
1.0 Introduction
Network Function Virtualization (NFV) is gaining traction in enterprises and
Communication Service Providers (CSPs) as it offers faster service enablement and
programmability in deploying applications which require consistency, determinism
and predictability. Traditionally, the common virtualization method uses virtual
machines (VM), wherein applications run on an operating system’s hypervisor.
However, running multiple guest Operating Systems (OSs) on top of the hypervisor
is not always the most efficient use of resources. Using container technology is an
alternate approach to virtualization which mitigates some of the inefficiencies of
VM based virtualization.

Software containers provide several benefits over VMs. For example, they are
virtualized at the OS level which can make them quick to deploy with no processing
overhead on the guest OS. Software applications can be packaged into container
images, which have smaller footprints and better portability than VMs.

The nature of containers allows the deployment of microservices, where each
part of a service is decoupled into a separate container to provide modular
development, easy deployment and scaling models. In many cases, a microservices
approach can be suitable when building cloud infrastructures, especially those that
consist of cloud applications that add more functionality or features over time.

Kubernetes (K8s) is an open source container manager and orchestrator
that was originally designed by Google, but then donated to the Cloud Native
Computing Foundation. It automates the deployment, scaling and operational
functions associated with application containers, and does so across a cluster
of hosts (physical machines). The open source nature of the Kubernetes project
allows the community to contribute and improve upon it.

Kubernetes is evolving quickly, but still lacks a number of features that are
important for the management and performance of container-based virtual
network functions (VNF) in an NFV environment. To help address this, Intel
Corporation recently made public four new repositories containing features that
are compatible plugins to Kubernetes:

1) Multus Container Networking Interface (CNI) Plugin (available on GitHub. See [6])

2) Single Root I/O virtualization (SR-IOV) CNI Plugin (available on GitHub. See [9])

3) Node Feature Discovery (NFD) (available on GitHub. See [10])

4) CPU Core Manager for Kubernetes (available on GitHUb. See[11])

See sections 2.3 and 3 for more information about why these features were
implemented and a summary of what they do. This document provides a
summary of each of these new features and shows how they can be used in a
NFV deployment. The techniques presented here can potentially be used for
any containerized NFV use-case. For more information about use-cases that
Kubernetes enables, see [13].

Table of Contents

1.0 Introduction 1

2.0 Kubernetes Overview,
Limitations and Improvements . . . 2

 2.1 Kubernetes Components . . . 2

 2.2 Container Networking 3

 2.3 How Intel enhanced
Kubernetes for NFV 3

3.0 Solution Setup 4

 3.1 Feature 1: Multus CNI Plugin 4

 3.2 Feature 2: SR-IOV CNI
Plugin . 5

 3.3 Feature 3: Node Feature
Discovery (NFD) 6

 3.4 Feature 4: CPU Core Manager
for Kubernetes 7

4.0 Summary and Next Steps 8

5.0 References 9

Authors
Muhammad Siddiqui

Solution Software Engineer

Tarek Radi
Lead Solution Enabling Manager

Lukasz Obuchowicz
Solution Software Engineer

Pawel Rutkowski
Solution Software Engineer

Enabling New Features
with Kubernetes for NFV

Intel Corporation
Data Center Solution Networking Group

white paper

White Paper | Enabling New Features in Kubernetes for NFV 2

2.0 Kubernetes Overview, Limitations and
Improvements

2.1 Kubernetes Components
The following general diagram shows a typical K8s
deployment. This section summarizes the key components
in Figure 1 for context. For more details, see [14]

Containers create an isolation boundary at the application
level for portability and ease of packaging. Docker is a
container runtime technology that manages these containers
along with all their dependencies and the libraries required
to successfully run these containers. This allows running
a software application in a container that is isolated from
the host machine. A Docker container is another form
of virtualization compared to VMs. For a comparison of
Containers vs VMs, see the diagrams at [15].

Kubernetes is an open-source platform that automates
the deployment, management, and scaling of application
containers across clusters of servers (hosts), providing
container-centric infrastructure [1]. A Kubernetes cluster
consists of one or more masters, and one or more nodes. A
Kubernetes cluster can achieve High Availability (HA) of the
infrastructure when it has multiple masters.

Kubernetes Master is the main controlling unit of the cluster
that manages and schedules pods on to the worker nodes.
The main components of K8s master are:

• The API server: this services REST operations and provides
the frontend to the cluster’s shared state through which all
other components interact. [2]

• etcd: this is a distributed key-value data store that reliably
stores the configuration data of the cluster and represents
the overall state of the Kubernetes cluster.

• The scheduler: this decides the target node on to which a
pod would be scheduled, and makes that decision based on
the available resources.

• The controller manager communicates with the API server
to create, update and delete the resources they manage e.g.
pods, service etc.

A Kubernetes node, also referred to as worker or minion, is
the machine where pods are deployed. The node runs the
services that are necessary to run application containers and
be managed by one or multiple Kubernetes masters. The
main components of a Kubernetes node are:

• Container runtime: Docker and Rocket are examples of a
container runtime.

• Kubelet: this is an agent that is responsible for registering a
node to the Kubernetes cluster. It provides the Kubernetes
Master with the running state of the Kubernetes node it is
running on. It takes care of creating and deleting pods, and
ensures the health of the application containers.

• The kube-proxy is an implementation of a network proxy
and reflects services as defined in the Kubernetes API on
each node. It can do simple Transport Control Protocol
(TCP), User Datagram Protocol (UDP) stream forwarding
across a set of backends [17].

A Kubernetes pod represents a unit of deployment. A pod
consists of either a single container or a small number of
containers that are tightly coupled and share resources [3].
Each pod is assigned a unique IP address which is routable
within a Kubernetes cluster. Every container in a pod shares
the network namespace, including the IP address and
network ports. If two containers should not share such
networking components, then they should be designed
into different pods. To learn more about Kubernetes, visit
https://kubernetes.io

Figure 1. Generic Kubernetes Cluster

https://kubernetes.io

White Paper | Enabling New Features in Kubernetes for NFV 3

2.2 Container Networking
By default, Docker provides its own Linux-bridge (docker0).
This bridge network is automatically created when the
Docker is first installed. The Docker daemon connects
containers to this bridge network. In our setup we are not
using the default networking of Docker. Instead, we use the
Kubernetes Container Networking Interface (CNI). See [18]
for more information on CNI.

The CNI is a specification and a set of libraries for a plugin-
based networking solution for containers. This networking
solution has been adopted by various open source
orchestration engines including Kubernetes. CNI concerns
itself only with the network connectivity of containers and
removing allocated resources when the containers are
deleted [4]. It is written in Go programming language and
supports several 3rd party plugins.

One of the commonly used CNI plugin is the flannel plugin;
this provides basic overlay networking (unique and routable
IP) for containers in a Kubernetes cluster. It gives a subnet to
each host for use with container runtimes [5].

2.3 How Intel enhanced Kubernetes for NFV
In a typical NFV deployment, VNFs are usually connected to
multiple network interfaces in order to a) provide VNFs with
redundancy of the network, and b) segregate the control
plane from the data plane traffic. One of the major current
limitation in the CNI is the inability to connect more than
one network interface to a K8s pod. This limitation does not
facilitate the deployment of VNFs in a K8s environment. In
this document, we introduce the Multus CNI plugin which
resolves this limitation, allowing containerized VNFs in
Kubernetes to have more than one network interface. For
more details, see Section 3.1.

Another current challenge for a container-based virtual
network function (VNF) solution is the lack of support for
Single root I/O virtualization (SR-IOV) Virtual Function (VF)
[7]. SR-IOV is a technology that is currently widely used

in VM-based VNFs due to the increased performance it
provides. We make SR-IOV possible for containers in CNI
by implementing and deploying an SR-IOV CNI plugin. This
plugin enables a Kubernetes pod to attach directly to an
SR-IOV VF. The plugin also provides pods with support to
bind the VF to a DPDK driver. All this provides containers with
direct access to the network hardware and results in higher
performance. For more details, see Section 3.2.

Additionally, at the time of writing this document, Kubernetes
was unable to identify which nodes have high performance
networking hardware such as SR-IOV capable Network
Interface Cards (NICs). We solve this problem using Node
Feature Discovery (NFD), and show how the Kubernetes
scheduler can schedule pods that have a requirement for
high I/O traffic to nodes where the SR-IOV VFs are available.
This helps ensure that hardware features within a Kubernetes
cluster are utilized in a more efficient way. NFD is a run-once
K8s job that detects hardware features that are available
at the Kubernetes node level. Kubernetes can use this
information for scheduling containerized VNFs such that they
get deployed on nodes with the desirable hardware features.
For more details, see Section 3.3.

Finally, as we have seen in non-containerized NFV
deployments, performance can often be optimized when
CPU pinning is enabled. CPU pinning is a key Enhanced
Platform Awareness (EPA) feature in OpenStack. EPA
facilitates better decision making related to VM placement
and helps drive tangible improvements for Cloud tenants
[16]. More details about EPA can be found in [8]. Currently,
Kubernetes does not support CPU pinning. In this document,
we show how K8s container-based VNFs can be affinitized
to dedicated CPU cores using CPU Core Manager for
Kubernetes. The CPU Core Manager for Kubernetes manages
pools of CPU cores and constrains workloads to specific CPU
cores within those pool. This is a highly desirable feature in
an NFV environment for VNFs that have low latency and high
performance requirements. For more details, see
Section 3.4. requirements.

Figure 2.
Setup

White Paper | Enabling New Features in Kubernetes for NFV 4

Network Network Description Network Interface Card Interface name on the Host

External/Internet Provides Internet/remote access to
the host machines and the K8s pods

Intel® Ethernet Server Adapter I350-
T4V2

eno1

Overlay Network (VxLAN) Virtual extensible local area network
(VxLAN) used as an overlay network
for Kubernetes pods

Intel® Ethernet Server Adapter I350-
T4v2

eno1

Data Network Internal network used for data traffic
using SR-IOV VFs.

Intel® Ethernet Converged Network
Adapter X710-DA4

ens2f0 / ens2f1

Table 1. Networks used in this setup

3.0 Setup
The Network Function Virtualization Infrastructure (NFVI)
used to demonstrate these new features in K8s and CNI
consists of two industry-standard, high volume server
Intel® Xeon® CPU E5-2690 v3 @ 2.60 GHz processor-based
servers running the Ubuntu 16.04 Desktop OS. See Appendix
A for details about the hardware. Hyper-Threading and
virtualization is enabled on both host machines. Docker
v1.13.1 is used as the container run-time and Kubernetes
v1.5.2 is installed on these servers to provide a container
orchestration platform. One server is configured as the
Kubernetes master plus minion, whereas the second server is
configured as minion node only. Figure 2 shows the physical
topology and the software stack used to develop and test the
new features presented in this document. From that figure,
one can notice different networks. Table 1 summarizes the
3 networks that we used and which interfaces are connected
to each network.

3.1 Feature 1: Multus CNI Plugin
Multus is the Latin word for “Multi”. As the name suggests,
it allows K8s pods to be multi-homed. The Multus CNI
plugin can be used in conjunction with other CNI plugins
e.g. ptp, local-host, calico, flannel etc. The Multus CNI plugin
can also work with different internet protocol address
management (IPAM) configurations and networks. It groups
multiple plugins into delegates and invokes each plugin in

sequential order according to the CNI configuration file. It
calls each plugin used in the Multus CNI file to do the network
configuration of its interface [6].

The left part of Figure 3 shows a pod without the Multus
CNI plugin. When the Multus CNI plugin is enabled, a
‘masterplugin’ gets instantiated. See the right side of the
figure. This masterplugin is responsible for managing the
"eth0" interface of the pod. In other words, the masterplugin
identifies the primary network and sets the default route via
this network. This is the only network configuration option
of the multus plugin.The other plugins are referred to as
minion plugins, and they are responsible for invoking other
interfaces, e.g. ‘net0’, ‘net1’ [6]. Naturally, there can only be
one masterplugin, and this is specified in the Multus config
file using the tag "masterplugin": true. as shown in the sample
Multus configuration file in Appendix C.

The Multus workflow begins in the Kubelet. A properly
configured Kubelet knows the CNI plugin’s directory. CNI
processes the plugin configuration file in lexicographical
order. The Kubelet calls CNI to create network interfaces for
the newly created containers. Furthermore, the CNI calls the
Multus masterplugin which then invokes the other minion
CNI plugins sequentially to create the desired number of
interfaces in the pod. One of these minion CNI plugins could
be flannel, IPAM, or the new SR-IOV CNI Plugin defined in the
following section.

Figure 3. Before and
after adding a Multus
Plugin to the CNI
(Image Source here)

https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4
https://github.com/Intel-Corp/multus-cni/blob/master/doc/images/multus_cni_pod.png

White Paper | Enabling New Features in Kubernetes for NFV 5

3.2 Feature 2: SR-IOV CNI Plugin
The SR-IOV CNI plugin enables the K8s pods to attach to an
SR-IOV VF [9]. The plugin looks for the first available VF on
the designated port in the multus configuration file, based
on the VF index number, and assigns that VF to the container.
The plugin also supports the Data Plane Development Kit
(DPDK) driver, i.e. vfio-pci, for these VFs. When this driver
is specified in the multus configuration file, the plugin can
automatically unbind the VF from its kernel driver, then
associate it to the pod and bind it to the DPDK driver in user
space. When the pod is deleted the VF will be bound back
to the kernel driver. In the case of the X710-DA4 Network
Interface Card (NIC), this would be the ‘i40evf’.

Note: SR-IOV VFs can be used with the DPDK driver to provide
high performance networking interfaces to the K8s pods. These
DPDK interfaces can then be used to run DPDK applications.

SR-IOV plugin workflow starts after CNI namespace is
created for the new pod. The configured VF is moved to the
new CNI namespace. The plugin sets the interface name as
indicated in the ‘name’ configuration option in the CNI config
file. Finally, the VF state is set to UP.

To demonstrate both the Multus and SR-IOV CNI plugins, we
create a pod with three interfaces as shown in Figure 4 below.
See Appendix C for the Multus Configuration file that results
in this setup.

The Multus Config file in Appendix C specifies the following
three interfaces:

1. Flannel interface. This interface was created using the
existing flannel plugin, and has the ‘masterplugin’ option
set to true. In this example, this flannel interface was
associated with the ‘eth0’ interface of the pod. This is the
interface used to reach the default gateway.

2. SR-IOV VF interface using kernel driver. In this example,
this VF was instantiated from the host machine’s physical
port ‘ens2f0’. This was the first port on the Intel® X710-
DA4 NIC. The name of the VF interface inside the pod was
‘south0’. An IP address can be assigned to this interface
using IPAM.

3. SR-IOV VF interface using DPDK driver. In this example,
this VF was instantiated from the host machine’s physical
port ‘ens2f1’. This was the second port on the
Intel® X710-DA4 NIC. The name of the VF interface inside
the pod was ‘north0’. The interface was bound to the
DPDK driver ‘vfio-pci’. If the pod ever gets deleted, the
VF will be recycled and bound back to its kernel driver, in
this case ‘i40evf’.

Figure 4. Mutus plugin allowing for 2 types of plugins per pod: Flannel and SR-IOV plugins

White Paper | Enabling New Features in Kubernetes for NFV 6

After the pod is created, the user can use the above script to
get the PCI address of the DPDK interface. The PCI address
can then be used to run a DPDK-based application. The script
requires the name of the DPDK interface inside the pod,
which in our case was ‘north0’.

3.3 Feature 3: Node Feature Discovery (NFD)
Node Feature Discovery (NFD) is a Kubernetes project that
is part of Kubernetes Incubator [10]. NFD detects hardware
features available on each node in a Kubernetes cluster,
and advertises those features using node labels. Feature
discovery is done as a one-shot job. The node feature
discovery script launches a job which deploys a single pod on
each unlabeled node in the cluster. When each pods run, it
contacts the Kubernetes API server to add labels to the node.
Currently the NFD can detect the following four features
in the node: 1) cpuid, 2) Intel® Resource Director (RDT), 3)
p-state and 4) network (to detect SR-IOV VFs on the node).

Labels are key/value pairs that are attached to objects, such
as pods or nodes. Labels are used to specify identifying
attributes of objects that may be relevant to the end user.
They can be used to organize objects into specific subsets.
Labels are a part of the metadata information that is attached
to each node's description [12]. All this information is kept
within etcd.

The NFD project creates new labels and tags each node with
information about its hardware features. The published node
labels encode a few pieces of information:

• A namespace,

• The source for each label,

• The discovered feature name for the underlying source,

• The version of this discovery code that wrote the label

Labels generated by NFD can be checked from the master
node using the following command:

The explanation of the network labels is as follows:

• …/nfd-network-sriov”: “true” – the node has at least
1 network interface with SR-IOV capabilities

• …/nfd-network-sriov-configured”: “true” – the node has at
least one network interface with SR-IOV VFs configured and
that interface is in UP state.

The Kubernetes scheduler can now use the information
contained in each node labels to deploy pods according
to the requirements specified in the pod specification.
Appendix E shows a sample pod specification that uses
the ‘nodeSelector’ option with the NFD created label to
deploy a K8s pod to a node which has at least one SR-IOV VF
available. If the scheduler does not find a single node in the
cluster that has the required SR-IOV VFs, then the creation of
that pod will fail.

White Paper | Enabling New Features in Kubernetes for NFV 7

3.4 Feature 4: CPU Core Manager for
Kubernetes
CPU Core Manager for Kubernetes is a tool for managing
CPU core pinning and isolation. It is a command-line program
that performs various functions, such as host configuration,
managing groups of CPU cores and constraining workloads to
specific CPU cores.

CPU Core Manager for Kubernetes creates core isolation
through applying CPU masks. These masks represent cores
on which the workload can be executed. The state of each
core (e.g. allocated or free) is maintained through the host
file system which incorporates a system lock to avoid any
conflicts. This core state is structured as a directory hierarchy
where pools are represented as directories. Appendix F
shows an example of the directory hierarchy created by
CPU Core Manager for Kubernetes. Workloads can acquire
slots from these directory structures. These slots represent
physical allocable cores in the form of a list of their logical
core IDs. In this instance, a pool is a representation of a
named group of CPU core lists.

CPU Core Manager for Kubernetes creates three pools:
1) a data plane pool, 2) a control plane pool, and 3) an infra
pool. The data plane pool is exclusive whereas the control
plane and infra pools are shared. When there is no pool
mentioned in the pod specification, the CPU Core Manager
for Kubernetes will use cores from the infra pool. It uses
Opaque Integer Resources (OIR) to advertise the number of
slots on the relative Kubernetes node. The number of slots
advertised is equal to the number of CPU lists available under
the data plane pool.

CPU Core Manager for Kubernetes has an “isolate” sub-
command. This can be referenced in the pod specification
in the arguments such that the pod consumes one of the
available CPUs from a specified pool. In case that the data
plane pool is specified, the OIR created in the CPU Core

Manager for Kubernetes command will be consumed.
Exactly one OIR will be consumed per container, this ensures
the correct number of containers are allowed to run on a
node. In the case of a shared pool any CPU may be selected
regardless of the current process allocations. The isolate
command will fail in the case where an exclusive pool is
requested and there are no available CPUs left in that pool.

CPU Core Manager for Kubernetes isolates requested
workloads to a core in the specified pool, however this does
not prevent system tasks from running on that core. The use
of the Linux kernel parameter ‘isolcpus’ is the recommended
way to ensure that cores are isolated from system tasks. CPU
Core Manager for Kubernetes reads the value of ‘isolcpus’ in
the file located at . These isolated CPUs are
then used in the creation of the dataplane and controlplane
pools. All other unisolated CPUs are used for the infra pool.
If isolcpus is not set, the CPU Core Manager for Kubernetes
arbitrarily chooses CPUs to assign to the pools.

In this setup, we used K8s nodes which had 2 CPU sockets
each. Figure 5 in the Appendix B shows the CPU configuration
of those K8s nodes. Each CPU socket has 12 physical cores.
Intel® Hyper-Threading (HT) technology was enabled, and
that’s why that figure shows 24 logical cores for each NUMA
node. At the time this document was written, the CPU Core
Manager for Kubernetes could only work with single socket
systems. For this setup, we overcame this limitation by
disabling all cores on NUMA node 1 (in other words, we
disabled the 2nd CPU socket). The first 12 logical cores in
NUMA node 0 (i.e. 0, 2, 4 up to 22) are the physical cores. The
next 12 logical cores in NUMA node 0 (i.e. 24, 26, 28 up to 46)
are the respective hyper-thread (HT) siblings of the first
12 physical cores. In this setup, we isolated four
physical cores and their corresponding hyper- thread silbings
from NUMA node 0 using ‘isolcpus’ parameter in the
 file as shown below.

Note: By default the CPU Core Manager for Kubernetes uses the
following 2 directories:

1) The directory to install all of its binaries

2) The directory to store configuration files

These are required when deploying a pod that uses the CPU
Core Manager for Kubernetes.

The CPU Core Manager for Kubernetes is then initialized
to allocate 3 cores plus their HT siblings to the data plane
pool, and 1 core and its HT sibling to the control plane pool.
The rest of the unisolated cores on NUMA node 0 were used
for the infra pool. The following two flags were used while
initializing CPU Core Manager for Kubernetes to allocate the
desired number of CPU cores to the data plane and control
plane pools.

White Paper | Enabling New Features in Kubernetes for NFV 8

After the CPU Core Manager for Kubernetes is initialized, it
deploys ‘NodeReport’ pods on each node. This pod reports
the allocation of CPU cores to all three pools. A sample
report showing all three pools and their allocated CPU
cores is shown in the Appendix D. We then proceeded with

running our application inside a container using the ‘isolate'
sub-command and specify a pool name. In the example
below we chose to run the memtester application and used
the dataplane pool so that the memtester application is
affinitized to use exclusive CPU cores.

4.0 Summary and Next Steps
The four new features summarized in this whitepaper are key
contributions by Intel that facilitate a container-based NFV
deployment. We highly recommend you consider them, at
least for your proof of concepts.

1. Using the Multus CNI plugin you can enable containerized
VNFs in Kubernetes to have more than one network
interface, which is usually a fundamental requirement for
VNFs, for network redundancy and the ability to segregate
control plane from data plane traffic.

2. Using the SR-IOV CNI plugin enables Kubernetes pods
to attach directly to an SR-IOV virtual function (VF),
giving containerized VNFs high performance networking
capabilities.

3. Using Node Feature Discovery (NFD) you can ensure that
hardware features within a Kubernetes cluster are utilized
in a more efficient way, and enable Kubernetes to use such
information for scheduling containerized VNFs so that the
pods get deployed on nodes with the desirable hardware
features.

4. Finally, using the CPU Core Manager for Kubernetes, you
can constrain workloads to specific CPU cores, which is a
highly desirable feature in an NFV environment for VNFs
that have low latency and high performance needs.

We encourage you to try out these four new features and
provide Intel with feedback via github or by contacting your
Intel representative.

In this example, one core and its HT sibling were consumed
to run the memtester application. The process ID (PID) of
the application was written to the tasks file of the used
dataplane core.

Note: The CPU Core Manager for Kubernetes does not treat HT
siblings as separate cores. Instead, processes are pinned to the
main physical core PLUS its HT sibling.

The following output from NodeReport shows that task
#40386 (which is PID of the memtester application) has been
assigned to the cores ‘10’ and ‘34’ which are HT siblings and
belong to the dataplane pool. After such an assignment,
these cores are no longer available for use by any other
container until the current process is completed. When the
memtester process terminated, the CPU Core Manager for
Kubernetes program removed the process ID from the tasks
file and made it available for use by other processes.

White Paper | Enabling New Features in Kubernetes for NFV 9

5.0 References

Title Link

1 Kubernetes Overview https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

2 Kubernetes API Server https://kubernetes.io/docs/admin/kube-apiserver/

3 Kubernetes pod Overview https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

4 CNI Github Repository https://github.com/containernetworking/cni

5 Flannel Github Repository https://github.com/coreos/flannel

6 Multus CNI Plugin https://github.com/Intel-Corp/multus-cni

7 SR_IOV http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-
brief.pdf

8 Enhanced Platform Awareness https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf

9 SR-IOV CNI Plugin https://github.com/Intel-Corp/sriov-cni

10 Node Feature Discovery https://github.com/Intel-Corp/node-feature-discovery

11 CPU Core Manager for Kubernetes https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes

12 Kubernetes Labels https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

13 Use cases for Kubernetes https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf

14 Kubernetes Components https://kubernetes.io/docs/concepts/overview/components/

15 Containers vs Virtual Machines https://docs.docker.com/get-started/#containers-vs-virtual-machines#containers-vs-virtual-machines

16 OpenStack EPA https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie

17 Kube Proxy https://kubernetes.io/docs/admin/kube-proxy/

18 CNI Readme https://github.com/containernetworking/cni/blob/master/README.md

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/admin/kube-apiserver/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://github.com/containernetworking/cni
https://github.com/coreos/flannel
https://github.com/Intel-Corp/multus-cni
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf
https://github.com/Intel-Corp/sriov-cni
https://github.com/Intel-Corp/node-feature-discovery
https://github.com/Intel-Corp/CPU-Manager-for-Kubernetes
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://thenewstack.io/dls/ebooks/TheNewStack_UseCasesForKubernetes.pdf
https://kubernetes.io/docs/concepts/overview/components/
https://docs.docker.com/get-started/#containers-vs-virtual-machines#containers-vs-virtual-machines
https://wiki.openstack.org/wiki/Enhanced-platform-awareness-pcie
https://kubernetes.io/docs/admin/kube-proxy/
https://github.com/containernetworking/cni/blob/master/README.md

White Paper | Enabling New Features in Kubernetes for NFV 10

Acronyms

Acronym Expansion

CNI Container Networking Interface

COTS Commercial off the shelf

CSP Communication Service Provider

DPDK Data Plane Development Kit

HA High Availability

HT Hyper-Thread

IP Internet Protocol

IPAM IP Address Management

K8s Kubernetes

NFD Node Feature Discovery

NFV Netwofk Function Virtualization

NFVI Netwofk Function Virtualization Infrastructure

NIC Network Interface Card

NUMA Non Uniform Memory Access

OIR Opaque Integer Resource

OS Operating System

PCI Peripheral Component Interconnect

PID Process ID

RDT Resource Director Technology

SR-IOV Single Root I/O Virtualization

VF Virtual Function

VM Virtual Machine

VNF Virtual Network Function

VxLAN Virtual Extensible Local Area Network

TCP Transport Control Protocol

UDP User Datagram Protocol

Appendix A: Hardware Bill of Material

Hardware Component Specification

CNI Processor 2x Intel® Xeon® processor E5-2690 v3, 2.60 GHz, total of 48 logical cores with Intel®
Hyper-Threading Technology

COTS Memory 128 GB, DDR4-2133 RAM

CSP Intel® NIC, 1GbE Intel® Ethernet Server Adapter I350-T4 (using Intel® Ethernet Controller I350)

DPDK Intel® 10GbE Intel® Ethernet Converged Network Adapter X710-DA4 (using Intel® Ethernet
Controller XL710-AM1

HA Hard Drive SATA 8 TB HDD

HT 10GbE Switch Extreme Networks Summit* X670V-48t-BF-AC 10GbE Switch, SFP+ Connections

IP 1GbE Switch Cisco catalyst 2960 Series

Kubernetes Master and
Minion

(Dell PowerEdge R730)

Top-of-rack switch

https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4
https://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2?q=Intel%C2%AE%20Ethernet%20Server%20Adapter%20I350-T4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4
https://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4?q=Intel%C2%AE%20Ethernet%20Converged%20Network%20Adapter%20X710-DA4

White Paper | Enabling New Features in Kubernetes for NFV 11

Appendix B: CPU Layout Of The K8s Host Machines

Figure 5. CPU Configuration of the Kubernetes Host Machines used in the solution

Note: Different vendors have different CPU configuration. The figure shows CPU configuration of the systems that we used in our
solution.

Appendix C: Sample Multus Configuration file

White Paper | Enabling New Features in Kubernetes for NFV 12

Appendix D: NodeReport After deploying CPU Core Manager for Kubernetes

White Paper | Enabling New Features in Kubernetes for NFV 13

Appendix E: Sample pod specification using an NFD created Label

Appendix F: Example Directory Hierarchy Created by CPU Core Manager for Kubernetes

White Paper | Enabling New Features in Kubernetes for NFV 14

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROP-
ERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are mea-
sured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. Tests document performance of components on
a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Results have been estimated or simulated
using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

Intel does not control or audit third-party websites referenced in this document. You should visit the referenced website and confirm whether referenced data are accurate.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual
property rights.

Intel, the Intel logo, Intel vPro, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

2017 Intel Corporation. All rights reserved.

 © 2017 Intel Corporation Printed in USA 07/17/HM/ICMCSW/PDF002 Please Recycle 336015-001US

http://www.intel.com/performance

