
Executive Summary
In the fast-evolving landscape of telecommunications, automation of networks and 
services is paramount as telecom operators seek to streamline operations and build 
agile service platforms. This whitepaper delves into how communications services 
providers (CoSPs) can use artificial intelligence (AI) to revolutionize the analysis of 
network performance and health, eliminating static rules and thresholds significantly 
improving root cause analysis, and paving the way toward autonomous networks. 

Testing done for this paper optimized the entire AI pipeline (see Figure 1), from data 
ingestion and preparation to training and inference. These tests reminded us that 
the often-overlooked data pre-processing stage consumes considerable compute 
resources of an overall AI workload. 

Through concrete examples and measurements, this paper illuminates how each 
stage of the pipeline can be fine-tuned to achieve maximum cost-efficiency. With 
a specific focus on telecom network AI workloads, that are dominated by large 
amounts of time-series data, the research underscores the critical role of ETL in a 
machine learning (ML) pipeline and how to leverage Intel® oneAPI Runtime Libraries 
to achieve nearly linear scaling. 

The result of the fine-tuning described is an impressive 57% reduction in total runtime 
and a 17% reduction in data size. Together these translate into reduced power 
consumption for an on premises deployment or substantial cost savings, when 
deployed on cloud infrastructure. Remarkably, these outcomes were achieved with 
just a few simple code changes, showcasing the immense potential for enhancing 
both software and hardware aspects of AI pipelines on Intel® architecture servers. 

The optimizations described in this paper:

• Investigate hotspots across the entire pipeline, including data ingestion, pre-
processing, training and inference.

• Consider data formats and compression schemes for optimal storage size vs. 
compute time.

• Leverage Intel oneAPI Runtime Libraries for optimal performance.

• For improved total cost of operation (TCO) identify optimal hardware profile 
or cloud instance types and size for deployment:

 - Memory vs. compute bound, number of cores.

 - Scaling the application with larger datasets.

 - Evaluating the need for accelerators.

Companies work together to fine-tune each stage of a telecom network AI pipeline 
for maximum cost-efficiency and reduced power consumption. The results include a 
57% reduction in total runtime and a 17% reduction in data size. 
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EXFO is an Intel® Network Builders ecosystem partner and 
develops smarter test, monitoring and analytics solutions for 
the global communications industry. The company is a trusted 
adviser to fixed and mobile network operators, hyperscalers, 
and leaders in the manufacturing, development and research 
sector. EXFO customers count on the company to deliver 
superior visibility and insights into network performance, 
service reliability and user experience.

This paper details the company’s work with Intel to further 
enhance EXFO’s Adaptive Service Assurance (ASA) platform 
by optimizing the AI/ML workloads across the data analytics 
pipeline. 

Problem Statement
The advent of 5G is accelerating the replacement of purpose-
built network equipment with the vir tualization and 
cloudification of network functions. The value of cloud-native 
networks lies in decoupling network and service topologies 
from the underpinning hardware infrastructure. While bringing 
immense new flexibility to telecom network design, there is a 
corresponding loss of visibility due to hardware abstraction, 
making it more difficult to troubleshoot network performance 
issues. Performance of the cloud is added to network coverage 
and performance as key determinants of end-user experience.

Cloud infrastructure abstraction
Cloud infrastructure abstraction decouples the capability of 
associating elements of the network and service topologies 
to specific hardware. While cloud-native principles simplify 
deployment, provisioning and maintenance, the resulting 
visibility constraints make it difficult to correlate customer 
quality-of-experience (QoE) issues with cloud infrastructure 
issues.

Operations silos
Network and service operations teams manage quality of 
service (QoS) and QoE issues in the virtualized cloud-native 
network. IT and cloud operations teams manage the cloud 
infrastructure. They traditionally use different tools and 
measure different metrics, making it challenging to address 
cross-domain issues.

Data tsunami
5G cloud-native networks generate a lot of performance 
data—more than 40 petabytes per hour. Combine this with 
infrastructure observability data and the result is a data 
tsunami. Moving, storing, processing, and extracting 
actionable insight from this data will be cost prohibitive without 
a significant rethink of assurance in cloud networks.

Cross-domain analysis
In collaboration with Intel, EXFO has developed a full-stack 
service assurance solution that combines infrastructure 
observability with telecom-specific key performance 
indic ator s for AI - enabled analy tics . Thanks to this 
collaboration, EXFO’s ASA platform is now closing the 
visibility gap in cloud-native networks, delivering true bare-
metal-to-customer-experience visibility (see Figure 2).

EXFO leverages Intel® Platform Telemetry Insights to achieve 
service-to-infrastructure cross-domain analysis, giving 
operators an integrated view of services and underlying 
infrastructure performance. Using correlated visibility across 
network, service and cloud infrastructure layers, combined 
with automated diagnostic tests, we were able to pinpoint the 
origin of degradations.
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Figure 1. Overview of how AI process fine tuning was conducted. 
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Using the capabilities of EXFO’s ASA platform, it is possible 
to locate performance issues across domain layers and 
accelerate troubleshooting by focusing on customer-
impacting network degradations.

The cross-domain analysis module can detect typical 
degradation use cases related to:

• Performance monitoring: resource utilization and 
exhaustion

• Fault monitoring: networking congestion, unstable 
software components

• Power monitoring: impact of power management

Additionally, EXFO and Intel jointly collaborated to optimize 
the entire AI/ML pipeline of the ASA platform cross-domain 
analysis module.

Pipeline Testing Methodology
Every stage of the pipeline was thoroughly examined (see 
Figure 3), starting with data ingestion and conversion (from 
JSON to Parquet), followed by the discovery of features and 
dimensions, and ultimately encompassing training and model 
interpretation. During this analysis, it became obvious there 
was potential for improvements in all three pipeline stages.

It's crucial to emphasize that all the data utilized in this analysis 
originates from real, live data sources and is not synthetic 
data.
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Figure 2. EXFO and Intel have developed Full Stack Assurance that provides visibility into cloud-native networks resulting 
in the ability to see network issues from the bare metal server all the way to the customer’s services.
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Figure 3. Diagram of AI pipeline stages and their relative time to execute.
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Figure 3 shows the steps invoked in the pipeline and their 
associated percentage of execution time.

Even though this analysis shows that the highest potential 
performance gains reside in the pre-processing pipeline, the goal 
was to accelerate the entire AI pipeline. Note that the ingestion 
and processing pipeline is constantly injected with new data 
while the training is only triggered a dozen times per day.

Pipeline Optimizations and Benchmarks

Data conversion and compression
In historical performance management contexts, SNMP, XML, 
and CSV data have been collected at time intervals from 
appliances and/or EMS systems. The collected data was then 
typically analyzed through fixed statistical functions. This 
process aimed to yield key performance indicators (KPIs), 
typically necessitating a batch processing architecture to 
collect and process data.

While these traditional data sources continue to be valuable, 
the integration of various other data sources from decomposed 
network functions on highly virtualized infrastructure 
enhances its utility providing new problem diagnosis 
possibilities for telecom networks. The multiplication of data 
sources converging in near-real time prompts a shift in 
architectural requirements toward streaming data processing.

The convergence of multiple data sources not only facilitates 
more robust analysis but also opens avenues for employing 
advanced techniques such as machine learning. While data 
can be continuously ingested and processed in order to 
continuously train machine learning models, this makes 
implementation more difficult, costly and harder to scale. Thus, 
adopting a periodic (or on-demand) training approach makes 
the implementation more effective.

In the AI pipeline described in this paper, the data is ingested 
from Kafka as a stream of JSON payloads and then converted 
and stored periodically as files to disk. Apache Parquet was 
selected as the storage format due to its ability to load 
individual columns and its advantages in terms of size, speed, 
and schema enforcement, making it better suited for high-
performance live feed applications.

For the data conversion and storage, the impact of different 
compression algorithm standards was considered in terms of 
compression ratio and the time to compress and write back 
to disk. 

The pyarrow.parquet function pq.write _ table() 
allows the selection of various compression algorithms, i.e. 
none, Snappy, GZIP, Brotli, LZ4 and ZSTD:
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Figure 4. Tests of various compression standards comparing compression ratio and time to compress and write ratio 
(lower is better).
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Compression standard results
For our dataset (mostly double float format), ZSTD is the best 
fit of compression ratio vs. time to compress and write (see 
Figure 4). With that, the Parquet file was reduced in size by 
17% (vs. Snappy default) with only minimal increase in time to 
compress (+ 3%). 

Overall, this conversion reduces the ingested JSON payload 
size to Parquet file size from 950 MB to 30 MB (using ZSTD).

Since the time to write varies significantly, another goal of the 
testing was to understand the impact of a par ticular 
compression for loading the compressed file again at the 
subsequent pre-processing stage. For that the source data 
files were read and written back using different codecs. After 
this, the time to load the files was measured.

As opposed to writing, the impact for file loading is negligible. 
Snappy and ZSTD formatted files took minimal more time as 
without any compression. GZIP (which was the hardest for 
writing) only took approximately 10% more time (None 19.6s, 
Snappy 19.9s, ZSTD 20s, GZIP 22s).

The test conclusion is that the compression codec used 
primarily impacts the conversion stage but does not 
significantly affect subsequent data frame loading during 
pre-processing.

Finally, the workload was run on three AWS EC2 memory 
optimized instances based on three generations of Intel Xeon 
Scalable processors. These tests measured the runtime 
performance against these generations:
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Figure 5. Gen-on-gen comparison: parsing + compressing (ZSTD) and writing on the 2nd Gen Intel® Xeon® Scalable processor, 
the 3rd Gen Intel® Xeon® Scalable processor and the 4th Gen Intel® Xeon® Scalable processor using ZSTD compression.
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The use of the m6i.16xlarge instance² is 53% faster than the 
m5.16xlarge instance¹ to complete JSON/Parquet data 
conversion and ZSTD compression.

The m7i.16xlarge instance³ is 90% faster than m5.16xlarge in 
the time it takes to complete the JSON/Parquet data 
conversion and ZSTD compression.

Note that in this example, datasets arrive periodically from 
subsystems and are being converted on-the-fly as they arrive. 
Hence, there is no need for massive parallel processing 
services that are supported by these instance types. However, 
this can certainly be a requirement in other scenarios, where 
you may want to batch process a large set of historical data. 
In this case, you’ll need to consider multiprocessing options 
such as pool.map() and also provision for high IOPS disks to 
make optimal use of the compute resources available.

Important considerations:

• Data source formats vs. ideal file/storage formats (here 
JSON -> Parquet).

• Best fit compression algorithm (depends on your datatype 
and formats).

• Minimum / optimal compute resources (# of cores, 
memory, disk IOPS) depending on amount of data.

 - Note that high IOPS disks have a considerable charge 
on cloud, e.g. AWS EC2-other.

Pre-processing stage
Now that the ingested raw data has been successfully 
converted, the Parquet-formatted data files are ready for pre-
processing. For this test scenario, real world datasets were used 
consisting of 7, 14, 28, and 56 days of data. For the largest 
dataset, this accounts for 24,000 Parquet files with a total file 
size of 3.78 GB.
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Figure 6. File inputs used in the pre-processing pipeline.
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Challenges
The pre-processing pipeline takes multiple files of data (from 
different sources) and converts them into a timeseries format 
before training the model. Because of the changing nature of 
the data sources, the features and dimensionality aren’t 
constant, thus requiring special care and maintenance.

The goals of the pre-processing pipeline are:

• Merge multiple sources of data.

• Convert the format of data to make it trainable.

• Clean data sources that don’t contain enough information 
to be valuable for the model.

• Limit cardinality of certain fields.

• Reduce the overall dataset (in our example by ~10x).

Figure 6 shows a sample of file inputs used in the pre-
processing pipeline.

In this pre-processing step, code optimizations were used to 
reduce the quite significant time for dataset loading, dimension 
calculation, flattening and saving.

These functions are all part of the pandas library, such as 
pandas.groupby, pandas.concat, etc. [https://pandas.
pydata.org/docs/reference/index.html]

However, most pandas functions are single threaded, so they 
only execute on a single core. Intel has developed and open-
sourced Modin*, which substitutes many pandas functions 
into multi-threaded workers, allowing them to scale out as 
dataframes grow in size. The following bullet points show 
details of optimizations:

• Modifying the Python code can be as simple as importing 
the Modin library and replacing select function calls with 
their Modin equivalents.

• It is essential to always install the most recent versions. 
During our testing, the environment settings were using 
an outdated version (0.17.0) which, when upgraded to 
Modin 0.20.1 showed a 10% improvement.

The results came in less than the expected: between two and 
10 times, which inspired further analysis of the code structure. 
When profiling the code using Intel® Granulate™ gProfiler and 
comparing pandas vs. Modin, it was clear that most functions 
still defaulted back to pandas.

Solution / Optimizations
Researchers at EXFO and Intel jointly worked to analyze and 
refactor the original code, while in parallel also improved 
some Modin functions (now available in Modin from versions 
0.24.1 on):

• Load dataframes directly in Modin all at once
Instead of reading Parquet files one by one at the loading 
stage, it now passes the directory with the required files 
directly to 'pd.read _ parquet(dir _ with _ files)'. This 
allows efficient reading of all files in one go for parallel 
processing.

• Avoid heavy Modin function calls in loops
Remove as many for-loops as possible. Loops are processed 
sequentially and thus cannot be parallelized by Modin. It's 
better to make one big function call instead of multiple 
smaller ones. Example:

Similarly,  a sequential  groupby aggregation was 
transformed into a native 'groupby.apply()' call inside 
of ‘flattenToColumnsNames’ function

• Provision sufficient memory and disk space
For the smallest dataset (7 days) a minimum of 64 GB 
memory was needed to allow ~32 GB for    Ray /dev/shm  
tmpfs 31G 0 31G 0% /dev/shm

• Optimize use of multithreading
To configure the software to use as many threads as there 
are datafiles to be loaded.

Changes made in Modin to make all this work can be seen in 
Appendix A.

Results
By substituting pandas with Modin libraries (including some 
fixes) up to 4.10 times total performance gain was achieved 
over the original pandas code (see Figure 7).
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Figure 7. Relative performance to execute pre-processing stage for largest dataset (higher is better).
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It is important to understand, that the benefits of Modin’s multiprocessing will increase with the number and size of datasets 
to process. Figure 8 shows how Modin outperforms pandas with larger datasets: 
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Figure 8. Relative performance to execute pre-processing stage for increasing datasets (higher is better).

Lastly, this workload was run again on three different memory-optimized AWS EC2 instances using the three most recent 
Intel Xeon Scalable processor generations (see Figure 9). These tests measured the gen-over-gen runtime performance: 
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Figure 9. Shows pre-processing stage performance using Modin (higher is better) across cloud instances powered by 
2nd Gen Intel® Xeon® Scalable processors, 3rd Gen Intel® Xeon® Scalable processors, 4th Gen Intel® Xeon® Scalable 
processors (from left to right).
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The m6i.16xlarge instance² is 28% faster than m5.16xlarge¹ 
and m7i.16xlarge instance³ is 58% faster than m5.16xlarge¹ to 
complete.

The test results show substantial performance improvements 
on the various generations of Intel Xeon Scalable processors. 
Considering equal EC2 rates for m5 and m6i and only marginal 
(5%) increased cost for m7i, the resulting TCO benefit is 
significant.

Model training and interpretation
The use of machine learning models makes it possible to 
discover patterns inside multiple sources of data and possibly 
learn about relationships between them. Because live telecom 
network systems are very dynamic and always changing, 
models need to be updated frequently. The process of 
retraining machine learning models is time consuming and 
requires thorough validation. 

This is why the training and validation process has been 
automated in a pipeline, which is triggered each time a model 
needs to be created or updated. As a part of validating these 
models, SHapley Additive exPlanations (SHAP)⁴ was used to 
interpret the models. The use of SHAP values provides a 
standardized and consistent method for understanding and 
comparing model behaviors, thus identifying if the models 
perform as expected.

Gradient boosting on decision trees is one of the most accurate 
and efficient machine learning algorithms for classification 
and regression. There are many implementations of gradient 
boosting, but the most popular are the Intel® Optimization for 
XGBoost* and LightGBM frameworks. Although these 
frameworks provide good performance out of the box, their 
runtime can still be improved.

Solution / Optimizations
This section describes how we improved EXFO’s LightGBM 
model runtimes up to 26% with the Intel® oneAPI Data 
Analytics Library (oneDAL).

We can use Model Builders to convert a LightGBM model to 
oneDAL for faster predictions. Only minimal code changes 
are required:

import daal4py

d4p _ model = daal4py.mb.convert _ model(model)

        shapA = d4p _ model.predict(df, pred _
contribs=True)[:,:-1]

        dfShap = pandas.DataFrame(shapA, 
columns=featureList)

Other important considerations:

• Setting number of cores/threads to max available (e.g. 16)

• LGBM parameters (or XGBoost equivalents):

 - ‘num_leaves’: 100

 - 'max_depth': 10
The max_depth parameter controls the maximum depth 
of the trees. That is, the maximum number of consecutive 
splits. Deeper trees can capture more complex patterns 
in the training data but are also prone to overfitting. 
Moreover, the oneDAL model performs most efficiently 
when the maximum depth "max\_depth " and number of 
leaves "max\_leaves" are related as 2max_depth 𐅽 max_
leaves.

-
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Figure 10. Training and SHAP computation with and without oneDAL optimization using different datasets.

Results
The training is used to discover pattern and relationship 
between metrics. As part of the training the application is 
calculating SHAP values to interpret the model outcomes. 

For benchmarking, the datasets generated in the previous 
pre-processing steps were used, i.e. the same 7/14/28 and 56 
days of data.

In running the original setup, the SHAP calculation time (see 
Figure 10) significantly contributes to the overall runtime and 
grows over-proportionally with larger data. 

It was therefore beneficial to optimize the SHAP calculations, 
which are supported through the oneDAL libraries as part of 
[scikit-learn-intelex]
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Figure 11. Relative performance gain for 56 days of data on m7i.16xlarge.

Using oneDAL optimized libraries, it is possible to significantly 
reduce the SHAP portion, leading to a total improvement of 
26%. 

For even larger datasets or to further reduce run time, the 
SHAP calculation also nicely scales with the number of threads 
assigned to the application:
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Figure 12. Relative performance for 56 days of data for different instance sizes (number of threads).
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The results show how training and the SHAP interpretation 
task in particular scales with the number of threads using 
different instance sizes. So, it is possible to easily scale up for 
faster results or to train on larger datasets.

Make sure you configure your environment accordingly, i.e.:

set NB _ CPU _ CORES = int(os.getenv("NB _ CPU _
CORES", 64))
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Figure 13. For the largest dataset (56 days) the tests show a gain of 44% and 99% respectively using cloud services based 
on newer Intel® Xeon® Scalable CPU generations.

And finally, it is again imperative to use latest generation 
Intel Xeon Scalable Processor family providing the best 
performance / TCO (see Figure 13).

Conclusion
With this paper we described important considerations for 
building telco AI analytics applications. This representative 
implementation of a data pipeline to ingest, convert, pre-

process, train and interpret time series data streams can serve 
as a blueprint for many network analytics use cases. 

While data sources and the desired analysis results may vary, 
the principles remain very similar and require some thorough 
understanding of the implications of choosing appropriate AI/
ML software frameworks and libraries. 

Sample diagram:
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Figure 14. Typical Telco AI/ML pipeline.

Data Sources Machine Learning Model Model Outputs

NNeettwwoorrkk  KKPPIIss

§ Tput, Latency, Jitter

§ Call / session drops 

§ UE sessions

§ ...

IInntteell®®  PPllaattffoorrmm  TTeelleemmeettrryy  IInnssiigghhttss

§ CPU, Memory, Disk, NIC

§ Cache

§ Power mgmt.

§ …

Anomalies

Correlation

Optimized by Intel® oneAPI toolkit

For data ingestion and conversion, it is important to evaluate 
optimal data structures, including compression schemes and 
storage formats. In our example, we sourced data of 
approximately 1 TByte to ultimately create compact training 
data of a few hundreds of MBytes.

The obligatory and, often most compute-intensive, pre-
processing stage will likely require multiprocessing capabilities 
to scale with increasing data volumes to create suitable 
datasets for training and inference.

Finally, even model training and interpretation can perfectly run 
on AI optimized CPUs, where optimized libraries will take 
advantage of specific instruction sets and hardware accelerated 
functions, such as Intel® Advanced Vector Extensions 512 
(Intel® AVX-512), Intel® Advanced Matrix Extensions (Intel® 
AMX) and others. 

oneAPI provides a full suite of libraries supporting all common 
ML and DL frameworks and can significantly improve the 
runtime on latest generation Intel Xeon Scalable processors 
but also GPUs and other accelerators.

By improving runtimes for the entire pipeline, customers will 
not only benefit from much faster time-to-result and/or scale 
out for larger data, but they can also reduce the overall 
footprint and ultimately power consumption of AI workloads. 
These improvements can result in orders of magnitude of 
savings considering the frequency of running these different 
tasks, i.e. permanent, hourly, daily etc. 

The following picture summarizes the improvements made 
across the entire AI/ML pipeline:

§ Determined optimal compression (17% less datasize)

60 % 

30 % 

10 % Ingestion/Conversion

Pre-processing

Training & 
Interpretation

Ingestion/Conversion

Training & 
Interpretation

Pre-processing

~57 % faster

§ 4.10x acceleration for largest dataset using Modin
§ This is significant since pre-processing runs hourly
§ Calculation time from 15.53 mins to 3.78 mins

–> save ~140 hours/month

§ 26% total gain using oneDAL

14.6 % 

18.2 %

10 % 

Figure 15. Final pipeline optimizations result in two times the total runtime improvement.
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Learn More

EXFO Website

Intel® Network Builders

Intel® Xeon® Scalable Processors

Faster XGBoost*, LightGBM, and CatBoost Inference on the CPU

Intel® Optimization for XGBoost*

Intel® Distribution of Modin*

Video: Full-stack assurance overview and use cases
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Disclaimers

Code and data provided by EXFO
All tests conducted by Intel in January 2024

Hardware and Software references1,2,3

All tests performed on AWS EC2 instances (region Ohio):
• 1-instance m5.16xlarge: 64 vcpu (2nd Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS, 

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)
• 2-instance m6i.16xlarge: 64 vcpu (3rd Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS, 

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)
• 3-instance m7i.16xlarge: 64 vcpu (4th Gen Intel Xeon Scalable processor), 256 GB total memory, Ubuntu 22.04.3 LTS, 

GNU/Linux 6.2.0-1017-aws x86_64, (software/libraries see below)

Additional software environment and versions

Python 3.9.18
Anaconda3-2023.03-1-Linux-x86_64
Numpy 1.26.2
Pandas 2.1.4
Pyarrow 14.0.2
Modin 0.26.0
Ray 2.9.0
XGBoost 2.03
LightGBM 4.2.0
Shap 0.44.0
scikit-learn 1.3.2
scikit-learn-intelex 2024.011
daal 2024.011
daal4py 2024.011

https://www.exfo.com/
https://networkbuilders.intel.com/
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/developer/articles/technical/faster-xgboost-light-gbm-catboost-inference-on-cpu.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-xgboost.html#gs.0vumcd
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html#gs.4dwfr0
https://content.jwplatform.com/previews/OmaZVSDK
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Appendix A: Modin changes

Changes made in Modin to make all this work (these changes were contributed to Modin and expected in release 0.24.0):

1. Initially, the newly introduced ‘groupby.apply()’ call has failed since the aggregation function was pretty complex 
and required group's shape transformation. This was considered as a bug and has been fixed in Modin (modin-
project#6506)

2. Next was the problem of low cardinality of the grouping columns. Modin used to process such cases quite inefficiently, 
which resulted in poor performance. The following improvement being introduced to Modin helped to reduce the total 
time spent in groupby by ~40% (modin-project#6535) for this workload.

3. Introduced a new more optimal implementation of ‘.dropna()’ to Modin which helped to speed-up the ‘dim detection’ 
stage ~1.7x (modin-project#6472)

4. Improved performance of the ‘.read_parquet()’ method when multiple files were given (there’s no PR yet in Modin, so 
linking the issue modin-project#5723)

5. The workload also revealed some inefficient mechanisms of meta-data handling in Modin, these were fixed by: modin-
project#6481, modin-project#6491, modin-project#6525

https://shap.readthedocs.io/en/latest/index.html
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://github.com/modin-project/modin/pull/6506
https://github.com/modin-project/modin/pull/6506
https://github.com/modin-project/modin/pull/6535
https://github.com/modin-project/modin/pull/6472
https://github.com/modin-project/modin/pull/5723
https://github.com/modin-project/modin/pull/6481
https://github.com/modin-project/modin/pull/6481
https://github.com/modin-project/modin/pull/6491
https://github.com/modin-project/modin/pull/6525

