intel.

Intel® Al System for Edge Verified Reference
Blueprint — Medium for Computer Vision, and

GEN Al

Reference Architecture

Revision 1.0
October 2024

Authors

Yuan Kuok Nee
Shin WeiLim
Abhijit Sinha
AiBeelLim

Key Contributors
Timothy Miskell,
Jonathan Tsai
Jessie Ritchey
Edel Curley

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel® products
described herein.

No license (express or implied, by estoppel or otherwise) to any Intel®lectual property rights is granted by this document.

Allinformation provided here is subject to change without notice. Contact your Intel® representative to obtain the latest Intel® product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Intel® Corporation. All rights reserved. Intel®, the Intel® logo, Xeon, FlexRAN, Select Solution and other Intel® marks are trademarks of Intel®
Corporation or its subsidiaries. Intel® warrants performance of its FPGA and semiconductor products to current specifications in accordance
with Intel®'s standard warranty but reserves the right to make changes to any products and services at any time without notice.

Intel® assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Intel®. Intel® customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.
Intel® technologies may require enabled hardware, software or service activation.

© Intel® Corporation. Intel®, the Intel® logo, and other Intel® marks are trademarks of Intel® Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

*Other names and brands may be claimed as the property of others.

Copyright © 2024, Intel® Corporation. All rights reserved.

2 Reference Architecture

Contents

1 (Ta¥ud oo [UTe3 uToT o TN OO O TP PO SP TSPV PTPTPON 6
2 Design ComplianCe REQUIFEMENTS ... ses s ssaes 8
21 Hardware REQUINEMENTS ...ttt sttt sttt eeaen 8
2.2 BIOS SOtHINGS ouveuecreeeesrees et ses et n s 9
2.3 SOIUTION AFCIITECTUIE .ottt bbb
24 Platform Technology Requirements
25 Platform Securityocovneecereereseerenene
2.6 Side Channel Mitigation
3 Platform Tuning and GPU DriVEr SETUP ... sessess s ssessssssessssssessssesssssssessseeas 12
3.1 BOOt Parameter SETUD ... s s 12
3.2 Additional Linux Packages INStallation ... sssanes 12
3.21 TaYSy =1 1 To Yol (Y OOV 12
322 INSTAI GPU DIIVET ..ttt sess st s st sens 12
3.2.21 INStall DEPENAENCIES ...ttt eaen 13
3.2.22 INStall INtel® GPU DIiVEN .ttt eesesssssessanens 13
3.2.2.3 Install the Intel® GPU kernel driver i915 and xpu manager 13
3224 Install necessary graphics and media packages for the Intel®
GPU .ottt s 13
3.2.25 Reboot the server for the changes to take place in the OS. 13
3.23 Configure permissions on the OS groups for GPU as rendering device....... 13
324 Verify the installation to check if the GPU device is working with i915 driver
... 14
4 Performance VErifiCation ...ttt 15
4] Memory LatenCy CheCKEr (IMLC). ceeeeeeeeeeeeeeeesesssessessseeeeses s sssesssnsssssssssns s ssessnsssaseees 15
4.2 Retail SEIf-ChECKOUL ...t e 16
4.3 GENEIATIVE Al ettt s et e s et an e st neanans 18
4.4 Network Security Al: MalConv and BERT ...t ssessssseeses 28
4.4 MalConv for Malicious portable executable (PE) detection......c.cccveeeveveeen. 28
5 S0 o101 P SO 31
APPENAIX A APPENAIX ceiteritreieireirieisess ettt as s sess et s s s E s s se s eE Rt R e e b A n b s R e ae et bbb et et s antas
Al Retail Self-checkout Vision Al Test Methodology .
A2 Generative Al Test MethodOIOgY ...ttt sssseens
A21 IPEX-LLM Testing Methodology on CPU.........vccnrececeesssessssesesses
A2.2 IPEX-LLM Testing Methodology on GPU..........cccvueu...
A2.3 Running IPEX-LLM Benchmarking Scripts
A.2.3.1 Running IPEX-LLM on CPU........cccvvvvenene
A23.2 Running IPEX-LLM on Single GPU.......ccoonenenerereereeeeseeseeenes 36
A.2.3.3 Running VLLM-IPEX-LLM 0N CPUooirrrereererseereeensesseeenes 37
A3 Network Security Al Test Methodology ... seeaes 38
A31 MalConv Al Test Methodology ... ens 38
A3.2 Bert Al Test Methodology ...t sesens 38

Reference Architecture

intel

Figures

Figure 1.
Figure 2.
Figure 3.

Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 1.
Figure12.

Figure13.
Figure 14.
Figure 15.
Figure 16.

Tables

Table1.
Table 2.

Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table10.
Table 1.
Table12.
Table13.

Architecture of the Intel® Al System for Edge Verified Reference Blueprint........ccoevcvevcenenencenee 10
Retail Self-checkout Video Analytics Pipeline
Retail Self-Checkout Medium Configuration Performance Graph on Xeon® 6538N and Intel®

=G 74 T 17
Performance for GPT-NEOX-20B Model 0N CPU ...t sssssessseeses 20
Performance for Llama 3 8B Model 0N CPU ...ttt ees 21
Performance for Llama 3 8B Model on INtel® FIEX 170oorreerereereereiresiseseenesseseesesesessesssesseseseeaees 22
Performance for Phi-3-4k Mini Model on CPU

Performance for Phi-3-4k-Mini Model on INtel® FIEX 170ooeoerreerrereeesereeeesesseseseseseseenees 24
Performance on TinyLlama Model 0N CPU ...t ssse s sssssesssssssssssssssssssssssnes 25
VLLM-IPEX-LLM Performance with Llama 3 8B Model on CPU........cnnnnereeeereseeeseseeenene 26
vLLM-IPEX-LLM Performance with Llama 3 8B Model on 2 x Flex 170 (1024 Output Token
L1722 DT 26
Llama 3 8B Performance on 2 x Flex 170 with Pipeline Parallel Configurationc.cccoeecveevennenee 27
MalConv Al Entry Platform Performance Graph ... essesssssssssssssssessssssssesssnsees 29
BERTAI Performance on VRC for Intel® Al System — Medium Entry Configuration Graph30
Test Methodology for Retail Self-checkout Pipeling ... 33

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - PIUS CONFIQUIATION ..ttt sess bbbttt 8
Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - Base CONTIGUIATION ...t etsess st s sss e s sss s ssss s sessssssass s sss s sesssssssssssnsessssssassssnns
SN A @ o1 o T T =Y T o TP ST
Platform Technology Requirements....
Boot Paramteres.......coveenercnccenencnnns
Memory LatenCy CheCKEN ... ses s
Peak Injection Memory Bandwidth (1MB/sec) Using All Threads
REtal SEIf-CRECKOUL. ..ttt bbb
Retail Self-Checkout Medium Configuration Performance

Performance of various Large Language Models on CPU: ... essesssssessens 19
Performance of various Large Language Models on Intel® Data Center Flex GPU.........cccccccu... 19
MalConv Al Workload CoNfiGUIration ... sesseses s ssessesssess s sessssssessssssses 28
BERT Al WOrkload Configuration. ... enininesenessesesesessssessesessesssesssssssesssessssessessssessssssssnssssssssssnen 29

Reference Architecture

Revision History

intel.

Dﬁzumnggpt Ei‘:fg%’: Description Revision Date
834790 1.0 Initial release October 2024
§
Reference Architecture 5

I n te I ® Introduction

7

Introduction

Intel® Enterprise Al systems are a range of optimized commercial Al systems delivered and
sold through OEM/ODM in the Intel® ecosystem. They are commercial platforms verified-
configured, tuned, and benchmarked using Intel’s reference Al software application on Intel®
hardware to deliver optimal performance for Enterprise applications.

Intel® Al Systems offers a balance between computing and Al acceleration to deliver optimal
TCO, scalability, and security. Al systems enable enterprises to jumpstart development
through a hardened system foundation verified by Intel®. Al systems enable the ability to add
Al functionality through continuous integration into business applications for better business
outcomes and streamlined implementation efforts.

To support the development of these Al systems, Intel®is offering reference design and
verified reference configuration blueprints with Al system configurations that are tuned and
benchmarked for different Al System types that support Enterprise Al use cases. Verified
reference blueprints (VRB) include Hardware BOM, Foundation Software configuration (OS,
Firmware, Drivers) tested and verified with supported Software stack (software framework,
libraries, orchestration management).

This document describes a verified reference blueprint architecture using the 5th Gen Intel®
Xeon® Scalable processor family.

When network operators, service providers, cloud service providers, or enterprise
infrastructure companies choose an Intel® Al System for the edge Verified Reference
Blueprint, they should be able to deploy the Al workload more securely and efficiently than
ever before. End users spend less time, effort, and expense evaluating hardware and software
options. Intel® Al System Verified Reference Blueprint helps end users simplify design choices
by bundling hardware and software pieces together while making the high performance more
predictable.

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al is based on single-node architecture, that provides environment to execute multiple Al
workloads that are common to be deployed at the edge, such as the “Intel® Automated Self-

"o

Checkout Reference Package”, “Generative Al” and “Network Al based on MalConv”.

All Intel® Al System for Edge Verified Reference Blueprint Configurations feature a workload-
optimized stack tuned to take full advantage of an Intel® Architecture (IA) foundation. To
meet the requirements, OEM/ODM systems must meet a performance threshold that
represents a premium customer experience.

There are two configurations for Intel® Al System for Edge Verified Reference Blueprint —
Medium for Computer Vision,and GEN Al covering a base and plus configuration:

¢ Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al Plus configuration for the Node is defined with at least a 32-core 5th Generation
Intel® Xeon® Scalable processor and high-performance network, with storage and
integrated platform acceleration products from Intel® for maximum virtual machine density.

e Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al Base configuration for the Node is defined with a 24-core or higher 5th Generation

Introduction I n te I ®

Intel® Xeon® Scalable processor and network, with storage and add-in platform acceleration
products from Intel® targeting for optimized value and performance-based solutions.

Bill of Materials (BOM) requirement details for the configurations are provided in Chapter 2 of
this document.

Intel® Al System for Edge Verified Reference Blueprint is defined in collaboration with
enterprise vertical users, service providers and our ecosystem partners to demonstrate the
value of the solution for Al Inference use cases. The solution leverages the hardened hardware,
firmware, and software to allow customers to integrate on top of this known good foundation.

Intel® Al System for Edge Verified Reference Blueprint provides numerous benefits to ensure
end users have excellent performance for their Al Inference applications. Some of the key
benefits of the Reference Configuration based on the 5th Generation Intel® Xeon® Scalable
Processor Family processor include:

e High core counts and per-core performance

e Compact, power-efficient system-on-chip platform

e Streamlined path to cloud-native operations

e Accelerated Al inference using Intel® AMX and Intel® DL Boost

e Multiple discrete GPU support to accelerate for Al inference workload
e Accelerated encryption and compression

¢ Platform-level security enhancements

Reference Architecture 7

intel.

2

Design Compliance Requirements

Design Compliance Requirements

2.1

Table 1.

Table 2.

This chapter focuses on the design requirements for Intel® Al System for Edge Verified
Reference Blueprint — Medium for Computer Vision,and GEN Al.

Hardware Requirements

The checklists in this chapter are a guide for assessing the platform’s conformance to Intel® Al
System for Edge Verified Reference Blueprint — Medium for Computer Vision, and GEN Al.
The hardware requirements for the Plus Configuration and Base Configuration are detailed

below.

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - Plus Configuration

Ingredient Requirement Re?ggﬂ:géed Quantity

Intel® Xeon® Gold 6538N Processor at

Processor 2.1GHz, 32C/64T, 205W or higher number Required 1
SKU
Option 1: DRAM only configuration: 256 16
GB (16x 16 GB DDR5, 4800 MHz)

Memory Required
Option 2: DRAM only configuration: 512 32
GB (32x16 GB DDR5, 4800 MHz)

Storage . . .

(Boot Drive) 480 GB or equivalent boot drive Required 1
1x Flex170 or 2 x Flex 170
1xArc A770 or 2 x Arc A770 i

Graphics Required 1(Required)
2 x Arc A750 orupto3
3xFlex140

Storage . .

- 2TB or equivalent drive Recommended

(Capacity)
10 Gbps or 25 Gbps port for video

LAN on streaming Recommended

Motherboard ;

(LOM) 1/10 Gbps port for Management Network .
Interface Controller (NIC) Required !

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - Base Configuration

Ingredient Requirement Required/ Quantity
Recommended
Intel® Xeon® Gold 5518N processor at 1.8
Processor GHz,24C/48T,165W or higher number Required 1
SKU

Reference Architecture

Design Compliance Requirements

2.2

2.3

intel

Ingredient Requirement Required/ Quantity
Recommended
DRAM only configuration: 256 GB .
Memoryl (16x16 GB DDRS5, 4800 MHz) Required 16
1x Flex170 or 2 x Flex170
1x Arc A770 or 2 x Arc A770 1(Required)
Graphics Required Upto3
2 x Arc A750 (optional)
3 xFlex140
St9rage (Boot 2 TBor equivalent boot drive Required 1
Drive)
LANon 10 Gbps or 25 Gbps port for PXE/OAM Recommended 1
Motherboard
(LOM) 1/10 Gbps port for Management NIC Required 1

BIOS Settings

To meet the performance requirements for an Intel® Al System for Edge Verified Reference
Blueprint—Medium for Computer Vision and GEN Al, Intel® recommends using the BIOS
settings to enable processor p-state and c-state with Intel® Turbo Boost Technology (“turbo
mode”) enabled. Hyperthreading is recommended to provide higher thread density. For this
solution Intel® recommends using the NFVI profile BIOS settings for on-demand Performance
with power consideration.

The NFVI profile for BIOS settings is documented in Chapter 3 of BIOS Settings for Intel®
Wireline, Cable, Wireless, and Converged Access Platform (#747130).

Note: BIOS settings differ from vendor to vendor. Please contact your Intel® Representative for
NFVIBIOS Profile Doc# 747130 or if you have difficulty configuring the exact setting in your system

Solution Architecture

Figure 1shows the architecture diagram of Intel® Al System for Edge Verified Reference
Blueprint — Medium for Computer Vision, and GEN Al. The software stack consists of three
categories of Al software:

1. Vision Al

2. Generative Al

3. Network Security Al
All three applications are containerized using docker.

For the Vision Al use case, we are using the Intel® Automated Self-Checkout application,
which measures stream density. The video data is ingested and pre-processed before each
inferencing step. The inference is performed using two models: YOLOv5 and EfficientNet.
The YOLOvV5 model does object detection, and the EfficientNet model performs Object
Classification.

Reference Architecture 9

intel.

For the Generative Al use case, we are using large language models (LLMs) and Intel®
Extension of PyTorch (IPEX) framework to perform LLM inference on Intel® CPU and Intel®

Figurel.

Table 3.

GPU.

Design Compliance Requirements

For Network Security Al, we are using Malconv and finetuned BERT-base-cased for malicious
portable executable (PE) file detection and email phishing detection respectively.

Architecture of the Intel® Al System for Edge Verified Reference Blueprint

Vision Al: Gen Al:
Intel® Automated Self-Checkout Large Language Models
Reference Package

IPEX CPU, IPEX LLM XPU, DeepSpeed,
Transformers, oneDNN, aneCCL, torch-
ccl, Intel Neural Compressor , Python
3.10+

Intel® ARC GPU

Network Security Al:
Malconv and BERT

Models:
Malconv and BERT-base-cased

Tensor Flow, ONNX, oneDNN, Neural
gmm, Python 3.10+

Applications

Framework
and

Library

Drivers

b Container Runtime (Docker) + Docker Compose
Ubuntu 22.04 LTS Desktop, 6.5 Kernel

14th Generation Intel® Core® Processor-based platform

The table below is a guide for assessing the conformance to the software requirements of the
Intel® Al System for Edge Verified Reference Blueprint Ensure that the platform meets the

requirements listed in the table below.

SW Configuration
Ingredient SW Version Details
oS Ubuntu*22.04.4LTS
Kernel 6.5 (in-tree generic)
OpenVINO 2024.0.1
Docker Engine 27.1.0
Docker Compose 2.29
Intel® Level Zero for GPU 1.3.29735.27
Intel® Graphics Driver for GPU (i915) 24.3.23
Media Driver VAAPI 2024.1.5
Intel® OneVPL 2023.4.0.0-799
Mesa 23.2.0.20230712.1-2073
OpenCV 4.8.0

Reference Architecture

gl
Design Compliance Requirements I n te I i

2.4

Table 4.

2.5

2.6

Ingredient SW Version Details
DLStreamer 2024.0.1
FFmpeg 2023.3.0

Platform Technology Requirements

This section lists the requirements for Intel®’s advanced platform technologies.

Enterprise Al requires Intel® AVX (Advance Vector Extensions) or AMX (Intel® Advance
Matrix Extensions) to be enabled to reap the benefits of hardware-accelerated convolution.

Platform Technology Requirements

Platform Technologies Enable/Disable Required/Recommended
Intel® VT Intel® CPU Virtual Machine Enable Optional
Extension (VMX) Support
Intel®1/O Virtualization Enable Optional
Intel® AMX Intel® Advance Matrix Enable Required
Extension
Intel® TXT Intel® Trusted Execution Enable Optional
Technology

Platform Security

For Intel® Al System for the Edge, itis recommended that Intel® Boot Guard Technology to be
enabled so that the platform firmware is verified suitable during the boot phase.

In addition to protecting against known attacks, all Intel® Accelerated Solutions recommend
installing the Trusted Platform Module (TPM). The TPM enables administrators to secure
platforms for a trusted (measured) boot with known trustworthy (measured) firmware and OS.
This allows local and remote verification by third parties to advertise known safe conditions for
these platforms through the implementation of Intel® Trusted Execution Technology (Intel®
TXT).

Side Channel Mitigation

Intel® recommends checking your system’s exposure to the “Spectre” and “Meltdown”
exploits. This reference implementation has been verified with Spectre and Meltdown
exposure using the latest Spectre and Meltdown Mitigation Detection Tool, which confirms
the effectiveness of firmware and operating system updates against known attacks

The spectre-meltdown-checker tool is available for download at
https://github.com/speed47/spectre-meltdown-checker.

§

Reference Architecture 1

https://github.com/speed47/spectre-meltdown-checker

i
I n te I 2 Platform Tuning and GPU Driver Setup

3

Platform Tuning and GPU Driver
Setup

3.1

Table 5.

3.2

3.2.1

3.2.2

Boot Parameter Setup
For the workload testing, it is first necessary to set the host command line with appropriate
boot parameters as well as 1GB of pages. In the “/etc/default/grub” file, update the line

“GRUB_CMDLINE_LINUX" to include the following parameters:

“i915.force_probe=56c0” # Or replace the device ID with the corresponding hardware

Boot Paramteres

Device Intel® Flex170 Intel® Flex 140 Intel® Arc A380 Intel® Arc A750

1D 56¢c0 56cl 56a5 56al

After modifying in grub file, run “update-grub” and “reboot” to apply the changes and verify the

change with “cat /proc/cmdline”:
cat /proc/cmdline

BOOT IMAGE=/vmlinuz-6.5.0-44-generic root=UUID=aecl07d6-c26d-4db4-a617-
117964293819 ro i915.force probe=56c0

Additional Linux Packages Installation

Install Docker

Follow the instructions at https://docs.docker.com/engine/install/Ubuntu*/ to install Docker
Engine on Ubuntu*.

Install GPU Driver

Make sure the Intel® GPU is enumerated as a PCle device.

Below is an example of 3 x Intel® Flex 140 GPUs (each Flex 140 card has 2 GPUs so a total of 6
is shown here)

= # lspci -nn | grep -i display
controller : Intel Corporation

D
controller : Intel Corporation D
controller : Intel Corporation D
controller : Intel Corporation D
controller : Intel Corporation D

D

y controller : Intel Corporation Device

https://docs.docker.com/engine/install/ubuntu/

@
Platform Tuning and GPU Driver Setup I n te I 2

3.2.2.1

3.2.2.2

3.2.2.3

Install Dependencies
$ sudo apt-get install -y gpg-agent wget

$ wget -qO - https://repositories.Intel®.com/gpu/Intel®-graphics.key | \
sudo gpg --dearmor --output /usr/share/keyrings/Intel®-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/Intel®-graphics.gpg]
https://repositories.Intel®.com/gpu/Ubuntu* jammy/lts/2350 unified" | \
sudo tee /etc/apt/sources.list.d/Intel®-gpu-jammy.list

Install Intel® GPU Driver

$ sudo apt-get update

$ sudo apt-get -y install \
gawk \
dkms \
flex bison \
linux-headers-$ (uname -r) \
linux-modules-extra-$ (uname -r) \
libc6-dev

Install the Intel® GPU kernel driveri915 and xpu manager
$ sudo apt install -y Intel®-1i915-dkms Intel®-fw-gpu xpu-smi

Note: The Linux* kernel driver(s) provide the software connection to the Intel® GPU hardware. The
kernel driver(s) are provided today as Dynamic Kernel Module Support (DKMS) drivers “out-of-tree”
from the Linux kernel.

3.224

3.2.25

3.2.3

Install necessary graphics and media packages for the Intel® GPU

$ sudo apt-get install -y gawk libc6-dev udev\
Intel®-opencl-icd Intel®-level-zero-gpu level-zero \
Intel®-media-va-driver-non-free libmfxl libmfxgenl libvpl2 \
libegl-mesal libegll-mesa libegll-mesa-dev libgbml libgll-mesa-dev \
libgll-mesa-dri libglapi-mesa libgles2-mesa-dev libglx-mesal \
libigdgmml2 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo

Reboot the server for the changes to take place in the OS
$ sudo reboot

Configure permissions on the OS groups for GPU as rendering device

$ sudo gpasswd -a ${USER} render
$ newgrp render

Verify if the render group is added as shown below:

groups

render

Reference Architecture 13

intel

3.24

Platform Tuning and GPU Driver Setup

Verify the installation to check if the GPU device is working with i915

driver

$ sudo apt-get install -y hwinfo
$ hwinfo --display

Verify if the i915 driver is active:

Verify the GPU devices using xpu manager:

$ xpu-smi discovery

Device Name
Vendor Name:
SOC UUID: o8l
PCI BDF Addr
DRM Device:

Lce Name
Vendor Name
SOC UUID: oel
PCI BDF Addr
DRM Device:

S0C UUID
PCI BDF Addr
DRM Dey :

S0C UUTID
PCI BDF Addr
DRM Dey :

ice Name
ndor Name
S0C UUID
PCI BDF Addr
DRM Dey 3

ice Name
Vendor Name
S0C UUID

Intel(R) Corporation

Intel(R) D
Intel(R)

Intel{(R) D
Intel(R)

-e71b-8ce73fc31e46

a Center
rporat i

a Center
rporation

a Center
rporation
3-9847ab57cagb

:78:01.0/

Reference Architecture

sl
I n te ® Performance Verification

4

Performance Verification

4.1

Table 6.

Table7.

This chapter aims to verify the performance metrics for the Intel® Al System for Edge Verified
Reference Blueprint to ensure that there is no anomaly seen. Refer to the information in this
chapter to ensure that the performance baseline for the platform is as expected.

The Plus solution was tested on August 06, 2024, with the following hardware and software
configurations:

¢ INUMA node

¢ 1xIntel® Xeon® Gold 6538N processors

e Total Memory: 128 GB, 8 slots/16 GB/4800 MT/s DDR5 RDIMM
¢ Hyperthreading: Enable

e Turbo:Enable

e C-State:Enable

e Storage:1x1TBINTEL® SSDPE2KX010T8

¢ Network devices: 2x Dual port Intel® Ethernet Network Adapter ES10-2CQDA2
o Network speed: 50 GbE

e BIOS: American Megatrends International, LLC. 3BO5.TEL4P1
¢ Microcode: 0x21000161

o OS/Software: Ubuntu* 22.04.1 (kernel 6.5.0-44-generic)

Memory Latency Checker (MLC)

The Memory Latency Checker which can be downloaded from
https://www.Intel®.com/content/www/us/en/developer/articles/tool/Intel®r-memory-
latency-checker.html. Download the latest version, unzip the tarball package, go into the
Linux* folder, and execute . /mlc. Table 6 and Table 7 below should be used as a reference for
verifying the validity of the system setup.

Memory Latency Checker
Key Performance Metric Local Socket (Plus)
Idle Latency (ns) 150.3
Memory Bandwidths between nodes within the system 260425
(using read-only traffic type) (MB/s)

Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution

AllReads 255504

Reference Architecture 15

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

sl
I n te I ® Performance Verification

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution
3:1Reads-Writes 21857
2:1Reads-Writes 202797
1:1Reads-Writes 186870
STREAM-Triad 206753

Loaded Latencies using Read-only traffic type with Delay=0 18311

(ns)

L2-L2 HIT latency (ns) 73.6

L2-L2 HITM latency (ns) 74.7

Note: If the latency performance and memory bandwidth performance are outside the range, please
verify the validity of the Platform components, BIOS settings, kernel power performance profile used,
and other software components.

4.2

Figure 2.

Retail Self-Checkout

Retail Self-Checkout is an implementation that provides critical components to build and
deploy a self-checkout use case using Intel® hardware, software, and other open-source
software. This reference implementation provides a pre-configured automated self-checkout
pipeline optimized for Intel® hardware.

The video stream is cropped and resized to enable the inference engine to run the associated
models. The object detection and product classification features identify the SKUs during
checkout. The bar code detection, text detection, and recognition feature further verify and
increase the accuracy of the detected SKUs. The inference details are then aggregated and
pushed to the enterprise service bus or MQTT to process the combined results further.

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POSTPROCESSING

l?. o Frame spitting Object Detedtion Crop&Scale p— Inference
-
| 73 Classfication Matadata
” o ry

5 = |

'
b Crop& Scale ‘

- N : Shee

: — - [Hes—————————

Encode

Retail Self-checkout Video Analytics Pipeline

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al configuration, the platform CPU with AMX should be able to process up to 23 number
of streams at 4K @ 14.95FPS with HEVC codec, and up to 21 number of streams when
equipped with Intel® Flex 170 GPU.

Reference Architecture

Performance Verification

Table 8. Retail Self-checkout

intel.

Ingredient Software Version Details
OpenVINO 2024.0.1
DLStreamer 2024.0.1
FFMPEG 2023.3.0
VPL 2023.4.0.0-799
Python 3.8+

Table9. Retail Self-Checkout Medium Configuration Performance

Configurationl

Intel® CPU Xeon® 6538N

Intel® Flex170

2 x Intel® Flex170

Plus Configuration (# of
streams)

23

26

50

Figure 3. Retail Self-Checkout Medium Configuration Performance Graph on Xeon® 6538N and Intel®

Flex170
Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3
Batch Size: 1, Target FPS: 14.95
N 1 - Sum of Cumulative Throughput (FPS) ==@==1 - Sum of Average CPU Utilization (%)
450 100
2 100 23 x 14.95 KPS 26 x 14.95 FPS, 90
¥ 9
= 350 80
a 70
_g, 300
60
3 250
£ 200 20
” 40
>
.g 150 30
S 100 20
g 50 10
o
0 0
0 2 4 6 81012141618202224 1 3 5 7 9 111315171921232527
1x Intel® 5th Generation Xeon® Gold 1x Flex170
6538N
Number of Streams
Reference Architecture 17

sl
I n te ® Performance Verification

4.3

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3
Batch Size: 1, Target FPS: 14.95

n

& mmmm 1 - Sum of Cumulative Throughput (FPS) ==@==1 - Sum of Average CPU Utilization (%)

)

g 900 50 x 14.95 FPS 0

£ X 14. 90

& 800 85.4931

2 700 80

£ 600 70

2 500 60

>

=] 23 x 14.95 FPS 50

® 400 40

S

£ 300 30

3 igg | | 20
10

0 3 6 91215182124 2 5 8 1114172023 2629 32 353841444750

1x Intel® 5th Generation 2x Flex170s
Xeon® Gold 6538N

Number of Streams

Generative Al

Intel® Generative Al solution provide the ability to create, respond and synthesize texts to
create content, summarizing text, building Al chatbots, generate images and more. In this
document, we focus on inferencing performance using Intel® Enterprise Al solution with
State-Of-The-Art foundational models such as GPT-NEOX-20B, Llama 3 8B, Phi3, and
TinyLlama.

To ensure Generative Al is running on Intel® hardware with optimal performance, we use IPEX-
LLM framework as inference workload. IPEX-LLM is optimized with Intel® AMX technology, as
well as Intel® GPUs with precision from FP32 to INT4. Incrementing batch size also provides
better throughput performance with latency trade-offs.

On LLM serving front, vLLM also has been integrated with IPEX-LLM, and provides excellent
throughput by employing continuous batching, especially the LLM serving framework is
optimized with underlying Intel® hardware enhancements such as AMX/AV X512 and AVX2.

For the Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer
Vision, and GEN Al configuration, the system should be able to deliver results as shown in
Table 10 and Table 11 as a baseline to the expected performance of this solution.

Reference Architecture

Performance Verification

intel.

Table10. Performance of Various Large Language Models on CPU:
Models Precision Input Batch Size Throughput Inference
Tokens (tokens/s) time
GPT-NEOX-20B INT4 32 1 14 <72s
Llama-3-8B INT4 32-1024 4 81-119 <60s
Phi3-4k-mini INT4 32-256 8 179-208 <60s
TinyLlama INT4 32-1024 16 321-695 <60s
vLLM Llama 3 8B BF16 Variable Variable 393 N/A
TableTl. Performance of Various Large Language Models on Intel® Data Center Flex GPU:
Models GPU Precision Input Batch Throughput Inference
Tokens Size (tokens/s) time
Phi-3-mini | Flex170 INT4-8 32-256 8 257-346 <60s
Llama 3 8B Flex170 INT4-8 32-256 8 188-215 <60s
Llama 3 8B 2 x Flex170 INT8- 32-256 8 230-246 <60s
FP16
Llama 3 8B 2 xFlex170 FP8 Variable Variable 748 N/A
Llama 3 8B 3xFlex140 INT4 32-256 1 18 <60s
Phi-3-mini 3xFlex140 INT4 32-256 2 39-40 <60s
Reference Architecture 19

intel.

Figure 4.

20

Performance for GPT-NEOX-20B model on CPU

Performance Verification

GPT-NEOX-20B, 1024 Output Token Size, Average
Next Token Latency (ms)

H32 m256 m1024 m2048

600 433
400

1 2 4 2 4

Average Next Token Latency
(ms)

INT4 INT8

473

200 707P8 73R8 sa > 11113147 II 10EBIB5 11865 1263550 I III
o mmul wunl mmill |II| || |||I ol il II| I

GPT-NEOX-20B, 1024 Output Token Size, Cumulative
Next Tokens/Second

H32 m256 m1024 m2048

o

1
INT4 INT8

100 %
2 & s

i e
= 20 [| LI Illl III II II EEE= Illl III. II II

GPT-NEOX-20B, 1024 Output Token Size, Inference

Time
800 - H32 m256 m1024 m2048
[}
600 b=
400 5
§ 21% 25
200 25748307 77819832 01937 12142 I 1000287 1172838"° 13D3§7I 153’77I
o Exmnll mmnll lIII I| III| II|| alil
1 2 4
INT4 INT8

¥ I‘

Reference Architecture

intel.

Performance Verification

Performance for Llama 3 8B Model on CPU

Figure 5.

AVERAGE NEXT TOKEN LATENCY (MS)

B Average Next token latency (ms)

(8 ———

99 ———

0s
14
18

S€
€e
8¢
123

0€
6¢
0€
8¢
LT
LT

86

(9 —

LG —

79—

QGO —

14
Ly
18
14
ev
[4%
5174
134
ov
6€

8¥0¢C
vco1
9§¢C
[43
8¥0¢
vcoT
9S¢
[43
8¥0¢C
7c0T
95¢
[43
8¥0¢C
&40
9§¢
[43
8¥0¢C
vco1
9Ss¢
[43
8¥0¢C
70T
9§¢
[42
8¥0¢C
7c0T
99¢
[43
8¥0¢C
vco1
9§¢C
[43

INT4

INT8

AVERAGE TOKENS/S

S

B Average Tokens/s

VL
L7007 —
67T —
TLT e—
6°09 m—
€18 mm—
CTTT —
€6TT —
LTy

7°9G m—
£799 —
0°69 m—
SLT -

6'EC wm

69€

SLE

LTS —
§'G8 —
SECT —
6'6ET —
6817 w—

CCY —
9°08 m—
C'98 w—
0°€E =m
6'6C

Gl -

LYy —

90C =

VET =

8V wm

€67 =

8¥0¢
vco1
9S¢
[43
8v0¢
vcol
9S¢
[43
8¥0¢C
7¢01
9S¢
[43
8¥0¢
vcotl
9S¢
[43
8v0¢
vc01
9Ss¢
[43
8¥0¢C
vc01
9S¢
[43
8¥0¢
7701
9S¢
[43
8¥0¢
vco1
9S¢
[43

INT4

INT8

INFERENCE LATENCY (SEC)

B Inferencg Latency (sec)

INT4

INT8

21

Reference Architecture

intel.

Performance for Llama 3 8B Model on Intel® Flex 170

Figure 6.

22

Performance Verification

AVERAGE NEXT TOKEN LATENCY (MS)

H32 m256 m1024 m2048

>
o
C
3
8
50 43
g 40 3738 -
Ay 5 282829 292930 303031 3232
2 E 30 La15 232325
2 20 Y
: o
©
’q;, 0
< 1 2 4 8 1 2 4 8
INT4 INT8
AVERAGE TOKENS/S
H32 m256 m1024 m2048
250 21
200 210 19483
2 1434137
2 150 12624
O 8786,
S 100 6058555, 817 666764
F oo IIII 343433
. (][T | |
1 2 4 8 1 2 4 8
INT4 INT8
INFERENCE LATENCY (SEC)
H32 m256 m1024 m2048
. 50 3840 4245
w40 2628 283032 303032 313133 3334
v 30 1 1921 2424
1718
ig 20
o 1l
s’ |
g 1 2 4 8 1 2 4 8
Q
£

INT4 INT8
Varying Batch Sizes and Model Precision

Reference Architecture

Performance Verification

Figure 7.

intel.

Performance for Phi-3-4k Mini Model on CPU

32 w22
256 w22

AVERAGE NEXT TOKEN

[a2]
o0

LATENCY (MS)

51
43
60
44
55
79

© D 0 < ®
— ™ - ™M ™] ™
ﬁﬁﬂﬂ"’ &l c>o*'c><:|Ch""0<\](\‘gm “
| |||| || ESHNHHNlN | ||
< 00 N WO S 0N WS 0N WS 0N WS 0N O 0N O S 0N O T 0
NS O AN O NSO NSET NN NSO NS OMnNS omn NS
o o N O O N O O N O O N O O N O O N O O N O O
-~ - N - N - -~ -~ - -~
2 4 8 1 2 4 8
INT8 INT4

250.0
200.0
150.0
100.0
50.0
0.0

Average Tokens/s

32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024
1 2 4 8 1 2 4 8

INT8 INT4

120.0
100.0
80.0
60.0
40.0
20.0
0.0

Inference Latency (sec)

32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024
1 2 4 8 1 2 4 8

INT8 INT4

Reference Architecture

23

intel.

Performance Verification

Figure 8. Performance for Phi-3-4k-Mini Model on Intel® Flex 170

50
40
30
20
10

0

Average Next Token Latency
(ms)

AVERAGE NEXT TOKEN LATENCY (MS)

H32 m256 m1024 m2048

29§82 33387 338> 38

13237 12397 12882 1gagl 208%° . I III II| |
il il |||I II| ul il i I|| ||| |
2

INT4 INT8 FP16
Varying Batch Sizes and Model Precision

57
180 7&7
11706 12813
||II ““] |||| s i Il
"Il “II IIII EEEm ““ I

AVERAGE TOKENS/S

H32 EH256 m1024 m2048
343524

212

INT4 INT8 FP16
Varying Batch Sizes and Model Precision

50
40
30,
20 013131 13

e Time (s)

INFERENCE TIME (SEC)

W32 m256 m1024 m2048

35 3323 323§ 333‘5
13192 19.920 22
: |||I |||I |II| || III| III| II| |

INT4 INT8 FP16
Varying Batch Sizes and Model Precision

24

Reference Architecture

Performance Verification

intel.

Figure9. Performance on TinyLlama Modelon CPU
Average Next token latency (ms)
50
40
30
20
R RARANANRARNRRARTRARRAARRAARL
0
32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024
1 2 4 8 1 2 4 8
BF16 INT8
Average Tokens/s
600.0
500.0
400.0
300.0
200.0 | |
Lo EbeEH o HEn L
il 111 I
32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024
1 2 4 8 1 2 4 8
BF16 INT8
Inference Latency (sec)
50.0
40.0
30.0
20.0
el Loct b
o il
32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024 32 1024
1 2 4 8 1 2 4 8
BF16 INT8

Reference Architecture

25

sl
I n te I ® Performance Verification

Figure10. VvLLM-IPEX-LLM Performance with Llama 3 8B Model on CPU

Llama3 -8B, Average Tokens/Second and Memory
Usage vs KV Cache

I Sum of Average tokens/s e Sum of Memory Usage (GB)

450 38417 393.77 39827 397.74 4015 39175 140
400 119 120 —
£ 350 100 o
S 300 En
S 250 80 g
-]
& 200 60 >
©
< 1 o
g 50 0 &
Z 100]
20 =
50
0 0
1 2 4 8 16 32 64 9%
KV Cache (GB)

Figure1l. VvLLM-IPEX-LLM Performance with Llama 3 8B Model on 2 x Flex170 (1024 Output Token

Size)
L'aargas Cequest # of pre-empted Time taken to
Precisio # GPU g /s Tokens/s requests (Lower complete 1000
n ' is better) Requests (m:ss)
1 1 1.14 479.41 363 14:38
— FP8
2 2 1.78 748.24 0 9:22
3 1 1.77 744.65 a5 9:25
— INT4
4 2 1.79 753.55 0 9:18

26 Reference Architecture

Performance Verification

intel.

Figure12. Llama 3 8B Performance on 2 x Flex 170 with Pipeline Parallel Configuration

N
o

Average Next Token Latency
=
) 8(n3) 8 8

AVERAGE NEXT TOKEN LATENCY (MS)

H32 m256 m1024 m2048

5657 35556 54545556 565657 5798

53°° 535
36 3435
28 33 20293030 29303031 303132
21222224 252526
m IIII II IIII IIII III |

INT4 INT8 FP16

903

400

300

Token/s

AVERAGE TOKENS/S

H32 m256 m1024 m2048

28580

24642
223 23230
163162153
132129176 140137
9492 89 ¢
727270

565857 54 69 67 66 64

35353433 37373636
IIII IIII anem

I I I I EENE I I I I

INT4 INT8 FP16

17871

150

100

(€2
o

Inference Time (s)

o

INFERENCE TIME (SEC)

W32 m256 m1024 m2048

5457 5760 54555759 55565760 575861 5960
3435 34 34 3536
i il iII II i 303132I 3132I II II IIII IIII III II
1 2
INT4 INT8 FP16

097

Reference Architecture

27

intel

4.4

4.4.1

Performance Verification

Network Security Al: MalConv and BERT

MalConv for Malicious portable executable (PE) detection

Alinference is used in network/security to help prevent advanced cyber-attacks. To improve
the latency associated with this application, the Intel® Xeon® Scalable Processor contains
technologies to accelerate Al inference such as AVX-512, Advanced Matric Extensions
(AMX), and Vector Neural Network Instructions. The MalConv Al workload utilizes the
TensorFlow deep-learning framework, Intel® one API Deep Neural Network Library (oneDNN),
AMX, and Intel® Neural Compressor to improve the performance of the Al inference model.

The starting model for the MalConv Al workload is an open-source deep-learning model called
MalConv which is given as a pre-trained Keras H5 format file. This model is used to detect
malware by reading the raw execution bytes of files. An Intel® optimized version of this h5
model is used for this workload, and the testing dataset is about a 32GB subset of the dataset
from https://github.com/sophos/SOREL-20M. The performance of the model can be
improved by various procedures including conversion to a floating-point frozen model and
using the Intel® Neural Compressor for post-training quantization to acquire BF16, INT8, and
ONNX INT8 precision models.

Ensure that the test results follow the expected results, as shown in the following tables, to
baseline the platform's performance. Table 12 shows the software used for the testing, while
Figure 14 shows a graph of the mean inference time for each model. With 2 cores per instance,
the INT8 model with AVX512_CORE_AMX enabled reached a performance of less than 10 ms.

Note: Referto https://hub.docker.com/r/Intel®/malconv-model-base for the Intel® Optimized

MalConv Model.

Table12. MalConv Al Workload Configuration

Ingredient Software Version Details
TensorFlow 2.13.0
Intel® Extension for Tensorflow 2.13.0.1
oneDNN 2024.2.0
Python 317
Intel® Neural Compressor 2.6

ONNX

1.16.1

28

Reference Architecture

https://hub.docker.com/r/intel/malconv-model-base

]
Performance Verification I n te I ®

Figure 13.

Note:
model.

Note:

MalConv Al Entry Platform Performance Graph

MalConv, 6538N (1 Socket)
w1 Core I 2 Cores I 4 Cores I 8 Cores
. 16 Cores 32 Cores ROC AUC Accuracy
Lower is better Higher is
% 5 1.00
o0
30 0.98
70 0.96
w
£ 0.94
g 60
= 0.92
=
g 50
5 0.90
5 40
GJ
‘£ ~ - 0.88
c 30 ™ o
g Ngm NEH 0.86
]
20 ~ =2 — SN
—~ Mo a9 —o 0.84
0o O™ N -~
10 s oG O 0.82
L I I g
0 0.80
Keras h5 FP32 BF16 with AMX BF16 with BF16 INT8 with AMX INT8 with VNNI ONNX INT8
Model

BERT is a pre-trained language representation model developed by Google Al Language
researchers in 2018, which consists of transformer blocks with a variable number of encoder
layers and a self-attention head. The model used in the testing is a fine-tuned version of the
Hugging Face BERT base model.

To detect phishing emails, the input email is first tokenized into chunks of words using the
Hugging Face tokenizer, with a special CLS token was added at the beginning. The tokens are
then padded to the maximum BERT input size, which by default is 512. The total input tokens
are converted to integer IDs and fed to the BERT model. A dense layer is added for email
classification, which takes the last hidden state for the CLS token as input.

Ensure that the results of the tests follow the expected results as shown in the following graph

to baseline the performance of the platform. Table 12 shows the software used for the testing,

while Figure 16 shows a graph of the results for the INT8 and FP32 BERT models. With 8 cores
perinstance, the mean latency of the INT8 model reaches below 20ms.

Refer to https://huggingface.co/bert-base-cased for the original Hugging Face BERT base

The phishing email test dataset can be found at https://github.com/IBM/nlc-email-

phishing/tree/master/data

Table 13.

BERT Al Workload Configuration

Ingredient Software Version Details

Torch 212

Reference Architecture 29

https://huggingface.co/bert-base-cased
https://github.com/IBM/nlc-email-phishing/tree/master/data
https://github.com/IBM/nlc-email-phishing/tree/master/data

sl
I n te ® Performance Verification

Ingredient Software Version Details
Intel® Extension for PyTorch 2.1.100
oneDNN 2024.2.0
Python 3.1.7
Intel® Neural Compressor 2.6

Figure14. BERTAI Performance on VRC for Intel® Al System — Medium Entry Configuration Graph

BERT, 6538N (1 Socket)
1 Core . 2 Cores . 4 Cores . 8 Cores

I 16 Cores . 3?2 Cores F1 Score

Lower is better Higher is better

1200.0 1.00
1018.5 0.99
_1000.0 [0.98
2)
= 800.0 097 0.97
g 0.96
2 600.0 0.95
@©
3 0.94
g 400.0 0.93
- 200.0 1142 o 0.92
Y 31.4 186 13.0 9.3 0.91
0.0 0.90

INT8

FP32

Model
Performance Summary

The following presents the range of performance achievable for the Intel® Al System for Edge
Verified Reference Blueprint — Medium configuration across each of the Vision Al, Generative
Al, and Network Security Al workloads.

30 Reference Architecture

intel.

5 Summary

The Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision,
and GEN Al defined on single socket 5th Gen Intel® Xeon® Scalable processors with multiple
Intel® Data Center Flex GPUs addresses the capabilities for Al Inference offering the
following value proposition:

1. ForVision Al use case using Processor Al acceleration only

e Upto 23 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large

e Upto 52 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large Plus configuration on 2x Flex 170 GPU

e Up to 38 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large Base configuration on 2x Flex 140 GPU

2. For Generative Al use case
With Processor Al inference offload

e Upto 670 tokens/s on Llama3 8B model with INT8 precision Batch size of 32 on Large Plus
CPU configuration

e Uptol14tokens/s on GPT-NEOX-20B model with INT4 precision Batch size of 1on Medium
Plus CPU configuration

With GPU Al inference Offload

e Upto236-257 tokens/s on Llama3 8B model with INT4/INTS8 precision Batch size of 8 on 2
Flex170 GPU

¢ Up to 364-448 tokens/s on Phi3-mini-4K instruct model with INT4/INT8 precision Batch
size of 8on 2 Flex 170 GPU

e Upto1022-1096 tokens/s on TinyLlama model with INT4/INTS8 precision Batch size of 8 on
2 Flex170 GPU

e Upto188-255 tokens/s on Llama3 8B model with INT4/INTS8 precision Batch size of 8on 1
Flex170 GPU

e Upto294-361tokens/s on Phi3-mini-4K instruct model with INT4/INT8 precision Batch
size of 8on 1Flex170 GPU

e Up to 731-830 tokens/s on TinyLlama model with INT4/INT8 precision Batch size of 8on 1
Flex170 GPU

3. ForNetwork Security Al use case

e Malconv testing, the INT8 model with AVX512_CORE_AMX enabled was able to reach a
performance of less than 10 ms. with 2 cores per instance.

e Berttesting, the mean latency of the INT8 model reaches below 20ms with 8 cores per
instance.

This Configuration combined with architectural improvements, feature enhancements, and
integrated Accelerators with high memory and 10 bandwidth, provides a significant
performance and scalability advantage in support for today’s Al workload.

Reference Architecture 31

intel.

These processors are optimized for network, cloud native, wireline, and wireless core-intensive
workloads, and are especially suited for Al workloads coupled with Intel® Ethernet E810-
Network Controllers and Intel® Data Center Flex GPUs.

32 Reference Architecture

Appendix

intel.

Appendix A Appendix

Al

Retail Self-checkout Vision Al Test Methodology

Figure15. Test Methodology for Retail Self-checkout Pipeline

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POSTPROCESSING
% - —
5 . O Frame splitiing Objedt Detedtion Crop8.Scale Product Inference
~»
Classification Metadata
/ s

> = [y = |
'
i 7

¥y

Crop& Scale yolovs Il

Bounding Box
Dispiay

—

-

Encode

Encode B

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source software. Vision workloads are large and complex and need to go through
many stages. For instance, in the pipeline below, the video data is ingested, pre-processed
before each inferencing step, inferenced using two models - YOLOv5 and EfficientNet, and
post-processed to generate metadata and show the bounding boxes for each frame.

Pre-Requisites
1. Intstall Docker
2. SetHTTP_PROXY and HTTPS_PROXY proxies in environment if necessary.

3. Pythonversion 3.8 is recommended.
Quick Setup
Download videos, models, docker images and build containers.

$ git clone https://github.com/Intel®-retail/automated-self-checkout.git

$ git checkout tags/3.0.0
#make run-demo

Issue and Workaround

Issue #1: Binary 'ffmpeg” does not exist in OpenVINO container.

to create shim task: OCI runtime create i runc create 8 start container process

render-mode]
t

Workaround:

a. Create a Dockerfile named Dockerfile.OV.

FROM openvino/ubuntu20_data_runtime:2021.4.2

USER root
RUN apt-get update apt-get install -y ffmpeg

b. Build the OpenVINO image.

Reference Architecture 33

https://github.com/intel-retail/automated-self-checkout.git

|
intel.

A2

A2l

A22

A.2.3

A.2.3.1

34

$ docker build --build-arg HTTPS PROXY=${HTTPS PROXY} --build-arg
HTTP PROXY=S${HTTP_PROXY} -t openvino/Ubuntu*20 data runtime:2021.4.2 -f
src/Dockerfile.OV .

Generative Al Test Methodology

IPEX-LLM Testing Methodology on CPU

The Generative Al benchmark on Intel® CPU was performed using Intel® Extension of PyTorch
(IPEX) for LLM. Al cores are being used and sustained at 100% CPU utilization throughout the
inference process.

Please refer to the link below for more information on the configuration

https://www.Intel®.com/content/www/us/en/developer/articles/technical/accelerate-meta-
llama3-with-Intel®-ai-solutions.html

IPEX-LLM Testing Methodology on GPU

Pull and start the container.
export DOCKER IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
export CONTAINER NAME=ipex-llm-serving-xpu
export MODEL PATH=<YOUR PATH TO THE MODEL WEIGHTS>
docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
docker run -itd \

--net=host \

--device=/dev/dri \

--memory="64G" \

——name=$CONTAINER_NAME \

--shm-size="16g" \

-v S$SMODEL PATH:/llm/models \

$DOCKER IMAGE

v »r U > U

Note: Ensure that you have assign enough memory via the --memory tag as the model(s) will
be loaded to the container memory before moving to the GPUs.

Enter the container via bash terminal:
$ docker exec -it ipex-llm-serving-xpu bash

Enter the predefined benchmark script directory:
$ cd /benchmark/all-in-one

Running IPEX-LLM Benchmarking Scripts

Running IPEX-LLM on CPU

Running IPEX-LLM on CPU Follow the steps to setup the IPEX-CPU test and benchmark on
Single socket Intel® Xeon Scalable Processor. The user is expected to have privileged rights.

4. Install the baseline dependencies:
sudo apt update
sudo apt install -y make git numactl

Reference Architecture

https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html

Appendix

Note:

Note:

intel

sudo apt install -y python3
sudo pip install -upgrade pip

Clone the IPEX project:
git clone https://github.com/Intel®/Intel®-extension-for-pytorch.git
cd Intel®-extension-for-pytorch
git checkout v2.3.100+cpu
git submodule sync
git submodule update --init --recursive

Build the IPEX docker image:
DOCKER BUILDKIT=1 docker build --build-arg HTTPS PROXY=${HTTPS PROXY} -
-build-arg HTTP_PROXY=${HTTP_PROXY} =it
examples/cpu/inference/python/llm/Dockerfile --build-arg COMPILE=ON -t
ipex-cpu:2.3.100

4= ON e e S o (1

The ipex-cpu container build takes approx. 30 mins
7. Verify the IPEX container is built

docker images | grep ipex
REPOSITORY TAG IMAGE ID CREATED SIZE
ipex-cpu 2.3.100 d5ce81fe66£f8 3 hours ago 4.61GB

8. Download the LLM models from HuggingFace:
huggingface-cli download <model card> --local-dir ~/<local model path>
—--token <your huggingface token>

9. Starttheipex-cpudocker container

export DOCKER IMAGE=ipex-cpu:2.3.100

export CONTAINER NAME=ipex-cpu

export MODEL PATH=<CHANGE TO PATH TO THE MODEL DIRECTORY>

docker run --rm -it --privileged --memory="256G" --shm-size="128G" --
name=SCONTAINER NAME -v SMODEL PATH:/llm/models $SDOCKER IMAGE bash

It's recommended to use shard_model before running distributed inference to save time

during modelinference.

10. Shared model for Distributed inference inside the ipex-cpu docker container
cd ./1llm/utils

create shard model.py -m /llm/models/<MODEL_ ID> --save-path
/11lm/models/<SHARD-MODEL-DIRECTORY>

1. Copy the benchmark_cpu_ds.sh and extract_kpis.py script to the container:

docker cp ~/applications.platform.Intel®-select-for-
network/enterprise ai/common/ipex-llm-cpu/benchmark cpu ds.sh ipex-
cpu://home/Ubuntu*/11lm/

docker cp ~/applications.platform.Intel®-select-for-
network/enterprise ai/common/ipex-llm-cpu/extract kpis.py ipex-
cpu://home/Ubuntu*/11lm/

12. Change the user:group of the scripts inside the container:
sudo chown Ubuntu*:Ubuntu* benchmark cpu.sh
sudo chown Ubuntu*:Ubuntu* extract kpis.py

13. Edit the shard model path and model name in the benchmark_cpu_ds.sh script as shown
model shard="/llm/models/llama3-8B/shard model hf"
model name="llama3-8B"

14. Download the prompt json files for model tests

For Llama3 models download the below prompt file

wget -O prompt.json https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json

Reference Architecture 35

https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json
https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json

intel.

A.2.3.2

36

For other models, use the below prompt file
wget https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

15. Runthe benchmark script for distributed inference. This script will create a "result-
model_name_mmddyyhhss" folder in the same directory and will contain text files for each

testiteration
./benchmark cpu.sh

16. Extract KPIs using the python script. This script generate a CSV file named

llIm_benchmark_results.csv with all the KPls
python extract kpis.py --results-dir results-model name mmddyyhhss

17. Copy the llm_benchmark_results.csv file from docker to host
docker cp ipex-—
cpu:/home/Ubuntu*/11lm/11lm benchmark results.csv ./root/workspace

Running IPEX-LLM on Single GPU

The Generative Al benchmark on Intel® Data Center GPU Flex 170 leverages the IPEX-LLM
framework and is deployed in a containerized manner.

To run the Generative Al benchmark on Intel® Data Center GPU Flex 170:

18. Download the IPEX-LLM containerimage:
export DOCKER IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT

19. Launch the IPEX-LLM container. For example, to benchmark with the Meta Llama3-8B
model:

export CONTAINER NAME=ipex-llm-serving-xpu

export MODEL PATH=~/llama3-8b

docker run -itd \
--net=host \
--device=/dev/dri/card0 \
--device=/dev/dri/renderD128 \
—--memory="64G" \
--name=5CONTAINER NAME \
--shm-size="16g" \
-v SMODEL PATH:/llm/models \
$DOCKER_IMAGE bash

20. Copy the run-arc-sweep.sh script to the container:

docker cp ~/applications.platform.Intel®-select-for-

network/enterprise ai/common/ipex-llm-gpu/run-arc-sweep.sh ipex-l1lm-

serving-xpu:/benchmark/all-in-one/

21. Loginto the container and update the run-arc-sweep.sh script to use the appropriate
model. For example, to benchmark with the Meta LIama3-8B model:

docker exec -it ipex-llm-serving-xpu /bin/bash

cd /benchmark/all-in-one/

SEDITOR run-arc-sweep.sh

current model name="llama3-8b"

Reference Architecture

https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json
https://intel-extension-for-pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

5]
intel.

22. Loginto the container and start the benchmark:
bash run-arc-sweep.sh

23. Review the benchmark results:
cat optimize model gpu-results*.csv

A.2.3.3 Running vLLM-IPEX-LLM on CPU

Create conda environment

$ wget https://github.com/conda-
forge/miniforge/releases/latest/download/Miniforge3-Linux-x86 64.sh
$ chmod +x ./Miniforge3-Linux-x86 64.sh

$./Miniforge3-Linux-x86 64.sh

$ conda create -n ipex-vllm python=3.11

$ conda activate ipex-vllm

Install dependencies

pip3 install numpy

pip3 install --pre --upgrade ipex-llm[all] --extra-index-
url https://download.pytorch.org/whl/cpu

pip3 install psutil fastapi "uvicorn[standard]"

pip3 install sentencepiece # Required for LLaMA tokenizer.
pip3 install "pydantic<2" # Required for OpenAI server.

Install vLLM

git clone https://github.com/vllm-project/vllm.git andand \

cd ./v1llm andand \

git checkout v0.4.2 andand \

pip install wheel packaging ninja setuptools==49.4.0 numpy andand \
pip install -v -r requirements-cpu.txt --extra-index-

url https://download.pytorch.org/whl/cpu andand \

sudo apt install build-essential

VLLM TARGET DEVICE=cpu python3 setup.py install

pip install ray

Download Dataset
Swget https://huggingface.co/datasets/anon8231489123/ShareGPT Vicuna unfi
ltered/resolve/main/ShareGPT V3 unfiltered cleaned split.json

Run throughput benchmarking command line:

VLLM CPU KVCACHE SPACE=16 # 16GB for KV _CACHE

python3 ./benchmark throughput.py --device cpu --n 1000
--model Meta-Llama-3-8B --enable-chunked-prefill --dataset
ShareGPT V3 unfiltered cleaned split.json
-—-trust-remote-code --max-num-batched-tokens 256

Reference Architecture 37

https://download.pytorch.org/whl/cpu
https://github.com/vllm-project/vllm.git
https://download.pytorch.org/whl/cpu
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

intel.

A3

A.3.1

A.3.2

38

Appendix

Network Security Al Test Methodology

MalConv Al Test Methodology

Follow the instructions below to run the MalConv Al testing:

1.

You will need to provide your own testing dataset to use. Create the following directories:

mkdir -p malconv/datasets/KNOWN

mkdir -p malconv/datasets/MALICIOUS
Place the benign files into the “malconv/datasets/KNOWN" directory, and place the
malicious files in the “malconv/datasets/MALICIOUS” directory
Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

Run the “run_malconv_test.sh” script to run the MalConv benchmarking test. The
generated “malconv_results.log” file will contain five runs of the mean inference time
results and ROC AUC accuracy of each model tested with different numbers of cores per
instance.

Bert Al Test Methodology

Follow the instructions below to run the BERT testing:

1.

Use the “"build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

Runthe “run bert test.sh”scripttorunthe benchmarking test. The generated

“bert results.log” file will contain five runs of the testing showing multiple statistics
for different numbers of cores per instance. The mean latency value is highlighted in the
results shown in Section 4.4.2.

Reference Architecture

	1 Introduction
	2 Design Compliance Requirements
	2.1 Hardware Requirements
	2.2 BIOS Settings
	2.3 Solution Architecture
	2.4 Platform Technology Requirements
	2.5 Platform Security
	2.6 Side Channel Mitigation

	3 Platform Tuning and GPU Driver Setup
	3.1 Boot Parameter Setup
	3.2 Additional Linux Packages Installation
	3.2.1 Install Docker
	3.2.2 Install GPU Driver
	3.2.2.1 Install Dependencies
	3.2.2.2 Install Intel® GPU Driver
	3.2.2.3 Install the Intel® GPU kernel driver i915 and xpu manager
	3.2.2.4 Install necessary graphics and media packages for the Intel® GPU
	3.2.2.5 Reboot the server for the changes to take place in the OS

	3.2.3 Configure permissions on the OS groups for GPU as rendering device
	3.2.4 Verify the installation to check if the GPU device is working with i915 driver

	4 Performance Verification
	4.1 Memory Latency Checker (MLC)
	4.2 Retail Self-Checkout
	4.3 Generative AI
	4.4 Network Security AI: MalConv and BERT
	4.4.1 MalConv for Malicious portable executable (PE) detection

	5 Summary
	Appendix A Appendix
	A.1 Retail Self-checkout Vision AI Test Methodology
	A.2 Generative AI Test Methodology
	A.2.1 IPEX-LLM Testing Methodology on CPU
	A.2.2 IPEX-LLM Testing Methodology on GPU
	A.2.3 Running IPEX-LLM Benchmarking Scripts
	A.2.3.1 Running IPEX-LLM on CPU
	A.2.3.2 Running IPEX-LLM on Single GPU
	A.2.3.3 Running vLLM-IPEX-LLM on CPU
	A.3 Network Security AI Test Methodology
	A.3.1 MalConv AI Test Methodology
	A.3.2 Bert AI Test Methodology

