM Virtual Machine

VMware ESXi* VMware vSphere* Hypervisor

VMM Virtual Machine Monitor

Reference Location

Intel® 64 and IA-32 Architectures Software
Developer’s Manuals

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html

v055, Vol 3b. Chapter 17.15 and 17.16, covers CMT, CAT, MBM and CDP

Intel, Cache Monitoring and Cache Allocation
Technologies landing page

http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-
allocation-technologies.html

CMT, MBM, CAT and CDP Public Software
Library/Utility

https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-
monitoring-cache-allocation-technology-code-and-data

CMT, MBM, CAT and CDP Public Software
Library/Utility GitHub Project

https://github.com/01org/intel-cmt-cat

Intel, “Enabling NFV to Deliver on its Promise” http://www.intel.com/content/www/us/en/communications/nfv-packet-processing-
brief.html

CAT cgroup Kernel Patches http://marc.info/?l=linux-kernel&m=142620227328406&w=2

Christos Kozyrakis et al, “Heracles: Improving
Resource Efficiency at Scale”

http://csl.stanford.edu/~christos/publications/2015.heracles.isca.pdf

Introduction to CMT Blog https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring

Discussion of RMIDs and CMT Software
Interfaces Blog

https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-
technology-software-visible-interfaces

Use Models and Example Data using CMT Blog https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-
technology-use-models-and-data

Software Supports and Tools: Intel's CMT:
Software Support and Tools

https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-
technology-software-support-and-tools

Intel Platform Shared Resource Monitoring
and CAT

http://smackerelofopinion.blogspot.com/2015/11/intel-platform-shared-resource.
html

Intel, “Increasing Platform Determinism with
Platform Quality of Service for the Data Plane
Development Kit”

http://www.intel.com/content/www/us/en/communications/increasing-platform-
determinism-pqos-dpdk-white-paper.html

35

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
http://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
http://marc.info/?l=linux-kernel&m=142620227328406&w=2
http://csl.stanford.edu/~christos/publications/2015.heracles.isca.pdf
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-software-support-and-tools
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-software-support-and-tools
http://smackerelofopinion.blogspot.com/2015/11/intel-platform-shared-resource.html
http://smackerelofopinion.blogspot.com/2015/11/intel-platform-shared-resource.html
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html

White Paper | Deterministic Network Functions Virtualization with Intel® Resource Director Technology

Intel® ONP 2.0 Performance Test Report https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_
Performance_Test_Report_Rev1.0-1.pdf

Intel ONP 2.0 Reference Architecture Guide https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_
Reference_Architecture_Guide_Rev1.1.pdf

Intel Open Network Platform Program https://01.org/packet-processing/intel%C2%AE-onp

Intel® ONP 2.1 Application Note on Intel® RDT https://download.01.org/packet-processing/ONPS2.1/Intel_ONP_Release_2.1_
Application_Note_on_RDT_Rev1.0.pdf

OpenStack* http://www.openstack.org/

36

Figures

Figure 1. Comparison of the Kernel Data Path vs. User Space Data Path 3

Figure 2. High-Level Architecture of Open vSwitch 3

Figure 3. Allocating and Associating Cache Segments per Process Using CAT 6

Figure 4. LLC Occupancy by Processes at Maximum Throughput as per RFC2544 8

Figure 5. Example of Cache Allocation with Overlapped and Isolated COS 9

Figure 6. Throughput Comparison in PPS with Varying COSes 10

Figure 7. Latency Comparison in µsecs with Varying COS’es 11

Figure 8. 64-B Latency Bins Comparison in µsecs with Varying COSes 12

Figure 9. 1518B Latency Bins Comparison in µsecs with Varying COSes 13

Figure 10. Core Affinities and Cache Association for the PHY-VM-PHY Setup with Memtester in Hypervisor as a Noisy
Neighbor (NN) 13

Figure 11. Throughput comparison in Packets per Second with Memtester as Noisy Neighbor in Hypervisor 14

Figure 12. Average Latency Comparison with Noisy Neighbor in Hypervisor 15

Figure 13. 64B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor 16

Figure 14. 1518B Packets Latency Bins Comparison with Noisy Neighbor in Hypervisor 16

Figure 15. Core Affinities and Cache Association for the PHY-VM-PHY Setup with VM as a Noisy Neighbor (NN) 17

Figure 16. Throughput in Packets per Second for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor 18

Figure 17. Average Latency in µsecs for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor 18

Figure 18. 64B Packets Latency Bins for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbo 19

Figure 19. 1518B Packets Latency Bins for Best CAT association for PHY-VM-PHY with VM as Noisy Neighbor 20

Figure 20. Core Affinities and Cache Association for the PHY-VM-VM-PHY Setup with VM as a Noisy Neighbor 21

Figure 21. Throughput Comparison in Packets per Second with PHY-VM-VM-PHY Case with VM as Noisy Neighbor 22

Figure 22. Average latency comparison in µsecs for PHY-VM-PHY case with VM as Noisy Neighbor 22

Figure 23. 64B Packets Latency Bins Distribution Comparison for PHY-VM-VM-PHY Case with VM as Noisy Neighbor 23

Figure 24. Example Setup of PHY-VM-VM-PHY with VM as Noisy Neighbor Case with Ixia* Traffic Generator 26

Tables

Table 1. LLC Occupancy in KB by Processes at Maximum Throughput as per RFC2544 8

Table 2. (Maximum) LLC Profiling Required per Component 9

Table 3. Division of Cache Ways for Isolated and Overlapped COS Test Cases 9

Table 4. Throughput in Packets per Second Comparison in PPS with Varying COSes 10

Table 5. Latency Comparison in µsecs with Varying COSes 10

https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Performance_Test_Report_Rev1
https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Performance_Test_Report_Rev1
https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Reference_Architecture_Guide
https://download.01.org/packet-processing/ONPS2.0/Intel_ONP_Release_2.0_Reference_Architecture_Guide
https://01.org/packet-processing/intel%C2%AE-onp
https://download.01.org/packet-processing/ONPS2.1/Intel_ONP_Release_2.1_Application_Note_on_RDT_Rev1
https://download.01.org/packet-processing/ONPS2.1/Intel_ONP_Release_2.1_Application_Note_on_RDT_Rev1
http://www.openstack.org/

Table 6. 64B Latency Bins Comparison in µsecs with Varying COSes 11

Table 7. 1518B Latency Bins Comparison in µsecs with Varying COSes 12

Table 8. Core Associations and Overlapping Cache Allocations for Hypervisor Processes 14

Table 9. Throughput Comparison in Packets per Second with Memtester as Noisy Neighbor in Hypervisor 14

Table 10. Average Latency comparison in µsecs with Noisy Neighbor in Hypervisor 14

Table 11. 64B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor 15

Table 12. 1518B Packets Latency Bins Comparison in µsecs with Noisy Neighbor in Hypervisor 16

Table 13. Core Affinities and Overlapping Cache Associations 17

Table 14. Throughput in Packets per Second for Best CAT Association for PHY-VM-PHY with VM as Noisy Neighbor 18

Table 15. Average Latency in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor 18

Table 16. 64B Packets Latency Bins in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor 19

Table 17. 1518B Packets Latency Bins in µsecs for Best CAT COS for PHY-VM-PHY with VM as Noisy Neighbor 20

Table 18. Core Associations and Overlapping Cache Allocations for Hypervisor Processes 21

Table 19. Throughput Comparison in Packets per Second with PHY-VM-VM-PHY Case with VM as Noisy Neighbor 21

Table 20. Average latency comparison in µsecs for PHY-VM-PHY case with VM as Noisy Neighbor 22

Table 21. 64B Packets Latency Bins Distribution Comparison for PHY-VM-VM-PHY Case with VM as Noisy Neighbor 23

Table 22. Intel® Xeon® Processor E5-2658 v3 Platform Hardware Ingredients 24

Table 23. Software Versions 25

	*	Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this
information.

		 By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
		 You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-

exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
		 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

		 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

		 Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. Tests document performance of components on
a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

		 All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Results have been estimated or simulated
using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

		 No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.
		 Intel does not control or audit third-party web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
		 Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of

documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual
property rights.

		 You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

		 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative

to obtain the latest Intel product specifications and roadmaps.
		 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any

warranty arising from course of performance, course of dealing, or usage in trade.
		 For use only by product developers, software developers, and system integrators. For evaluation only; not FCC approved for resale.
		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.html.
		 Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
	*	Other names and brands may be claimed as the property of others.
	 	Copyright © 2017, Intel Corporation. All Rights Reserved.  Please Recycle 335187-003US

37

http://www.intel.com/design/literature.html

