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1. Abstract

The topics of risk management and safety in production  
are becoming an increasing challenge for companies  
in the interconnected and digitalized Industry 4.0 age.  
The reasons for this include changing market requirements, 
turbulence in supply chains and stricter energy efficiency 
requirements due to sustainability. These aspects lead to 
the use of resilient and flexible production systems, which 
contradicts the use of traditional and static safety concepts. 
Another reason is the demographic change, with the 
difficulty of finding skilled workers, for example for 
conducting manual risk assessments. 

These dynamic boundary conditions no longer permit static 
and manual risk management with a smaller operating team. 
Therefore, in this paper a new safety paradigm is proposed: 
a dynamic, adaptable safety that reacts to the current 
context and environmental situation. This operational 
safety intelligence brings together flexible production and 
safety, handles data from large distributed systems in the 
appropriate context, understands risks from dynamic 
processes and optimizes operations by runtime risk 
management as well as predictive modeling.

The core building block of this novel operational safety 
intelligence is a cutting-edge information management 
system that can handle contextualized information and 
ensure data integrity. This is achieved by use of the 
Semantic Web concept, based on knowledge graphs with 
unified semantics and enhanced with deduction and 
constraints checking abilities. By bringing together these 
systems, and appropriate use of artificial intelligence (AI), 
operational safety intelligence is becoming an essential 
methodology for guaranteeing safety in Industry 4.0.

 

2. Glossary

ACID  Atomicity, Consistency, Isolation and Durability 
(Constraints) 
Database transactions shall guarantee this set of 
properties even in case of failures or errors.

AGV  Automated Guided Vehicle 
AGVs are driverless vehicles for intralogistics, 
mainly following predefined routes; in this paper 
they are also seen under the term AMR.

AI  Artificial Intelligence 
It is difficult to arrive at a precise definition of AI, 
according to the VDE-AR-E 2842-61-1 standard1, 
but in the context of this paper it can be 
understood, broadly, as advanced software.

AMR  Autonomous Mobile Robot 
AMRs are driverless vehicles for intralogistics, 
whereas these allow mostly more dynamic routes 
than AGVs; in this paper, a broad range of types is 
considered under this term.

AVX  Advanced Vector Extensions 
Advanced instruction set for CPUs, including  
SIMD operations.

CAP  Consistency-Availability-Partition Tolerance 
(Theorem) 
The CAP theorem (also Brewer’s theorem), states 
that in distributed data storage systems only two 
capabilities out of consistency, availability and 
partition tolerance can be guaranteed.

CPU  Central Processing Unit 
The processor or core calculating unit of  
a computer.

DTC  Digital Twin Consortium 
The DTC drives the awareness, adoption, 
interoperability and development of digital  
twin technology.

ECC  Error Correction Code (Memory) 
Special type of computer memory that detects  
and corrects data corruption occurring in  
memory chips.

EMQX  Software platform for MQTT.

EN  European Norm.

HTTP  Hypertext Transfer Protocol 
High-level protocol for transferring data  
via networks.

IEC  International Electrotechnical Commission 
The IEC is an international standardization 
organization focused on electrical- and electronic-
related topics.

IFF  IndustryFusion Foundation 
The IFF is a consortium for digitalization and 
networking of European industry, ensuring its 
continuous further development.

IIoT  Industrial Internet of Things 
The IIoT describes the network of sensors, 
instruments and other devices including computers 
and controllers in industrial applications.

ISO  International Organization for Standardization 
The ISO sets and provides norms for many fields on 
a global scale.
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IT  Information Technology 
IT in this context describes the enterprise network, 
computers and software that are not related to 
production systems.

JSON  JavaScript Object Notation 
A human-readable data format for storing  
data objects.

JSON-LD      JavaScript Object Notation for Linked Data 
A human-readable data format for storing 
graphs like RDF.

LLM  Large-Language Model 
LLMs are a special type of AI that are trained on 
huge amounts of data, which enables them to do 
things like generate text.

MPX  Memory Protection Extensions 
MPXs offer security features for memory  
in computers.

MQTT  MQTT is a network protocol for machine-to-
machine communication, for example, in IIoT.

NGSI-LD      Next Generation Service  
Interface-Linked Data 
An extension to the human-readable data format 
JSON-LD for storing verified data and graphs 
with extended context and metadata.

OT  Operational Technology 
OT describes the communication network of the 
production system in contrast to IT.

OWL  Web Ontology Language 
OWL is a programming language that provides a 
structure for describing human knowledge in a 
software, whereas such a description is also called 
an ontology.

PLC  Programmable Logic Controller 
Industrial computer specialized in the control of 
machinery and plants.

RDF  Resource Description Framework 
A standard for description and management of 
graph structures.

SGX  Software Guard Extensions 
Technology for protecting data at the CPU level.

SHACL     Shapes Constraint Language 
A programming language to express and check 
constraintson data stored in graph structures.

SIL  Safety Integrity Level 
The SIL describes the level of risk reduction  
of safety equipment according to the  
IEC 61508 standard².

SIMD  Single Instruction Multiple Data 
Instruction for CPUs that allows the CPU to 
perform one operation on multiple data in parallel.

SME  Small and Medium-sized Enterprises 
All enterprises that employ fewer than 250 persons 
and whose annual turnover does not exceed Euro 
50 million are regarded as SMEs.

SPARQL     SPARQL Protocol and RDF Query Language 
A programming language for input and output  
of data stored in RDF graphs.

SQL  Structured Query Language 
A programming language to manage structured 
data, for example, in databases.

TXT  Trusted Execution Technology 
TXT is a hardware-based security feature for 
booting computers.

UEFI  Unified Extensible Firmware Interface 
UEFI is a specification for the booting of computers 
and the interface between hardware and operating 
system.

URI  Uniform Resource Identifier 
A URI is a unique name for an arbitrary physical or 
digital resource.

W3C  World Wide Web Consortium 
International standardization organization 
concerning the World Wide Web and related 
programming languages.

YAML  YAML Ain’t Markup Language 
A human-readable data format for storing  
data objects.

 

3. Motivation 

The industry today is challenged by an increasing product 
variety, customization of mass production and highly 
specialized single-unit production. Additional challenges 
result from even shorter product life cycles and turbulence 
in supply chains. Moreover, the demand for sustainable 
products has created requirements across all facets of the 
business. This not only concerns, for example, the selection 
of eco-friendly materials and the qualification of suppliers, 
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but also topics such as energy efficiency in production.  
The necessary improvements are often not easy to  
achieve and partially contradicting. 

For managing all these challenges, the industry has reached 
considerable results in machine digitization, which is called 
Industry 4.0. However, the safety implications of this 
transformation have been neglected so far. The flexibility 
required to cope with the aforementioned challenges 
means that currently used manual safety assessments are 
too slow to keep up in this fast-paced digital world. 
Furthermore, the lack of experienced and trained personnel, 
reinforced by the demographic changes in Western 
countries, calls for further automation. Even safety 
concepts need to be adapted, and advanced tools for 
support of decisions for the remaining human experts are 
needed. Therefore, smart manufacturing and Industry 4.0 
demand a smarter and more automatic safety framework.

To accommodate all the requirements mentioned above, 
the promise of Industry 4.0 becomes more and more 
concrete: seamlessly interconnected machines converge  
to optimize efficiency, flexibility and innovation across the 
entire value chain by means of data analytics and artificial 
intelligence (AI). Industry 4.0 platforms developed 
advanced technical solutions, including the Industrial 
Internet of Things (IIoT), interconnections, exchange of data 
across systems, autonomous machinery and collaborative 
machines. The promise of these technological advances is 
higher productivity and more flexibility to achieve a smart 
and resilient production system. 

However, current safety concepts and requirements disrupt 
and even limit this new world. Safety aspects today are 
considered in isolated scenarios including static 
assumptions about processes and worst-case scenarios. 

In isolation, safety assessment is well understood and  
even certifiable as functional safety, see for example  
the IEC 61508 standard². Challenges arise from the 
interconnections and interactions of components, which 
make the overall system, or an even more complex system 
of systems, almost unmanageable with traditional methods. 
The static safety approach comes to its limits when applied 
to interconnected, distributed, dynamically changing 
systems. Especially autonomous systems pose unsolvable 
challenges to static predefined safety concepts, as 
autonomy means to appropriately react to situations, that 
are unforeseen at the design phase. Additionally, even the 
regulatory framework is meanwhile advancing. For example, 
the new European machinery regulation requires that 
autonomous machinery “shall alert the supervisor of the 
occurrence of unforeseen or dangerous situations present 
or impending”³. This requires the machine to identify 
dangerous situations that are not considered at the  
design phase. This is impossible to achieve with  
traditional static safety, which does not program  
(or teach) hazard identification to the machine,  
but just sets protective measures. 

A striking example: The current safety regulations prevent 
broader adoption of automated guided vehicles (AGVs), 
autonomous mobile robots (AMRs) and collaborative 
robots by enforcing their slow motion to ensure safe 
operation. The current safety paradigm prescribes that  
the machine must always be able to reach a safe state 
immediately, mostly to stop, if it can potentially harm a 
person. For example, a person could potentially step into  
the movement area — in which case, the machine must stop 
immediately. However, the slow-motion operation mode 
reduces productivity — an unacceptable price given 
intensifying international competition and growing  
cost pressure.

Figure 1. Innovation of Smart Manufacturing.
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To summarize, the requirements for modern production 
systems, high productivity, flexibility and safety are in 
conflict with each other under the current safety paradigm 
(see also Figure 1). To resolve the contradiction, a new safety 
paradigm is proposed in this paper: a dynamic, adaptable 
safety that reacts to the current context and environmental 
situation. This is operational safety intelligence: 

•  Joins productivity, flexibility and safety. 

•   Handles data from large distributed systems in the 
appropriate context. 

•   Understands risks from dynamic processes. 

•   Optimizes operations by runtime risk management  
as well as predictive modeling. 

4. Trust in autonomous and flexible  
production systems

 
Currently, when introducing changes in production, a 
distinction must be made between changes impacting the 
hazard and risk situation and those changes that only switch 
the parameterization at runtime. For both cases, there are 
already well-established treatment processes available.  
The first case forces a new (manual) risk assessment, while, 
in the latter one, for example, the brief muting of a light 
curtain at runtime is state of the art in functional safety. But 
new challenges arise from developments like the intended 
use of AMRs in narrow production areas where the range 
and width of view of safety sensors must be restricted to 
allow movement in the first place. However, at a cross-
section the sight of the AMR will be limited, hence it needs 
to slow down. At this point relating only to today’s 
paradigms, such as intrinsic safety, reduces productivity.  
To overcome this issue while still being safe, the AMR’s 
information set needs to be expanded by external sensors  
or other machines, forming a production network. The AMR 
can react to the information from the environmental 
sensors, which enables “looking around the corner.” 

As seen in this example, to enhance the flexibility of safety  
in Industry 4.0 production, it is necessary to make use of 
contextual information. This leads to a change of certain 
paradigms in safety concepts, resulting in operational 
safety intelligence as a novel methodology in safety. This 
paper will detail the requirements of the implementation  
of such a novel safety system — the operational safety 
intelligence software — and outline an approach for 
implementing the information management and hardware 
structure. Core features of this information management 
are the handling of data from large distributed systems, 
managing contextualized information and, based on this, 
ensuring data integrity. By using information fulfilling these 

crucial aspects, it is possible to establish operational safety 
intelligence as a new higher-level approach to manage risks 
at runtime. Thereby, the implementation of the operational 
safety intelligence software is not meant to replace the 
underlying functional safety of today. Rather, it helps resolve 
the arising contradiction between productivity, flexibility 
and safety, as functional safety is still a crucial element in the 
methodology of operational safety intelligence.

Some steps toward operational safety intelligence have 
already been taken, as detailed in the article “Safe and 
efficient production through agent systems”⁴. Therein, an 
agent system for production is proposed, including safety 
agents, which are part of the operational safety intelligence 
software. The relevant parts for operational safety 
intelligence are mainly located at the tactical level according 
to this article, which is also depicted in Figure 2. Installed at 
this level in the middle, the operational safety intelligence 
software has the possibility to gather data from various 
sources and have a kind of overview of the operational level. 
By processing the received data, it can provide enhanced 
information and knowledge to the functions at the 
operational level and hence trigger improved reactions of 
the machines. Apart from this, there are also some parts of 
the operational safety intelligence software located at the 
strategic level, which are responsible for providing 
predictive safety information based on simulations.

An important aspect of the operational safety intelligence 
software is to gather and process information of many 
sources from the machine, but also contextual information. 
A so-called knowledge graph4,5 is a suitable concept for 
data management and processing of this type of 
information. A knowledge graph is able to link diverse and 
huge amounts of data and information, while still offering 
fast and easy access to the content. This linkage of 
information constitutes the knowledge in the graph,  
which is the key aspect and elevates this concept beyond 
the traditional methods. Especially using the knowledge 
graph concept to evaluate and process safety information 
offers enormous potential. The connection of pieces of 
information that may lead to a hazardous situation is called 
hazard rule⁵, whereas safety rules describe how safety 
measures mitigate the risks. With these elements, it is 
possible for the operational safety intelligence software  
to identify hazards and match mitigating safety measures. 
The so-far-proposed, high-level concept4,5 will be further 
elaborated in terms of level of detail and software 
architecture in the following chapters. 

Furthermore, a knowledge graph can be seen as a digital 
twin of a system, or as the information management part  
of a digital twin. Throughout this paper, the definition of the 
digital twin of the Digital Twin Consortium (DTC) will be 
used: “A digital twin is a virtual representation of real-world 
entities and processes, synchronized at a specified 
frequency and fidelity”⁶. Of special importance in this 
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definition is that synchronized is meant in both directions,  
so the digital twin gathers data from the real-world system 
but also influences the behavior of the real system. If there  
is no synchronization with runtime data at all it is called a 
digital model and if there is only data gathered but no 
feedback loop to the real system is established, it is called  
a digital shadow, according to DTC. In the herein-proposed 
concept, this feedback loop is established by an agent 
system⁴. Furthermore, a digital twin is composed of  
diverse aspects, which are represented as dimensions in 
Figure 3, showing a conceptual depiction of a digital twin. 
Important to note is that time is one of the aspects, as the 
content might change over time. Additionally, the digital 
twin is seen as a modular twin; as for providing the 
requested flexibility, it is necessary to easily change  
parts of the system.

Another dimension of the digital twin, as represented in 
Figure 3, but also of safety nowadays, is trustworthiness. 
Trustworthiness contains multiple aspects but herein 
mainly the aspects safety, security, privacy, reliability and 
resilience are summed up in this term. So, trustworthiness 
describes the overall goal to reach, but also shows that it is 
only achievable if all aspects are fulfilled. For example, 
functional safety without proper security could be hacked 
and misused to stop the machines and reduce productivity 
of competitors. Another important aspect is that according 
to safety standards it is not required to consider intended 
manipulation during the design of safety functions.  

However, such blind spots can be exploited by cyberattacks. 
Hence, cybersecurity must be considered throughout the 
lifecycle, although information technology (IT) 
cybersecurity management systems claim to isolate the 
whole operational technology (OT). For establishing fast 
and trustworthy communication on the machinery level,  
the concept of the trust vector⁶ is introduced. However, for 
a holistic trustworthiness it is crucial to also ensure that data 
transfer and data processing on each end are performed in  
a trustworthy manner. This means data integrity must be 
maintained throughout all systems. Ultimately, these 
aspects require consideration of trustworthiness for all 
processing of the operational safety intelligence software 
and the digital twin; further requirements and an approach 
for hardware are proposed in this paper. 

The basis on which the decisions of the operational safety 
intelligence software are made must be comprehensible 
and verifiable at all times. Apart from the fact that the 
operational safety intelligence software has the ability to 
recognize the context and propose configuration changes, 
an independent validator software is needed to assess and 
approve these proposals. From a technological point of 
view, this is achievable today. However, the question of 
liability arises, potentially driving up costs. Up to now, there 
has been no specific standard for such a system. Hence,  
one would risk the reversal of the burden of proof in the 
regulatory framework, which is an obstacle for companies 
that want to use such a system. Therefore, the legislative 

Figure 2. Inputs and outputs at different levels of operational safety intelligence.
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authorities have a duty to set boundary conditions that allow 
the use of technologies in order to maintain competitiveness 
in the international market. Despite these challenges,  
the proposed system is already applicable in situations 
where the timing allows for human approval of the system’s 
decisions, for example in commissioning, decision support 
in maintenance or for strategic simulations for changes. 

 
4.1 Runtime risk management

In traditional manual safety concepts, there are several 
tasks required to fulfill the regulatory requirements, which 
are basically set by the ISO 12100 standard⁷. The relevant 
tasks include hazard identification, risk estimation (and 
evaluation) and selecting appropriate protective measures. 
Traditionally, these tasks are done during the design and 
construction of the machinery, or, at the latest, at 
commissioning. However, the crucial aspect is that these 
tasks are done once and manually, and the selected 
protective measures stay the same for the machinery’s 
whole lifetime. A fundamental assumption in this process  
is that the machinery and its context are static or, if parts  
are not expected to be static, worst-case scenarios are 
considered. However, the future flexibility of production 
with its infinite and unforeseeable combination of 
possibilities of hardware, software and operational 
processes will lead to overly restrictive protective measures, 
due to the necessary excessive worst-case scenarios. 
Furthermore, the rising complexity of the production and  
its context will make it impossible to consider all safety-

relevant possibilities during the design and construction 
phases. To overcome these challenges, we propose to 
dynamically react to the current context and adaptively 
activate or release protective measures. With this approach 
to operational safety intelligence, overly restrictive 
measures are avoided and productivity is kept high and 
competitive, along with being flexible to react to changes. 

To guarantee overall safety, the operational safety 
intelligence software continuously supervises the selection 
of appropriate protective measures, so it manages the risks 
at runtime. This runtime risk management requires runtime 
risk evaluation and runtime hazard identification. It should 
be noted that the term runtime depends on the context,  
so given a modular process plant, the changes might only 
occur every few weeks, whereas an AMR might enter a new 
context every few minutes or even seconds. This implies at 
least partly automated solutions. Higher degrees of 
automation enhance the productivity even further and offer 
other advantages. Automation of the aforementioned three 
tasks for safety is provided by the operational safety 
intelligence software that is established to identify hazards, 
estimate the risks and select protective measures. If direct 
intervention of the automatic functionality is not possible or 
requested, the system can at least support in these tasks by 
making suggestions and help in safety-related decisions. 
The operational safety intelligence software can finally be 
considered to have kind of a “feeling” for hazards and risks. 
Throughout the following chapters, the requirements and  
a proposed architecture of such a system are derived.

Figure 3. 4D representation of a digital twin.
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4.1.1 Hazard identification

Our approach is to investigate how human experts fulfill the 
tasks and extract the requirements for the software from 
this manual process. The first task is hazard identification, 
which is focused on in this paper. Today’s hazard 
identification by experts is mainly based on their experience 
and may be supported by specialized standards. The task 
for the experts in the future will be to teach their knowledge 
and experience to the software system. Hence, it is essential 
that the experts can easily and efficiently program their 
decision-making into the software. To reach this goal, it is 
firstly crucial that the experience and the knowledge of the 
experts are formalized and structured. This formalization 
can be regarded as a unified language for safety with 
precise definitions of terms — the safety semantic. The 
digitalized safety knowledge of experts will then be part of 
the operational safety intelligence software, see also the 
overview of the data and information flow in Figure 4.

Given the semantically structured language, the digital 
representation of the machine can be built up — the digital 
twin. This collection of all information about the machine, 
enhanced with contextual information and common 
knowledge, needs to be understandable and evaluable for 
the operational safety intelligence software working on it. 
The digital twin includes offline static data, for example, 
data sheets, as well as online dynamic data, for example, 
sensor measurement values. Of major importance is that  
it must be very easy to search pieces of information in the 
digital twin with its huge collection of information. This 
means it must be possible for the software to find elements 
with specific properties, but also with specific attributes  
and context. 

As an example, two temperature values shall be considered 
in the following. One temperature value is a measured value 
of a sensor, the other is a fixed parameter, for example, the 
maximum measurable temperature of the sensor. For the 
values in the digital twin, not only the numerical value itself 
must be stored, but also contextual information to 
distinguish these temperature values. This contextual 
information includes, for example, the physical unit of the 
values, measurement accuracies or similar. However, this 
information is not yet sufficient for automatic hazard 
identification. For example, the maximum measurement 
temperature could be detected as a burn hazard, since an 
automatic search for temperature values greater than  
a burn temperature threshold would return both 
measurement and parameter values. Thus, it must be 
stored in the contextual information of the values whether  
it is a real measured value or a parameter. The meanings of 
measured value and parameter are defined in a 
standardized semantics, so that the automatic hazard 
identification can distinguish between them. The 
assignment of the semantic terms must be entered 
correctly once when creating the digital twin of the sensor. 
Then, an automatic search function can correctly interpret 
the values, not only the numeric value itself (value greater 
than a burn temperature threshold), but also its meaning 
(value is a real, current temperature measurement). 

The search function indicated above is another necessary 
innovation, which is called hazard rule in this concept.  
A logic structure for the hazard rules that is similar to a 
search function makes it possible not to require fixed links 
between the information source and the processing logic. 
The hazard rules are based on semantic terms, which are 
then used to search the information in the digital twin.  

Figure 4. Flow of information.
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To give an example, this means that a port of the 
programmable logic controller (PLC) does not have to be 
statically linked to the burn temperature threshold in an 
if-then function to indicate the hazard, as was previously  
the case. The hazard rule would be a search for current 
temperature measurements that are above the burn 
temperature threshold. This means that not only one 
predefined sensor is evaluated, but other dynamically 
added sensors and computed parameters could also be 
monitored. The result is a part of the operational safety 
intelligence software that monitors all temperature values 
that fulfill certain semantic and contextual information. If 
one of these temperatures is above the threshold value, a 
burn hazard is detected at the position of the sensor 
(position would be another piece of contextual information), 
or if none of the temperatures is above the threshold, the 
burn hazard is (currently!) not given. This can then be used 
to react accordingly, either by displaying a warning or by 
giving the green light for maintenance, for example.

The hazard rules describe when a certain hazard occurs, 
that is, which conditions must be fulfilled for a dangerous 
situation to be possible from a technical and physical point 
of view. However, this does not mean that an accident will 
immediately occur if the hazard rule is fulfilled. In the 
context of the example of temperatures, the hazard rule 
would be active if a sensor measured a temperature above 
the burn temperature threshold. However, as long as no  
one is near the hot object, no one can burn themselves. 
Conversely, if all temperatures are below the threshold,  
the hazard (rule) is inactive, and the objects can be touched 

safely. This example also shows that the hazard rules link 
many different sources of information in the digital twin,  
as illustrated in Figure 5.

Additionally, it must be possible to manually enter, check  
or correct the hazard rules. A problem might be that the 
automatic functions may not recognize some specific 
hazards from the available information, maybe due to the 
complexity of the hazards or incomplete information. 
 It must therefore be possible to initialize further hazards 
manually during a check by experts so that completeness is 
achieved. Furthermore, (safety) data sheets, standards or 
regulations may also contain information on special hazards, 
which must then be considered independently of automatic 
detection functions. However, if the operational safety 
intelligence software is not taught why these hazards exist, 
meaning based on which information these hazards can be 
evaluated, the system will fall back to the recent static 
systems, as it cannot decide about these hazards.

 
4.1.2 Risk calculation

The term risk calculation is introduced in this context  
as a bracket around risk estimation and risk evaluation 
according to the ISO 12100 standard⁷. But it is not limited  
to the manufacturer’s perspective — the operator side will 
also make use of it. Furthermore, risk calculation mainly 
describes a mathematical and programmable way of 
treating risk, as in the operational safety intelligence 
software, risk calculation will be performed often.  

Figure 5. Exemplary depiction of the hazard rule part fly-away.
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The mechanism for risk calculation is similar to the 
descriptions in the previous sections. The current  
level of risk is calculated based on the collection of all  
information in the digital twin. So, roughly speaking, if,  
for example, few hazard rules are active, there is low risk;  
or, if nobody is near the machine, there is also low risk.  
All in all, the risk will be variable and dynamically calculated, 
depending on a lot of input information. Finally, this current 
value is compared to the (static) risk acceptance level,  
given by standards, society or common sense. In case the  
current risk is too high, more or other protective measures  
are necessary to mitigate the risk. Or, if this is not possible,  
the machine needs to be shut down. Conversely,  
if certain hazard rules are inacive, so the current risk  
level is low, protective measures can be reduced, 
 which avoids overly restrictive measures.

It is worth noting here that the input information might 
originate from other devices outside of a single machine, 
which may influence the risk calculation and finally the 
behavior. An example would be an AMR that can monitor 
objects or humans in a certain area around itself based  
on its own sensors. But at cross-sections at the end of a 
narrow corridor it needs to slow down, as it cannot see 
around the corners. This slowdown is an additional 
protective measure, as the calculated risk rises at the  
corner, due to blind spots. However, if there would be a 
(trustworthy) connection to a fixed camera system at the 
cross-section or other AMRs, so that the AMR can exclude 
humans from being around the corner, it may drive faster in 
the cross-section. So based on the available information  
and trustworthiness of this information, the behavior of  
the system may change.

4.1.3 Protective measures

As mentioned already in the example in the previous 
section, the final step is to select appropriate protective 
measures. This step first requires knowing the available 
protective measures. In this case, protective measures 
cannot be automatically recognized as such from a digital 
twin, unlike hazards, as protective measures usually must 
meet specific normative requirements. So, the available 
measures need to be introduced manually in the system at 
the design phase. Nevertheless, it is possible afterward to 
automatically compare the protective measures with the 
identified hazards and the calculated risk by the operational 
safety intelligence software, by use of the safety rules. If the 
protective measures mitigate the calculated risks below the 
risk acceptance threshold for all hazards, the machine is 
considered to be safe. In case the risk is still too high, other 
protective measures are needed and may need to be set up 
manually. In this case, the operational safety intelligence 
software may support the operator’s decisions by making 
suggestions about possible measures, prioritizing 
according to the principles given in standards and 
calculating how the possible measures affect the risk level.

As technology develops further, the protective measures 
that need to be applied to fulfill the state-of-the-art 
regulations evolve, too. Keeping track of these changes, 
hence keeping the production plant always up to date, can be 
easily realized with the system described here. This can be 
achieved by updates to the knowledge base of the system 
and the evaluated standards that the system uses. This 
functionality is an important feature, especially for operators 
of production plants, to exclude liability situations arising 
from old-fashioned or insufficient protective measures. 

Figure 6. Depiction of the use case of operational safety intelligence.
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4.2 Use case runtime risk management

To show the working principle of operational safety 
intelligence, a simple demonstrator is set up, as shown in 
Figure 6. The setup consists of a UR10e robot of Universal 
Robots, which is equipped with a two-finger gripper and 
mounted on a platform. As it is a collaborative robot, there 
are no fences around the setup and humans could interact 
with the robot. Nevertheless, there is a lidar sensor at the 
setup to track whether humans are in the vicinity of the 
robot. The robot should carry out a simple pick-and-place 
task. It grabs carton boxes on one table and puts them on 
another table. Furthermore, the operational safety 
intelligence software is monitoring the setup and evaluating 
whether the state of the setup is safe. The regarded data 
and the reported state are shown on a dashboard, which  
can be seen in Figure 7.

In the first scenario, the hazard to be considered is that the 
robot might drop the object on its way from one table to the 
other. This could happen if the object is too heavy for the 
two-finger gripper and the robot turns too quickly. 
Therefore, this case is represented as a hazard rule in the 
operational safety intelligence software. This hazard rule 
evaluates the weight of the object and the speed limit of the 
robot. In the case that the speed limit is too high for the 
specific weight of the object, the hazard rule reports an 
unsafe state before the task is really started. This prediction 
skill based on the preset speed limit means that the 

hazardous situation is recognized before the actual speed  
of the robot is at the limit. The data of the workpiece, but 
also the current speed limit of the robot, are gathered from 
the respective digital twins of the workpiece and the robot. 
However, if the speed limit of the robot is reduced, it will not 
lose the object, and hence the state is considered safe 
again. In the scenario the speed reduction determines the 
safety rule, which mitigates the considered hazard rule.  
By using a dynamic speed limit dependent on the weight  
of the object, the productivity of the setup is higher for 
lightweight boxes, in comparison to a fixed and low speed 
limit, which considers the heaviest box as a worst case to 
determine the speed limit of the robot.

In the second scenario, the interaction of the lidar sensor 
and the robot is regarded. The underlying hazard in this case 
is that a human might enter the workspace of the robot and  
a collision might occur. To mitigate this risk, virtual walls are 
activated for the robot as soon as the lidar sensor recognizes 
a human. This behavior is represented by a safety rule in the 
operational safety intelligence software. It is worth noting 
that in this scenario there is no direct information 
connection between the lidar sensor and the robot.  
The information transfer is managed by the operational 
safety intelligence software, which gathers all safety-
relevant data of the whole system, but also processes this 
data and provides enhanced information to the specific 
components of the setup. For example, if one replaces the 
lidar sensor with a different sensor type or adds another 

Figure 7. Dashboard of the Adaptive Safety and Security Systems (AS3) of TÜV SÜD, which is a prototype of the 
operational safety intelligence software.
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sensor, the connection to the sensor or the sensor fusion 
capabilities are managed in the operational safety 
intelligence software. This adds flexibility to the system,  
as all safety-relevant data is processed and provided by  
the operational safety intelligence software and the single 
components do not need to care about data management 
and integrity.

4.3 Safety and artificial intelligence (AI)

Operational safety intelligence as proposed contains a 
certain intelligence for its specific tasks, and it is artificial as 
it is created by humans, however calling it an AI is critical. 
Firstly, according to the VDE-AR-E 2842-61-1 standard¹,  
a precise definition of AI is difficult, and the understanding 
of AI is very different among individuals and departments, 
leading to misunderstandings. Secondly, the use of AI for 
safety systems might be seen skeptically by many people, 
especially in the functional safety community. Hence it 
needs to be emphasized that the use of AI in this system is 
restricted to noncritical parts and several requirements 
must be strictly fulfilled. Furthermore, in case there are 
decisions made by AI a human is, up to this point, closely 
involved and supervises or approves the decisions.

The opacity of AI inferencing causes a growing skepticism 
toward AI. Making AI decisions transparent will allow human 
experts or automated routines to prove the correctness of 
the AI, which is called explainable AI. But even clearly 
comprehensible AI decisions leave room for the question of 
liability. Jurisprudence, or society at large, has not yet 
reached a consensus on how AI can be made liable. That 
means the use of AI in this system is thus far restricted to 
cases in which no liability issue may arise. Possible examples 
are production planning or only simulated environments, 
but in real production, only humans are allowed to take 
action, perhaps supported by AI. Hence, at this point in time, 
AI can possibly provide advanced levels of support to 
humans but cannot be solely in charge of decision-making. 

Another recent development involves large-language 
models (LLMs) that can understand human language and 
generate texts. This type of AI is of special interest in the 
presented context as it can operate on semantic data 
structures. This means that specially trained LLMs can 
possibly support humans to operate on the large-scale 
collected data of machinery and its contextual information. 
But the results of the LLMs are still checked and verified by 
humans, so that the responsibility is still in human hands.  
A possible use case would be the support for the generation 
of the hazard rules. It might be easier for the safety experts 
while generating these rules to use rather natural but 
semantically structured language than directly 
“programming” them in a computer language. Later on,  
the generated code or rules respectively can be checked 
and verified by the (human) experts.

It is important to emphasize that the knowledge that 
describes how hazards arise originates directly from 
experts. The hazard identification is not learned by AI in  
the sense of machine learning algorithms, as it is in the  
case of image recognition, for example. Machine learning 
algorithms would require a great deal of data on hazardous 
and dangerous situations that should actually be avoided. 
Also, simulations to generate this data without endangering 
real people are not suitable either, as these would also have 
to be programmed first. The specialist knowledge of 
experts in hazard identification is therefore directly 
transferred into software and not indirectly acquired using 
machine learning algorithms. Nevertheless, the experts are 
supported by AI for setting up the system.

 

5. Semantic data framework

5.1 Overview

In this section, we introduce the semantic data framework, 
which is capable of fulfilling the requirements of operational 
safety intelligence. Data and information modeling is crucial 
as it provides a structured and clear understanding of data, 
which is essential for accurate analysis and decision-
making. Furthermore, it enhances the efficiency and 
effectiveness of operations by enabling seamless data 
integration, ensuring data consistency and facilitating 
communication between different systems, thereby 
supporting operational safety intelligence. From the 
discussion so far, we derive the following questions on  
the data model side:

1.  How can data be contextualized and shared between 
parties without losing the context?

2.  How can formal data constraints and inferencing rules  
be described?

3.  How can data constraints and inferencing rules be 
enforced at runtime?

In a globally connected world, where data sharing and 
collaboration occur across diverse domains and disciplines, 
the concept of shareable data with cross-domain semantics 
becomes crucial. To implement a shareable data concept, 
several elements are necessary:

• Standardized ontologies:

In the context of information technology, an ontology is a 
structured representation of knowledge within a specific 
domain. It systematically defines and categorizes concepts 
and outlines the relationships between them. The call  
for standardized ontologies stems from the need for a 
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universally recognized system that can simplify the 
understanding and usage of complex information within  
a domain. This standardization promotes uniformity in  
data interpretation, thereby enhancing communication  
and comprehension across various platforms.

• Semantic interoperability

Semantic interoperability is a critical aspect of information 
technology that ensures the precise exchange and 
understanding of data across diverse systems. It 
guarantees that when data is transferred from one system 
to another, the meaning of the data remains consistent and 
unambiguous. This is crucial in maintaining the integrity of 
the data and ensuring that it is accurately interpreted, 
regardless of the system it is used in. Achieving semantic 
interoperability is essential for enabling seamless 
communication and effective data utilization among 
different technological ecosystems.

• Linked data principles

Linked data principles are a set of best practices for sharing 
structured data on the web, making it interrelated and easily 
accessible. These principles advocate using standard 
hypertext transfer protocol (HTTP) uniform resource 
identifiers (URIs) to identify data objects, allowing them  
to be accessed and manipulated using standard web 
protocols. Furthermore, they encourage linking data 
objects to other related data objects, thereby creating a  
web of interconnected data. The implementation of these 
principles fosters a more open and interconnected web 
environment, enhancing the accessibility and utility of  
data across various platforms. 

These elements can be implemented with concepts of the 
Semantic Web⁸,⁹. The Semantic Web aims to enhance the 
way information is processed and understood by both 
humans and machines on the internet. It achieves this by 
adding a layer of structured data and meaning to content, 
allowing for more effective data integration, sharing and 
interoperability. Originally, the Semantic Web was 
conceived to enhance the World Wide Web. However, over 
time, the concept of Semantic Web has evolved beyond its 
original scope of just the web and has been recognized as a 
broader approach to achieving semantic integration and 
interoperability across various domains and applications.

5.2 The Semantic Web

Recently, advances of the Semantic Web have been  
driven by:

1. Interoperability demands: With the growth of digital 
information and the proliferation of disparate data sources, 
the need for interoperability and data integration across 
diverse systems became increasingly important.  
The Semantic Web principles provided a solution for 
achieving meaningful communication and integration 
between data sources.

2. Semantic interlinking: The idea of linking and 
interconnecting data using semantic relationships gained 
traction as a powerful means of deriving new insights and 
knowledge. The interlinking concept extended beyond the 
boundaries of the web and was embraced in other contexts, 
such as enterprise data integration, research collaboration 
and data analysis

3. Machine learning and AI: The rise of machine learning 
and artificial intelligence further underscored the 
importance of structured and semantically enriched data. 
These technologies rely on clear semantics to understand 
and reason about data, making the Semantic Web principles 
relevant beyond traditional web applications.

4. Cross-domain benefits: The benefits of shareable and 
serializable semantics such as improved data discovery, 
integration and reasoning proved to be valuable across 
different domains and industries. This led to exploration and 
adoption of semantic technologies in areas that were not 
originally part of the web-centric vision.

5.2.1 Resource description framework

The foundation of Semantic Web is the resource 
description framework (RDF)10. RDF allows the serialization 
of a graph dataset by so-called triples: Subject, Object,  
and Predicate (see Figure 8). Formally a triple can also be 
described as three terms (in Turtle11 serialization syntax):

ex:subject ex:predicate ex:object .

Here ex: declares an example namespace to clarify where 
the terms come from. As can be seen from Figure 9, these 
triples are building blocks for arbitrarily complex graphs.

  

Figure 8. RDF triple.
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Typical relationships, such as classes, subclasses, instances 
and functional properties such as transitivity are described in 
RDF schema (RDFS) and Web Ontology Language (OWL)12.

One of the long-term challenges in RDF is its expressivity. 
OWL can create undecidable rules and thus was restricted 
by profiles such as OWL2 RL13.

5.2.2 Semantic data objects and JSON-LD 

In the realm of modern software systems, object 
serialization is predominantly handled using JSON  
or YAML, making these formats familiar territory for 
developers. However, the concept of RDF triples and  

the graph view of data often remain foreign and complex.  
To bridge this gap, JSON-LD14 was developed,  
serving as a conduit between the intricate world of RDF 
triple data and the more digestible JSON. Essentially, 
JSON-LD is a serialization of RDF data that seamlessly  
fits into a standard JSON object. This compatibility  
allows developers to continue leveraging their  
existing JSON-based infrastructure while simultaneously 
unlocking the potential of the semantic data world.  
Thus, JSON-LD not only simplifies the integration of 
structured metadata into web services but also fosters a 
more widespread adoption of semantic web technologies. 
The relationship between JSON-LD and RDF is shown  
in Figure 10. 

Figure 9. Graph built from RDF triples.

Figure 10. RDF triple serialization with Turtle (left) and with JSON-LD (right).
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5.2.3 NGSI-LD: Data reification, properties and 
relationships

Reification is a process in semantic web technologies that 
allows users to make statements about other statements, 
essentially providing a way to express complex ideas or 
relationships. However, JSON-LD, while being a powerful 
tool for bridging the gap between RDF triples and JSON, 
falls short in its ability to handle reification effectively.  
This limitation can lead to complexities and inefficiencies  
in data representation and processing.

To address this shortcoming, NGSI-LD15 was developed. 
Next Generation Service Interface-Linked Data, or 
NGSI-LD, extends the capabilities of JSON-LD by 
introducing a standardized way to express reified 
statements. It enhances the JSON-LD data model by 
incorporating the concepts of Property-of-Property and 
Relationship-of-Relationship, thereby enabling more 
complex and nuanced data relationships to be expressed  
in a structured and standardized way.

Moreover, NGSI-LD introduces semantic concepts for time 
such as “observedAt,” “createdAt” and “modifiedAt.” These 
temporal attributes add another layer of information to the 
data, enabling more precise and meaningful interpretations. 
By incorporating these time-related semantic concepts, 
NGSI-LD not only enhances the capabilities of JSON-LD 
but also makes it more suitable for applications requiring 
detailed temporal data and sophisticated time-based 
queries. This not only improves the expressiveness of 
JSON-LD but also makes it more suitable for a wider range 
of applications, particularly those requiring complex data 
relationships and semantic interoperability. An example for 
a JSON-LD object and its NGSI-LD extension is given in 
Figure 11. It shows an object of type iff:plasmacutter 
that has the identification urn:plasmacutter:1 containing 

for instance properties describing state value, serial 
numbers and relationships to other entities (iff:state, 
iff:serialNumber, iff:hasWorkpiece, iff:hasFilter). 
The NGSI-LD example in this figure shows in addition to the 
former JSON-LD–based information that all attributes are 
Properties or Relationships to other entities. Moreover, the 
iff:state Property contains additional metadata such as 
time when it was observed or safety-relevant information  
on how reliable the value is. Since NGSI-LD can explicitly 
differentiate between links to entities and links to 
knowledge, NGSI-LD objects build a graph of entities  
as shown in Figure 12.

5.2.4 Data constraints and validation

Data constraints and inferencing have been around in the 
Semantic Web for more than 20 years. Even though it is 
possible to express constraints in OWL, it is essential to 
clarify that OWL’s main purpose is deduction of facts and 
not checking constraints of data structures. For instance, 
assume that the predicate (or more specific RDF Property) 
ex:hasBiologicalFather describes that a person has a 
biological father. One logical constraint would then be 
owl:maxCardinality 1, i.e., every person can have at 
most one biological father. How would an OWL system  
react to the following?

ex:Bob ex:hasBiologicalFather ex:Chris .

ex:Bob ex:hasBiologicalFather ex:Dave .

In this case, one would expect that the cardinality constraint 
of 1 for the RDF Property ex:hasBiologicalFather would 
trigger a constraint violation. Actually, what OWL deduces 
from this is

ex:Chris owl:sameAs ex:Dave .

Figure 11. Plain JSON-LD (left) and the extension NGSI-LD (right).
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which is a logical conclusion from the constraints. This is 
interesting to know, however, it is not a meaningful answer  
to the question about data consistency.

The World Wide Web Consortium (W3C) realized that 
problem and closed the gap by creating Shapes Constraint 
Language (SHACL) 16. SHACL can be used to express 
constraints on data. For instance, the constraint above can 
be formulated (in Turtle syntax11) as:

ex:Person 

rdf:type sh:NodeShape ;

sh:property [

 sh:path ex:hasFather ;

 sh:maxCount 1 ;

] .

In the case above, the data constraint violation of ex:Bob 
would be detected if ex:Bob rdf:type ex:Person is 
fulfilled, i.e., ex:Bob is an instance of ex:Person.

SHACL can express complex relationships within a graph by 
using SPARQL, the W3C standardized query language for 
graphs. Since SPARQL can be mapped to SQL, it is possible 
to formulate SHACL constraints in SQL and, thus, SHACL 
validation can be achieved with modern SQL query engines. 
OWL is still relevant in areas where complex ontologies are 
defined and deduction is needed. A typical setup is that 
OWL is used to describe ontologies of an expert domain and 
is then used to derive rules and domain knowledge that is 
relevant for the real-time SHACL evaluation. Since SHACL 
can be applied to an arbitrary RDF graph, it can be applied to 
a graph of NGSI-LD entities as well. With that, it is possible 
to describe runtime constraints for entity graphs as shown 
in Figure 13.

 

Figure 12. Visualization of a graph of entities described by NGSI-LD.
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5.2.5 Summary

In this section, the semantic data framework was 
introduced, designed to fulfill the requirements of 
operational safety intelligence. The importance of data and 
information modeling was emphasized, highlighting its role 
in providing a structured and clear understanding of data for 
accurate analysis and decision-making. The framework was 
shown to enhance the efficiency and effectiveness of 
operations by enabling seamless data integration, ensuring 
data consistency and facilitating communication between 
different systems.

Several questions about data modeling were derived from 
the discussion, including how data can be contextualized, 
i.e., shared without losing context, how formal data 
constraints and inferencing rules can be described and 
how these rules can be enforced at runtime.

The necessity of shareable data with cross-domain 
semantics in a globally connected world was discussed.  
To implement this concept, several elements were 
identified as necessary, including standardized ontologies, 
semantic interoperability and the application of linked  
data principles.

The Semantic Web was presented as a tool capable  
of implementing these elements, enhancing the way 
information is processed and understood by both humans 
and machines on the internet. The evolution of the Semantic 
Web beyond its original scope of just the web was also 
discussed, recognizing it as a broader approach to achieving 
semantic integration and interoperability across various 
domains and applications.

The resource description framework (RDF), the foundation 
of the Semantic Web, was introduced, which allows for the 
serialization of a graph dataset. The long-term challenge of 
RDF’s expressivity was acknowledged. To bridge the gap 
between RDF triples and the more digestible JSON, the 
benefits of JSON-LD were shown.

NGSI-LD was described to address the shortcomings of 
JSON-LD in handling reification (such as changes in time) 
effectively. It was shown to enhance the JSON-LD data 
model by incorporating the concepts of Property-of-
Property and Relationship-of-Relationship.

The importance of data constraints and validation was 
discussed, and SHACL, the Shapes Constraint Language, 
was introduced as a tool to express constraints and 

Figure 13. Runtime constraints in an entity graph defined by SHACL.
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inferencing rules on data. The application of SHACL to an 
arbitrary RDF graph was demonstrated, making it possible 
to describe runtime constraints of combinations of NGSI-
LD entity graphs with knowledge graphs.

 

6. Derived software and hardware architecture

6.1 Software architecture

In this section, the requirements from the Dynamic Safety 
concept are translated to a software architecture. 

1.  We conclude that a Dynamic Safety concept must be able 
to work on a huge amount of data. This creates a need to 
analyze data in a scalable way. 
 
Requirement: The system must be scalable and hence 
distributed.  
 
Solution: Cloud-native large-scale analytics architecture 
as described in section 6.1.2.  

2.  The data must be analyzed at runtime with low latency  
to guarantee a deterministic reaction to detected  
safety hazards.  
 
Requirement: Determinism and low latency.  
 
Solution: Due to CAP theorem (see section 6.1.1 and 
below), there cannot be a single system that fulfills the 
requirement. Therefore, such a system must consist of 
several autonomous systems. The low-latency data 
analytics and the PLC layer must be independent of  
each other, linked only by a common data model.  

3.  The data that is analyzed must be shareable (or 
serializable), queryable, semantically defined and must be 
capable of expressing knowledge.  
 
Requirement: Formal knowledge and declarative search/
querying.  
 
Solution: Semantic Web, RDF, JSON-LD, OWL.

4.  It must be possible to define constraints and rules on the 
data in a standardized way, shareable for specific expert 
domains.  
 
Requirement: Declarative data language.  
 
Solution: Semantic Web, SHACL and SPARQL.

5.  The data from the digital twin must be synchronized  
with the real world in low latency. 
 
Requirement: No bottom-up or unidirectional data 
processing.  
 
Solution: Hybrid edge architecture (as described in 
section 6.1.4). 

 
6.1.1 Cloud-native architecture, the CAP theorem  
and scaling

Cloud-native architecture, with its emphasis on scalability 
and reliability, is fundamentally enabled by horizontal 
scalability17. By distributing workloads across multiple 
instances, cloud-native applications can dynamically adapt 
to changing demands, ensure high availability and optimize 
resource usage. Therefore, whenever a system with large-
scale data needs is designed, the cloud-native architecture 
principles of designing distributed systems are applied. 

The CAP theorem, also known as Brewer’s theorem, is a 
fundamental principle in distributed systems that has 
significant implications for cloud-native architectures.  
The theorem states that in a disturbed system, it is 
impossible to achieve all three of the following properties: 
consistency, availability and partition tolerance18.

A famous conclusion of the CAP theorem is that SQL 
databases with their Atomicity, Consistency, Isolation  
and Durability (ACID) constraints cannot scale well and 
therefore, the No-SQL databases have been invented, 
trading availability for consistency and having a so-called 
Eventually Consistent model.

Therefore, one can conclude that every distributed system 
design must be clear about the trade-offs made.

 
6.1.2 Large-scale analytics

As industries generate vast volumes of data from their 
operations, the application of data analytics opens doors  
to uncover valuable insights, patterns and trends. Through 
sophisticated algorithms and computational techniques, 
these analytics platforms disclose hidden information 
within the data, enabling industries to make informed 
decisions and optimize or even innovate their processes. 
Leading platforms like Apache Kafka, Apache Flink and 
Apache Spark play a pivotal role in this landscape, offering 
powerful tools for processing, analyzing and visualizing 
data. Apache Spark, renowned for its versatility, excels in 
processing both batch and real-time data, rendering it ideal 
for diverse applications ranging from data warehousing to 
machine learning tasks. Meanwhile, Apache Flink 
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specializes in real-time stream processing, enabling 
seamless analysis of data as it flows, thus facilitating 
immediate insights and responses. Complementing these 
platforms is Apache Kafka, an efficient data streaming 
solution that excels in handling vast data streams with fault 
tolerance and scalability. The synergistic interplay of Spark, 
Flink and Kafka marks a significant step forward in data 
utilization, enabling businesses to harness their information 
for strategic insights, informed decision-making and 
improved operational efficiency. According to CAP 
theorem, a trade-off between consistency and availability 
has to be made. In the case of combining Kafka and Flink, 
the emphasis is on consistency, i.e., it can happen that the 
system turns unavailable to enforce consistency.

 
6.1.3 PLC model

The programmable logic controller (PLC) model is a 
cornerstone of industrial automation, providing a realistic 
and deterministic framework for controlling and monitoring 
complex processes. PLCs are specialized digital computers 
designed to withstand harsh industrial environments and 
ensure consistent operation. They excel in real-time control 
applications where timing precision is crucial, such as 
manufacturing, power plants or process industry 
productions. Using a combination of inputs, outputs and 
logical programming, PLCs execute tasks according to 
predefined sequences, enabling machines to function 
safely, efficiently and predictably. While offering 
unparalleled determinism and reliability, the PLC model is 
not easy to scale to larger data. According to CAP theorem, 
this would require a trade-off of consistency versus 
availability. But both are needed to reach determinism.

 
6.1.4 Balance between determinism, safety and scalability

In the realm of industrial systems and applications a 
dynamic interplay between determinism and scalability has 
emerged as a pivotal challenge. Industries are confronted 
with the compelling need to keep stringent real-time 
requirements while simultaneously accommodating the 
escalating influx of data. The criticality of executing 
operations within prescribed deadlines persists, as it 
underpins safety, efficiency and reliability. Yet, as these 
systems expand in scope with larger data volumes, the 
feasibility of guaranteeing absolute determinism becomes 
progressively intricate. This prompts a profound exploration 
of the trade-off between maintaining deterministic behavior 
and accommodating the ever-growing demands for data 
scalability. Industries have to actively navigate this 
challenge to create systems that address the  
evolving needs.

The convergence of PLCs with the dynamic duo of Kafka 
and Flink presents a compelling proposition for industrial 
automation. While PLCs ensure precise control and real-
time execution of operations, Kafka provides a resilient and 
scalable platform for streaming data. Flink, in turn, offers 
advanced stream processing capabilities, allowing the 
analysis of data as it flows from PLCs through Kafka. This 
synergy facilitates immediate insights and responses to 
changing conditions on the factory floor or in industrial 
processes. The integration empowers industries to not only 
maintain deterministic control, but also leverage real-time 
data streams for predictive maintenance, anomaly 
detection and optimization.

The earlier mentioned CAP theorem describes the 
dilemma: In a sufficiently unreliable system, one has to 
decide between availability and consistency. For safety 
purposes, we can derive that an important requirement is 
consistency. With inconsistent data, no safe decision is 
possible. The consequences are severe: It means that if one 
always expects to get a consistent answer, such a system 
cannot always guarantee to provide an answer in time if the 
system is sufficiently complex. On the other hand, there is a 
clear requirement for a system to react in real time to safety 
hazards. One way to marry the large-scale system with a 
real-time system is to allow the real-time system to locally 
deviate from the overall system state, based on the local 
knowledge. For instance, if the distributed analytics system 
does not give an answer about potential hazards in the 
movement line of an AMR, the local safety unit of the AMR 
must be able to conclude on its own with its locally available 
sensor data how long the AMR can be moved with a certain 
speed until the existing oversight is lost. For example, the 
AMR knows from the large-scale system that for at least 10 
seconds no human being can cross the path, but after losing 
the connection (or the trust), it can keep up the operation for 
10 seconds and then go into a safe, slow-motion state if it did 
not get a decision from the large-scale system until then. 
When within the 10 seconds the AMR gets trusted advice 
from the large-scale system, it can continue to move within 
the agreed parameters without interruption.

This hybrid edge architecture is shown in Figure 14. A local 
system that has to execute the safety functions must be 
able to make decisions based on a consistent view. When it 
trusts the global system and the global system indicates 
health, it can use the larger system model to make decisions. 
In the case that either the trust or the availability is not given 
(right side), the local system will only rely on local 
information to execute the safety function. 

An example for such a local system is an AMR that relies on 
local sensors and runs with a speed that ensures that it can 
stop at any time. A global system could be comprised of 
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Figure 14. Hybrid edge architecture: Connection of local and global systems with trust and availability.

Figure 15. Data model is created and validated offline and is deployed on the digital twin. In parallel, the data 
contextualization from the machines must be defined for the model as well to achieve the needed trust.
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cameras that are distributed over the whole area that  
can confirm that no person is close to the AMR. With this 
additional information, the AMR can act differently, for 
example, run faster for some time. When the information  
of the global system cannot be trusted, the AMR switches 
back to the local safety implementation.

It is important to have a consistent data model when 
synchronizing the data between the different systems.  
A digital twin provides a consistent data model of the 
physical environment that can be used for the constraints 
and rule analytics but also by the real-time system to 
synchronize the data. This model must not only be 
consistent, but also be able to inform whether the 
consistency of data can be assured. When the consistency 
 of the data model is not given, the local systems will have  
to fall back to their local data models and logic to make  
their decisions.

 
6.1.5 Software architecture and implementation

The data model describes the use cases, knowledge and 
respective rules and constraints. However, it is important to 
emphasize that a data model is only useful with a defined 
underlying data contextualization. For instance, when the 
data model is expecting an internal temperature value of the 

machine but the temperature sensor is outside of the 
machine, there is an obvious mismatch between the  
context and the model. In order to cope with this fact,  
the contextualization cannot be done independently  
of the data model. This is shown in Figure 15.

In this section, we are focusing on the runtime supervision 
part in Figure 15. Putting all the ingredients together, and 
adding the requirement to use open-source frameworks, we 
propose the following architecture for the analytics system:

Data is collected from machines and other sources through 
a streaming data interface. All is connected to a low-latency 
message bus. Around the message bus, the semantic data 
analytics, object broker and alerts management are 
grouped. The semantic data analytics is configured and 
controlled by the knowledge graph and constraints 
management system.

This architecture contains the minimal ingredients for  
the low-latency analytics system. Of course, there are  
more details to consider for such a system, for example, 
authorization and authentication and time series data 
management, etc. Also, it is important to emphasize that 
this platform is only focusing on the data core, i.e., data 
integrity, validity, plausibility and execution of rules on data. 
Dashboarding and process integration are kept separate.

Figure 16. Minimal ingredients for the low-latency analytics part.
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6.2 Hardware: Functional safety and integrity/cascading 
for large-scale safety analytics

For the previously described concept, some strict 
requirements must be fulfilled not only by the software, 
which is running on such a system, but also the underlying 
hardware and the peripherals that are involved need to 
provide capabilities accordingly. In the realm of data 
exchange and processing, two primary challenges exist. 
Firstly, ensuring the reliability and integrity of data during 
transfer, and secondly, ensuring reliable data processing 
while minimizing potential failures.

A common approach to secure data transfer is the use of a 
black channel as defined in the IEC 61508 standard2, which 
includes error-detecting measures like a consecutive 
telegram counter, checksums and timer data. However, 
reliable data transfer is only beneficial if the data can be 
processed reliably on the corresponding computing unit 
before and afterward.

Powerful CPUs, designed for use in industrial computers or 
servers, can provide the necessary features to achieve the 
required safety integrity level (SIL) or an adequate safety 
level, combined with strong computing power and reliable 
data processing.

To increase system reliability, it is crucial to decrease the 
residual failure rate of undetected faults, provide efficient 
detection against transition and permanent faults and 
decrease the common cause failure rate. Additionally, the 
system should provide diagnostic capabilities for latent 
faults and fault accumulation.

Redundancy is a widely used technique in industrial 
systems for safety-critical data processing. This technique 
is also applicable on a higher level than that at which the 
machines are located. It can be achieved through parallel  
or serial redundancy, hardware-based or software-based 
redundancy or a combination of these.

Parallel redundancy involves identical components within a 
system performing the same task simultaneously, while 
serial redundancy involves components performing the 
same task sequentially. Hardware-based redundancy 
involves multiple instances of the same or different 
hardware components capable of performing the same 
task, while software-based redundancy involves 
implementing an algorithm in two different ways or with  
two different programming languages. In general,  
this leads to the five characteristics that come along  
with trustworthiness, which are security, privacy, safety, 
reliability and resilience. 

Each of those characteristics has very specific 
requirements to an underlying hardware. Some of those 
characteristics are assigned to individual features that are 
provided only by some little particular components within 
the system. Others again must be considered by the entire 
system across all involved components.   

Security is defined as the property a system must provide 
to protect itself from unintended or unauthorized access, 
change or destruction 19. To fulfill this aspect, systems often 
provide mechanisms to make sure not to execute any code 
that has not been previously verified and checked to make 
sure it was not modified. This unbroken chain is called root 
of trust chain and must be guaranteed end-to-end from the 
first instruction that gets executed during boot of the 
system up to the applications that need to be launched by  
an operating system in the middle. Furthermore, this also 
needs to be fulfilled during the entire runtime of the system 
and not only at boot time.

Using, for example, UEFI secure boot and hardware 
technologies such as software guard extensions (SGXs), 
memory protection extensions (MPXs) and trusted 
execution technology (TXT) enhances operational  
security for a system in an industrial context.

Privacy is the right of an individual or group to control  
or influence what information related to them may be 
collected, processed and stored, and by whom, and to 
whom that information may be disclosed20.

This very generally phrased request also applies in today’s 
digital industrial landscape, where safeguarding operational 
integrity is paramount. As also mentioned in the security 
paragraph above, there is a suite of features in modern 
CPUs to bolster this integrity. Below it is explored how these 
features can enhance operational security in an industrial 
context.

Software guard extensions (SGXs)21

SGX is a technology designed to protect selected code  
and data areas from disclosure or modification. It creates 
protected areas, known as enclaves, which are safeguarded 
by the processor itself. These enclaves can be used to store 
sensitive operational data, such as system passwords or 
encryption keys, ensuring their security even if the rest of 
the system is compromised.

Memory protection extensions (MPXs)22

MPX offers a range of features to enhance software security 
by checking memory references at runtime. It helps prevent 
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buffer overflow and underflow, which can lead to security 
breaches. By preventing such attacks, MPX helps protect 
sensitive operational data from unauthorized access.

Trusted execution technology (TXT)23

TXT provides a hardware-based security solution designed 
to protect the integrity of the boot process. It helps prevent 
attacks that attempt to manipulate the boot process. By 
ensuring that only trusted software is loaded, TXT 
contributes to protecting operational integrity by 
preventing the installation of malware or spyware on  
the system.

Safety refers to a system’s ability to function without posing 
an unacceptable risk of physical harm or health hazards to 
individuals, either directly or indirectly, due to property 
damage or environmental impact.

In the context of this document, the focus is not on traditional 
functional safety, which is often applied at the machine level. 
Instead, a holistic safety approach that encompasses the 
entire system is considered. However, the platform 
requirements are typically similar, if not largely identical.

In other words, it is crucial to ensure that the hardware 
hosting the software described above can handle transient 
and permanent faults, resist random and systematic failures 
and remain robust against common cross-failures.

Hardware-provided features, also known as integrity 
features24, can contribute to achieving a high level of safety. 
Examples of such integrity features include CPU-core 
hardware lock step to achieve dual-channel opcode 
execution, power-on self-tests, on-demand diagnostic 
coverage, memory protection (such as error correction 
code [ECC] memory) and monitoring of clock, thermal  
and voltage conditions.

Reliability refers to a system or component’s ability to 
perform its required functions under stated conditions for  
a specified period of time. In the context of this document,  
the hardware hosting the setup should be designed and built 
to operate reliably over its expected lifespan. This includes 
the ability to handle system workload in the expected 
amount but also within the expected environmental 
conditions. To ensure reliability, the hardware should be 
designed to withstand a variety of such conditions and 
loads, effectively addressing potential points of failure, 
preferably ahead of when potential issues happen. This is 
what is generally understood under the term predictive 
maintenance capabilities. Predictive maintenance utilizes 
data analysis, machine learning and predictive modeling  
to determine a system’s likelihood of failure. This allows for 
timely maintenance and updates, which can help extend its 
operational life and maintain its performance levels.

Resilience is an emergent property of a system that allows  
it to avoid, absorb and manage dynamic adversarial 
conditions while completing assigned missions, and 
reconstitute operational capabilities after incidences. In the 
context of this document, the hardware should be designed 
with resilience in mind. This means it should have the ability 
to quickly recover from any disruptions or failures, ensuring 
minimal impact on the user’s operations. This could be 
achieved through features such as redundant systems,  
fault tolerance mechanisms and robust error detection and 
especially correction capabilities. Furthermore, the system 
should be able to adapt to changing conditions and 
workloads, ensuring it can maintain its performance  
and functionality in a variety of scenarios.

Two hardware features modern CPUs offer are:

Rapid start technology25: This technology allows systems 
to quickly resume from deep sleep or cold boot, providing 
fast access to stored data and applications. This quick 
machine recovery time enhances system resilience.

Advanced vector extensions (AVXs)26: An AVX is a set  
of instructions for doing single instruction multiple data 
(SIMD) operations. SIMD allows one operation to be 
performed on multiple data points simultaneously, 
improving performance and resilience in the face of high 
computational demands.

 

7. Implementation case study

The IndustryFusion Foundation (IFF) has been founded by 
small and medium-sized enterprises (SMEs) in the metal 
processing and manufacturing industry. Their aim is to 
implement innovative use cases such as shared production 
and Equipment as a Service. The precondition for such use 
cases is to create a common shareable data model. 
Therefore, IFF decided to implement a semantic data model, 
as described in the sections above. A typical use case is to 
operate and optimize jointly cutting systems with attached 
air filtering and related workpieces and filter cartridges.  
One use case is to optimize the filter configuration based on 
the workpiece size and material. For this, the use case must 
first be modeled with JSON-LD and then the constraints and 
rules can be defined with SHACL. The material information 
can be provided by an ontology derived from the EN 10027-2 
standard27 and this builds up an RDF/OWL-based knowledge 
graph. In addition, state information and other details of  
the manufacturing process are defined in RDF/OWL.  
A simplified model is already used in the previous sections 
and shown in Figure 12. First of all, it must be ensured that 
the links between the entities are correct, for example,  
that a cutter is connected to a filter. This is a constraint that 
can be checked with SHACL as displayed in Figure 17.  
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A typical constraint is to continuously compare the states of 
connected cutters and filters. For instance, when the cutter 
is in state iff:state_PROCESSING it must be ensured that 
the connected air filter is running with state iff:state_ON. 
This constraint can be checked with SHACL and is already 
shown in Figure 13. Finally, the entities and the knowledge 
graph need to be combined to understand how a material 
type is changing the waste class of the linked filter cartridge. 
This is shown in Figure 18.

This system, described in Figure 16, has been implemented 
as an open-source solution by the IFF28. The following 
components have been used:

• EMQX29 as MQTT broker for streaming data.

• ScorpioBroker30 as NGSI-LD object broker.

• Apache Flink31 as semantic data analytics.

• Apache Kafka32 as low latency message bus.

• Alerta33 as alerts management system.

• Streaming SQL34 for knowledge graph and constraint 
management running on Apache Flink.

In addition, authorization and authentication are managed 
by Keycloak35 and the synchronization of the data object 
broker and the streaming system is implemented with 
Debezium36. Time series data is managed by TimescaleDB37.

8. Conclusion and outlook

Discussions with companies from a wide range of industrial 
sectors show that the degree of automation will continue to 
increase. This means that autonomous, flexible systems and 
collaborative production will be used to cope with the recent 
challenges in industry, like changing market requirements, 
turbulence in supply chains, sustainability requirements and 
lack of skilled workers. The newly introduced flexibility in 
high-productivity automation systems also requires a 
change of fundamental paradigms for safety technology.  
In this paper, a novel paradigm for safety of machinery is 
shown that is able to react to the current context and 
environmental situation of a machine: operational safety 
intelligence. This safety concept requires advanced data 
and information management underneath, providing, for 
example, high data integrity. The paper shows how such 
information management can be established based on a 
Semantic Web concept and knowledge graphs with unified 
semantics that can handle data in large, distributed 
systems. By taking into account the data with its context, 
operational safety intelligence can understand risks from 
dynamic processes and can optimize operations using 
runtime risk management. Hence, it unites productivity, 
flexibility and safety and, therefore, tackles the challenges 
of autonomous and flexible systems regarding safety.  
The authors are convinced that it is only a matter of time 
until runtime risk management with operational safety 
intelligence becomes widespread in the industry.

Figure 17. SHACL constraint to make sure that an object of type plasmacutter is linked with an object of type filter.

24



White Paper | Guideline for operating resilient and flexible production facilities using runtime risk management

Figure 18. Combined entities and knowledge graph to determine the waste class change of the filter cartridge.  
This figure shows the complete overview; the detailed content can also be seen in Figure 12 and Figure 9.
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