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Introduction

Intel® Enterprise Al systems are a range of optimized commercial Al systems delivered and
sold through OEM/ODM in the Intel® ecosystem. They are commercial platforms verified-
configured, tuned, and benchmarked using Intel’s reference Al software application on Intel®
hardware to deliver optimal performance for Enterprise applications.

Intel® Al Systems offers a balance between computing and Al acceleration to deliver optimal
TCO, scalability, and security. Al systems enable enterprises to jumpstart development
through a hardened system foundation verified by Intel®. Al systems enable the ability to add
Al functionality through continuous integration into business applications for better business
outcomes and streamlined implementation efforts.

To support the development of these Al systems, Intel®is offering reference design and
verified reference configuration blueprints with Al system configurations that are tuned and
benchmarked for different Al System types that support Enterprise Al use cases. Verified
reference blueprints (VRB) include Hardware BOM, Foundation Software configuration (OS,
Firmware, Drivers) tested and verified with supported Software stack (software framework,
libraries, orchestration management).

This document describes a verified reference blueprint architecture using the 5th Gen Intel®
Xeon® Scalable processor family.

When network operators, service providers, cloud service providers, or enterprise
infrastructure companies choose an Intel® Al System for the edge Verified Reference
Blueprint, they should be able to deploy the Al workload more securely and efficiently than
ever before. End users spend less time, effort, and expense evaluating hardware and software
options. Intel® Al System Verified Reference Blueprint helps end users simplify design choices
by bundling hardware and software pieces together while making the high performance more
predictable.

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al is based on single-node architecture, that provides environment to execute multiple Al
workloads that are common to be deployed at the edge, such as the “Intel® Automated Self-

"o

Checkout Reference Package”, “Generative Al” and “Network Al based on MalConv”.

All Intel® Al System for Edge Verified Reference Blueprint Configurations feature a workload-
optimized stack tuned to take full advantage of an Intel® Architecture (IA) foundation. To
meet the requirements, OEM/ODM systems must meet a performance threshold that
represents a premium customer experience.

There are two configurations for Intel® Al System for Edge Verified Reference Blueprint —
Medium for Computer Vision,and GEN Al covering a base and plus configuration:

¢ Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al Plus configuration for the Node is defined with at least a 32-core 5th Generation
Intel® Xeon® Scalable processor and high-performance network, with storage and
integrated platform acceleration products from Intel® for maximum virtual machine density.

e Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al Base configuration for the Node is defined with a 24-core or higher 5th Generation
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Intel® Xeon® Scalable processor and network, with storage and add-in platform acceleration
products from Intel® targeting for optimized value and performance-based solutions.

Bill of Materials (BOM) requirement details for the configurations are provided in Chapter 2 of
this document.

Intel® Al System for Edge Verified Reference Blueprint is defined in collaboration with
enterprise vertical users, service providers and our ecosystem partners to demonstrate the
value of the solution for Al Inference use cases. The solution leverages the hardened hardware,
firmware, and software to allow customers to integrate on top of this known good foundation.

Intel® Al System for Edge Verified Reference Blueprint provides numerous benefits to ensure
end users have excellent performance for their Al Inference applications. Some of the key
benefits of the Reference Configuration based on the 5th Generation Intel® Xeon® Scalable
Processor Family processor include:

e High core counts and per-core performance

e Compact, power-efficient system-on-chip platform

e Streamlined path to cloud-native operations

e Accelerated Al inference using Intel® AMX and Intel® DL Boost

e Multiple discrete GPU support to accelerate for Al inference workload
e Accelerated encryption and compression

¢ Platform-level security enhancements

Reference Architecture 7
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Design Compliance Requirements

Design Compliance Requirements

2.1

Table 1.

Table 2.

This chapter focuses on the design requirements for Intel® Al System for Edge Verified
Reference Blueprint — Medium for Computer Vision,and GEN Al.

Hardware Requirements

The checklists in this chapter are a guide for assessing the platform’s conformance to Intel® Al
System for Edge Verified Reference Blueprint — Medium for Computer Vision, and GEN Al.
The hardware requirements for the Plus Configuration and Base Configuration are detailed

below.

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - Plus Configuration

Ingredient Requirement Re?ggﬂ:géed Quantity

Intel® Xeon® Gold 6538N Processor at

Processor 2.1GHz, 32C/64T, 205W or higher number Required 1
SKU
Option 1: DRAM only configuration: 256 16
GB (16x 16 GB DDR5, 4800 MHz)

Memory Required
Option 2: DRAM only configuration: 512 32
GB (32x16 GB DDR5, 4800 MHz)

Storage . . .

(Boot Drive) 480 GB or equivalent boot drive Required 1
1x Flex170 or 2 x Flex 170
1xArc A770 or 2 x Arc A770 i

Graphics Required 1(Required)
2 x Arc A750 orupto3
3xFlex140

Storage . .

- 2TB or equivalent drive Recommended

(Capacity)
10 Gbps or 25 Gbps port for video

LAN on streaming Recommended

Motherboard ;

(LOM) 1/10 Gbps port for Management Network .
Interface Controller (NIC) Required !

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al - Base Configuration

Ingredient Requirement Required/ Quantity
Recommended
Intel® Xeon® Gold 5518N processor at 1.8
Processor GHz,24C/48T,165W or higher number Required 1
SKU

Reference Architecture
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2.2

2.3
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Ingredient Requirement Required/ Quantity
Recommended
DRAM only configuration: 256 GB .
Memoryl (16x16 GB DDRS5, 4800 MHz) Required 16
1x Flex170 or 2 x Flex170
1x Arc A770 or 2 x Arc A770 1(Required)
Graphics Required Upto3
2 x Arc A750 (optional)
3 xFlex140
St9rage (Boot 2 TBor equivalent boot drive Required 1
Drive)
LANon 10 Gbps or 25 Gbps port for PXE/OAM Recommended 1
Motherboard
(LOM) 1/10 Gbps port for Management NIC Required 1

BIOS Settings

To meet the performance requirements for an Intel® Al System for Edge Verified Reference
Blueprint—Medium for Computer Vision and GEN Al, Intel® recommends using the BIOS
settings to enable processor p-state and c-state with Intel® Turbo Boost Technology (“turbo
mode”) enabled. Hyperthreading is recommended to provide higher thread density. For this
solution Intel® recommends using the NFVI profile BIOS settings for on-demand Performance
with power consideration.

The NFVI profile for BIOS settings is documented in Chapter 3 of BIOS Settings for Intel®
Wireline, Cable, Wireless, and Converged Access Platform (#747130).

Note: BIOS settings differ from vendor to vendor. Please contact your Intel® Representative for
NFVIBIOS Profile Doc# 747130 or if you have difficulty configuring the exact setting in your system

Solution Architecture

Figure 1shows the architecture diagram of Intel® Al System for Edge Verified Reference
Blueprint — Medium for Computer Vision, and GEN Al. The software stack consists of three
categories of Al software:

1. Vision Al

2. Generative Al

3.  Network Security Al
All three applications are containerized using docker.

For the Vision Al use case, we are using the Intel® Automated Self-Checkout application,
which measures stream density. The video data is ingested and pre-processed before each
inferencing step. The inference is performed using two models: YOLOv5 and EfficientNet.
The YOLOvV5 model does object detection, and the EfficientNet model performs Object
Classification.

Reference Architecture 9
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For the Generative Al use case, we are using large language models (LLMs) and Intel®
Extension of PyTorch (IPEX) framework to perform LLM inference on Intel® CPU and Intel®

Figurel.

Table 3.

GPU.

Design Compliance Requirements

For Network Security Al, we are using Malconv and finetuned BERT-base-cased for malicious
portable executable (PE) file detection and email phishing detection respectively.

Architecture of the Intel® Al System for Edge Verified Reference Blueprint

Vision Al: Gen Al:
Intel® Automated Self-Checkout Large Language Models
Reference Package

IPEX CPU, IPEX LLM XPU, DeepSpeed,
Transformers, oneDNN, aneCCL, torch-
ccl, Intel Neural Compressor , Python
3.10+

Intel® ARC GPU

Network Security Al:
Malconv and BERT

Models:
Malconv and BERT-base-cased

Tensor Flow, ONNX, oneDNN, Neural
gmm, Python 3.10+

Applications

Framework
and

Library

Drivers

b Container Runtime (Docker) + Docker Compose
Ubuntu 22.04 LTS Desktop, 6.5 Kernel

14th Generation Intel® Core® Processor-based platform

The table below is a guide for assessing the conformance to the software requirements of the
Intel® Al System for Edge Verified Reference Blueprint Ensure that the platform meets the

requirements listed in the table below.

SW Configuration
Ingredient SW Version Details
oS Ubuntu*22.04.4LTS
Kernel 6.5 (in-tree generic)
OpenVINO 2024.0.1
Docker Engine 27.1.0
Docker Compose 2.29
Intel® Level Zero for GPU 1.3.29735.27
Intel® Graphics Driver for GPU (i915) 24.3.23
Media Driver VAAPI 2024.1.5
Intel® OneVPL 2023.4.0.0-799
Mesa 23.2.0.20230712.1-2073
OpenCV 4.8.0

Reference Architecture
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2.4

Table 4.

2.5

2.6

Ingredient SW Version Details
DLStreamer 2024.0.1
FFmpeg 2023.3.0

Platform Technology Requirements

This section lists the requirements for Intel®’s advanced platform technologies.

Enterprise Al requires Intel® AVX (Advance Vector Extensions) or AMX (Intel® Advance
Matrix Extensions) to be enabled to reap the benefits of hardware-accelerated convolution.

Platform Technology Requirements

Platform Technologies Enable/Disable Required/Recommended
Intel® VT Intel® CPU Virtual Machine Enable Optional
Extension (VMX) Support
Intel®1/O Virtualization Enable Optional
Intel® AMX Intel® Advance Matrix Enable Required
Extension
Intel® TXT Intel® Trusted Execution Enable Optional
Technology

Platform Security

For Intel® Al System for the Edge, itis recommended that Intel® Boot Guard Technology to be
enabled so that the platform firmware is verified suitable during the boot phase.

In addition to protecting against known attacks, all Intel® Accelerated Solutions recommend
installing the Trusted Platform Module (TPM). The TPM enables administrators to secure
platforms for a trusted (measured) boot with known trustworthy (measured) firmware and OS.
This allows local and remote verification by third parties to advertise known safe conditions for
these platforms through the implementation of Intel® Trusted Execution Technology (Intel®
TXT).

Side Channel Mitigation

Intel® recommends checking your system’s exposure to the “Spectre” and “Meltdown”
exploits. This reference implementation has been verified with Spectre and Meltdown
exposure using the latest Spectre and Meltdown Mitigation Detection Tool, which confirms
the effectiveness of firmware and operating system updates against known attacks

The spectre-meltdown-checker tool is available for download at
https://github.com/speed47/spectre-meltdown-checker.

§
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Platform Tuning and GPU Driver
Setup

3.1

Table 5.

3.2

3.2.1

3.2.2

Boot Parameter Setup
For the workload testing, it is first necessary to set the host command line with appropriate
boot parameters as well as 1GB of pages. In the “/etc/default/grub” file, update the line

“GRUB_CMDLINE_LINUX" to include the following parameters:

“i915.force_probe=56c0” # Or replace the device ID with the corresponding hardware

Boot Paramteres

Device Intel® Flex170 Intel® Flex 140 Intel® Arc A380 Intel® Arc A750

1D 56¢c0 56cl 56a5 56al

After modifying in grub file, run “update-grub” and “reboot” to apply the changes and verify the

change with “cat /proc/cmdline”:
cat /proc/cmdline

BOOT IMAGE=/vmlinuz-6.5.0-44-generic root=UUID=aecl07d6-c26d-4db4-a617-
117964293819 ro i915.force probe=56c0

Additional Linux Packages Installation

Install Docker

Follow the instructions at https://docs.docker.com/engine/install/Ubuntu*/ to install Docker
Engine on Ubuntu*.

Install GPU Driver

Make sure the Intel® GPU is enumerated as a PCle device.

Below is an example of 3 x Intel® Flex 140 GPUs (each Flex 140 card has 2 GPUs so a total of 6
is shown here)

= # lspci -nn | grep -i display
controller : Intel Corporation

D
controller : Intel Corporation D
controller : Intel Corporation D
controller : Intel Corporation D
controller : Intel Corporation D

D

y controller : Intel Corporation Device
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3.2.2.1

3.2.2.2

3.2.2.3

Install Dependencies
$ sudo apt-get install -y gpg-agent wget

$ wget -qO - https://repositories.Intel®.com/gpu/Intel®-graphics.key | \
sudo gpg --dearmor --output /usr/share/keyrings/Intel®-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/Intel®-graphics.gpg]
https://repositories.Intel®.com/gpu/Ubuntu* jammy/lts/2350 unified" | \
sudo tee /etc/apt/sources.list.d/Intel®-gpu-jammy.list

Install Intel® GPU Driver

$ sudo apt-get update

$ sudo apt-get -y install \
gawk \
dkms \
flex bison \
linux-headers-$ (uname -r) \
linux-modules-extra-$ (uname -r) \
libc6-dev

Install the Intel® GPU kernel driveri915 and xpu manager
$ sudo apt install -y Intel®-1i915-dkms Intel®-fw-gpu xpu-smi

Note: The Linux* kernel driver(s) provide the software connection to the Intel® GPU hardware. The
kernel driver(s) are provided today as Dynamic Kernel Module Support (DKMS) drivers “out-of-tree”
from the Linux kernel.

3.224

3.2.25

3.2.3

Install necessary graphics and media packages for the Intel® GPU

$ sudo apt-get install -y gawk libc6-dev udev\
Intel®-opencl-icd Intel®-level-zero-gpu level-zero \
Intel®-media-va-driver-non-free libmfxl libmfxgenl libvpl2 \
libegl-mesal libegll-mesa libegll-mesa-dev libgbml libgll-mesa-dev \
libgll-mesa-dri libglapi-mesa libgles2-mesa-dev libglx-mesal \
libigdgmml2 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo

Reboot the server for the changes to take place in the OS
$ sudo reboot

Configure permissions on the OS groups for GPU as rendering device

$ sudo gpasswd -a ${USER} render
$ newgrp render

Verify if the render group is added as shown below:

# groups

render

Reference Architecture 13
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3.24

Platform Tuning and GPU Driver Setup

Verify the installation to check if the GPU device is working with i915

driver

$ sudo apt-get install -y hwinfo
$ hwinfo --display

Verify if the i915 driver is active:

Verify the GPU devices using xpu manager:

$ xpu-smi discovery

Device Name
Vendor Name:
SOC UUID: o8l
PCI BDF Addr
DRM Device:

Lce Name
Vendor Name
SOC UUID: oel
PCI BDF Addr
DRM Device:

S0C UUID
PCI BDF Addr
DRM Dey :

S0C UUTID
PCI BDF Addr
DRM Dey :

ice Name
ndor Name
S0C UUID
PCI BDF Addr
DRM Dey 3

ice Name
Vendor Name
S0C UUID

Intel(R) Corporation

Intel(R) D
Intel(R)

Intel{(R) D
Intel(R)

-e71b-8ce73fc31e46

a Center
rporat i

a Center
rporation

a Center
rporation
3-9847ab57cagb

:78:01.0/

Reference Architecture
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Performance Verification

4.1

Table 6.

Table7.

This chapter aims to verify the performance metrics for the Intel® Al System for Edge Verified
Reference Blueprint to ensure that there is no anomaly seen. Refer to the information in this
chapter to ensure that the performance baseline for the platform is as expected.

The Plus solution was tested on August 06, 2024, with the following hardware and software
configurations:

¢ INUMA node

¢ 1xIntel® Xeon® Gold 6538N processors

e Total Memory: 128 GB, 8 slots/16 GB/4800 MT/s DDR5 RDIMM
¢ Hyperthreading: Enable

e Turbo:Enable

e C-State:Enable

e Storage:1x1TBINTEL® SSDPE2KX010T8

¢ Network devices: 2x Dual port Intel® Ethernet Network Adapter ES10-2CQDA2
o Network speed: 50 GbE

e BIOS: American Megatrends International, LLC. 3BO5.TEL4P1
¢ Microcode: 0x21000161

o OS/Software: Ubuntu* 22.04.1 (kernel 6.5.0-44-generic)

Memory Latency Checker (MLC)

The Memory Latency Checker which can be downloaded from
https://www.Intel®.com/content/www/us/en/developer/articles/tool/Intel®r-memory-
latency-checker.html. Download the latest version, unzip the tarball package, go into the
Linux* folder, and execute . /mlc. Table 6 and Table 7 below should be used as a reference for
verifying the validity of the system setup.

Memory Latency Checker
Key Performance Metric Local Socket (Plus)
Idle Latency (ns) 150.3
Memory Bandwidths between nodes within the system 260425
(using read-only traffic type) (MB/s)

Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution

AllReads 255504

Reference Architecture 15
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Peak Injection Memory Bandwidth (1 MB/sec) using all threads Plus Solution
3:1Reads-Writes 21857
2:1Reads-Writes 202797
1:1Reads-Writes 186870
STREAM-Triad 206753

Loaded Latencies using Read-only traffic type with Delay=0 18311

(ns)

L2-L2 HIT latency (ns) 73.6

L2-L2 HITM latency (ns) 74.7

Note: If the latency performance and memory bandwidth performance are outside the range, please
verify the validity of the Platform components, BIOS settings, kernel power performance profile used,
and other software components.

4.2

Figure 2.

Retail Self-Checkout

Retail Self-Checkout is an implementation that provides critical components to build and
deploy a self-checkout use case using Intel® hardware, software, and other open-source
software. This reference implementation provides a pre-configured automated self-checkout
pipeline optimized for Intel® hardware.

The video stream is cropped and resized to enable the inference engine to run the associated
models. The object detection and product classification features identify the SKUs during
checkout. The bar code detection, text detection, and recognition feature further verify and
increase the accuracy of the detected SKUs. The inference details are then aggregated and
pushed to the enterprise service bus or MQTT to process the combined results further.

INGESTION PRE-PROCESSING INFERENCING PRE-PROCESSING INFERENCING POSTPROCESSING

l?. o Frame spitting Object Detedtion Crop&Scale p— Inference
-
| 73 Classfication Matadata
” o ry

5 = |

'
b Crop& Scale ‘

- N : Shee

: — - [ Hes—————————

Encode

Retail Self-checkout Video Analytics Pipeline

Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision, and
GEN Al configuration, the platform CPU with AMX should be able to process up to 23 number
of streams at 4K @ 14.95FPS with HEVC codec, and up to 21 number of streams when
equipped with Intel® Flex 170 GPU.
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Table 8. Retail Self-checkout

intel.

Ingredient Software Version Details
OpenVINO 2024.0.1
DLStreamer 2024.0.1
FFMPEG 2023.3.0
VPL 2023.4.0.0-799
Python 3.8+

Table9.  Retail Self-Checkout Medium Configuration Performance

Configurationl

Intel® CPU Xeon® 6538N

Intel® Flex170

2 x Intel® Flex170

Plus Configuration (# of
streams)

23

26

50

Figure 3. Retail Self-Checkout Medium Configuration Performance Graph on Xeon® 6538N and Intel®

Flex170
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4.3
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Generative Al

Intel® Generative Al solution provide the ability to create, respond and synthesize texts to
create content, summarizing text, building Al chatbots, generate images and more. In this
document, we focus on inferencing performance using Intel® Enterprise Al solution with
State-Of-The-Art foundational models such as GPT-NEOX-20B, Llama 3 8B, Phi3, and
TinyLlama.

To ensure Generative Al is running on Intel® hardware with optimal performance, we use IPEX-
LLM framework as inference workload. IPEX-LLM is optimized with Intel® AMX technology, as
well as Intel® GPUs with precision from FP32 to INT4. Incrementing batch size also provides
better throughput performance with latency trade-offs.

On LLM serving front, vLLM also has been integrated with IPEX-LLM, and provides excellent
throughput by employing continuous batching, especially the LLM serving framework is
optimized with underlying Intel® hardware enhancements such as AMX/AV X512 and AVX2.

For the Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer
Vision, and GEN Al configuration, the system should be able to deliver results as shown in
Table 10 and Table 11 as a baseline to the expected performance of this solution.

Reference Architecture



Performance Verification

intel.

Table10. Performance of Various Large Language Models on CPU:
Models Precision Input Batch Size Throughput Inference
Tokens (tokens/s) time
GPT-NEOX-20B INT4 32 1 14 <72s
Llama-3-8B INT4 32-1024 4 81-119 <60s
Phi3-4k-mini INT4 32-256 8 179-208 <60s
TinyLlama INT4 32-1024 16 321-695 <60s
vLLM Llama 3 8B BF16 Variable Variable 393 N/A
TableTl.  Performance of Various Large Language Models on Intel® Data Center Flex GPU:
Models GPU Precision Input Batch Throughput Inference
Tokens Size (tokens/s) time
Phi-3-mini | Flex170 INT4-8 32-256 8 257-346 <60s
Llama 3 8B Flex170 INT4-8 32-256 8 188-215 <60s
Llama 3 8B 2 x Flex170 INT8- 32-256 8 230-246 <60s
FP16
Llama 3 8B 2 xFlex170 FP8 Variable Variable 748 N/A
Llama 3 8B 3xFlex140 INT4 32-256 1 18 <60s
Phi-3-mini 3xFlex140 INT4 32-256 2 39-40 <60s
Reference Architecture 19
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Figure 4.
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Performance for GPT-NEOX-20B model on CPU
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Performance for Llama 3 8B Model on CPU

Figure 5.
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Performance for Llama 3 8B Model on Intel® Flex 170

Figure 6.
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Performance for Phi-3-4k Mini Model on CPU
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Figure 8. Performance for Phi-3-4k-Mini Model on Intel® Flex 170
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Figure9. Performance on TinyLlama Modelon CPU
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Figure10. VvLLM-IPEX-LLM Performance with Llama 3 8B Model on CPU
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Figure1l. VvLLM-IPEX-LLM Performance with Llama 3 8B Model on 2 x Flex170 (1024 Output Token

Size)
L'aargas Cequest # of pre-empted  Time taken to
Precisio # GPU g /s Tokens/s requests (Lower complete 1000
n ' is better) Requests (m:ss)
1 1 1.14 479.41 363 14:38
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2 2 1.78 748.24 0 9:22
3 1 1.77 744.65 a5 9:25
— INT4
4 2 1.79 753.55 0 9:18
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Figure12. Llama 3 8B Performance on 2 x Flex 170 with Pipeline Parallel Configuration
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4.4.1

Performance Verification

Network Security Al: MalConv and BERT

MalConv for Malicious portable executable (PE) detection

Alinference is used in network/security to help prevent advanced cyber-attacks. To improve
the latency associated with this application, the Intel® Xeon® Scalable Processor contains
technologies to accelerate Al inference such as AVX-512, Advanced Matric Extensions
(AMX), and Vector Neural Network Instructions. The MalConv Al workload utilizes the
TensorFlow deep-learning framework, Intel® one API Deep Neural Network Library (oneDNN),
AMX, and Intel® Neural Compressor to improve the performance of the Al inference model.

The starting model for the MalConv Al workload is an open-source deep-learning model called
MalConv which is given as a pre-trained Keras H5 format file. This model is used to detect
malware by reading the raw execution bytes of files. An Intel® optimized version of this h5
model is used for this workload, and the testing dataset is about a 32GB subset of the dataset
from https://github.com/sophos/SOREL-20M. The performance of the model can be
improved by various procedures including conversion to a floating-point frozen model and
using the Intel® Neural Compressor for post-training quantization to acquire BF16, INT8, and
ONNX INT8 precision models.

Ensure that the test results follow the expected results, as shown in the following tables, to
baseline the platform's performance. Table 12 shows the software used for the testing, while
Figure 14 shows a graph of the mean inference time for each model. With 2 cores per instance,
the INT8 model with AVX512_CORE_AMX enabled reached a performance of less than 10 ms.

Note: Referto https://hub.docker.com/r/Intel®/malconv-model-base for the Intel® Optimized

MalConv Model.

Table12. MalConv Al Workload Configuration

Ingredient Software Version Details
TensorFlow 2.13.0
Intel® Extension for Tensorflow 2.13.0.1
oneDNN 2024.2.0
Python 317
Intel® Neural Compressor 2.6

ONNX

1.16.1

28
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Figure 13.
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MalConv Al Entry Platform Performance Graph
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BERT is a pre-trained language representation model developed by Google Al Language
researchers in 2018, which consists of transformer blocks with a variable number of encoder
layers and a self-attention head. The model used in the testing is a fine-tuned version of the
Hugging Face BERT base model.

To detect phishing emails, the input email is first tokenized into chunks of words using the
Hugging Face tokenizer, with a special CLS token was added at the beginning. The tokens are
then padded to the maximum BERT input size, which by default is 512. The total input tokens
are converted to integer IDs and fed to the BERT model. A dense layer is added for email
classification, which takes the last hidden state for the CLS token as input.

Ensure that the results of the tests follow the expected results as shown in the following graph

to baseline the performance of the platform. Table 12 shows the software used for the testing,

while Figure 16 shows a graph of the results for the INT8 and FP32 BERT models. With 8 cores
perinstance, the mean latency of the INT8 model reaches below 20ms.

Refer to https://huggingface.co/bert-base-cased for the original Hugging Face BERT base

The phishing email test dataset can be found at https://github.com/IBM/nlc-email-

phishing/tree/master/data

Table 13.

BERT Al Workload Configuration

Ingredient Software Version Details

Torch 212
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Ingredient Software Version Details
Intel® Extension for PyTorch 2.1.100
oneDNN 2024.2.0
Python 3.1.7
Intel® Neural Compressor 2.6

Figure14. BERTAI Performance on VRC for Intel® Al System — Medium Entry Configuration Graph
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Performance Summary

The following presents the range of performance achievable for the Intel® Al System for Edge
Verified Reference Blueprint — Medium configuration across each of the Vision Al, Generative
Al, and Network Security Al workloads.
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5 Summary

The Intel® Al System for Edge Verified Reference Blueprint — Medium for Computer Vision,
and GEN Al defined on single socket 5th Gen Intel® Xeon® Scalable processors with multiple
Intel® Data Center Flex GPUs addresses the capabilities for Al Inference offering the
following value proposition:

1. ForVision Al use case using Processor Al acceleration only

e Upto 23 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large

e Upto 52 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large Plus configuration on 2x Flex 170 GPU

e Up to 38 IP camera streams of Vision Al use case with the Intel® Retail Checkout application
on Large Base configuration on 2x Flex 140 GPU

2. For Generative Al use case
With Processor Al inference offload

e Upto 670 tokens/s on Llama3 8B model with INT8 precision Batch size of 32 on Large Plus
CPU configuration

e Uptol14tokens/s on GPT-NEOX-20B model with INT4 precision Batch size of 1on Medium
Plus CPU configuration

With GPU Al inference Offload

e Upto236-257 tokens/s on Llama3 8B model with INT4/INTS8 precision Batch size of 8 on 2
Flex170 GPU

¢ Up to 364-448 tokens/s on Phi3-mini-4K instruct model with INT4/INT8 precision Batch
size of 8on 2 Flex 170 GPU

e Upto1022-1096 tokens/s on TinyLlama model with INT4/INTS8 precision Batch size of 8 on
2 Flex170 GPU

e Upto188-255 tokens/s on Llama3 8B model with INT4/INTS8 precision Batch size of 8on 1
Flex170 GPU

e Upto294-361tokens/s on Phi3-mini-4K instruct model with INT4/INT8 precision Batch
size of 8on 1Flex170 GPU

e Up to 731-830 tokens/s on TinyLlama model with INT4/INT8 precision Batch size of 8on 1
Flex170 GPU

3. ForNetwork Security Al use case

e Malconv testing, the INT8 model with AVX512_CORE_AMX enabled was able to reach a
performance of less than 10 ms. with 2 cores per instance.

e Berttesting, the mean latency of the INT8 model reaches below 20ms with 8 cores per
instance.

This Configuration combined with architectural improvements, feature enhancements, and
integrated Accelerators with high memory and 10 bandwidth, provides a significant
performance and scalability advantage in support for today’s Al workload.
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These processors are optimized for network, cloud native, wireline, and wireless core-intensive
workloads, and are especially suited for Al workloads coupled with Intel® Ethernet E810-
Network Controllers and Intel® Data Center Flex GPUs.
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Appendix A Appendix

Al

Retail Self-checkout Vision Al Test Methodology

Figure15. Test Methodology for Retail Self-checkout Pipeline
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The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source software. Vision workloads are large and complex and need to go through
many stages. For instance, in the pipeline below, the video data is ingested, pre-processed
before each inferencing step, inferenced using two models - YOLOv5 and EfficientNet, and
post-processed to generate metadata and show the bounding boxes for each frame.

Pre-Requisites
1. Intstall Docker
2. SetHTTP_PROXY and HTTPS_PROXY proxies in environment if necessary.

3. Pythonversion 3.8 is recommended.
Quick Setup
Download videos, models, docker images and build containers.

$ git clone https://github.com/Intel®-retail/automated-self-checkout.git

$ git checkout tags/3.0.0
#make run-demo

Issue and Workaround

Issue #1: Binary 'ffmpeg” does not exist in OpenVINO container.

to create shim task: OCI runtime create i runc create 8 start container process

render-mode ]
t

Workaround:

a. Create a Dockerfile named Dockerfile.OV.

FROM openvino/ubuntu20_data_runtime:2021.4.2

USER root
RUN apt-get update apt-get install -y ffmpeg

b. Build the OpenVINO image.
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$ docker build --build-arg HTTPS PROXY=${HTTPS PROXY} --build-arg
HTTP PROXY=S${HTTP_PROXY} -t openvino/Ubuntu*20 data runtime:2021.4.2 -f
src/Dockerfile.OV .

Generative Al Test Methodology

IPEX-LLM Testing Methodology on CPU

The Generative Al benchmark on Intel® CPU was performed using Intel® Extension of PyTorch
(IPEX) for LLM. Al cores are being used and sustained at 100% CPU utilization throughout the
inference process.

Please refer to the link below for more information on the configuration

https://www.Intel®.com/content/www/us/en/developer/articles/technical/accelerate-meta-
llama3-with-Intel®-ai-solutions.html

IPEX-LLM Testing Methodology on GPU

Pull and start the container.
export DOCKER IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
export CONTAINER NAME=ipex-llm-serving-xpu
export MODEL PATH=<YOUR PATH TO THE MODEL WEIGHTS>
docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
docker run -itd \

--net=host \

--device=/dev/dri \

--memory="64G" \

——name=$CONTAINER_NAME \

--shm-size="16g" \

-v S$SMODEL PATH:/llm/models \

$DOCKER IMAGE

v »r U > U

Note: Ensure that you have assign enough memory via the --memory tag as the model(s) will
be loaded to the container memory before moving to the GPUs.

Enter the container via bash terminal:
$ docker exec -it ipex-llm-serving-xpu bash

Enter the predefined benchmark script directory:
$ cd /benchmark/all-in-one

Running IPEX-LLM Benchmarking Scripts

Running IPEX-LLM on CPU

Running IPEX-LLM on CPU Follow the steps to setup the IPEX-CPU test and benchmark on
Single socket Intel® Xeon Scalable Processor. The user is expected to have privileged rights.

4. Install the baseline dependencies:
# sudo apt update
# sudo apt install -y make git numactl
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sudo apt install -y python3
sudo pip install -upgrade pip

Clone the IPEX project:
git clone https://github.com/Intel®/Intel®-extension-for-pytorch.git
cd Intel®-extension-for-pytorch
git checkout v2.3.100+cpu
git submodule sync
git submodule update --init --recursive

Build the IPEX docker image:
DOCKER BUILDKIT=1 docker build --build-arg HTTPS PROXY=${HTTPS PROXY} -
-build-arg HTTP_PROXY=${HTTP_PROXY} =it
examples/cpu/inference/python/llm/Dockerfile --build-arg COMPILE=ON -t
ipex-cpu:2.3.100

4= ON e e S o (1

The ipex-cpu container build takes approx. 30 mins
7. Verify the IPEX container is built

# docker images | grep ipex
REPOSITORY TAG IMAGE ID CREATED SIZE
ipex-cpu 2.3.100 d5ce81fe66£f8 3 hours ago 4.61GB

8. Download the LLM models from HuggingFace:
# huggingface-cli download <model card> --local-dir ~/<local model path>
—--token <your huggingface token>

9. Starttheipex-cpudocker container

# export DOCKER IMAGE=ipex-cpu:2.3.100

# export CONTAINER NAME=ipex-cpu

# export MODEL PATH=<CHANGE TO PATH TO THE MODEL DIRECTORY>

# docker run --rm -it --privileged --memory="256G" --shm-size="128G" --
name=SCONTAINER NAME -v SMODEL PATH:/llm/models $SDOCKER IMAGE bash

It's recommended to use shard_model before running distributed inference to save time

during modelinference.

10. Shared model for Distributed inference inside the ipex-cpu docker container
# cd ./1llm/utils

# create shard model.py -m /llm/models/<MODEL_ ID> --save-path
/11lm/models/<SHARD-MODEL-DIRECTORY>

1. Copy the benchmark_cpu_ds.sh and extract_kpis.py script to the container:

# docker cp ~/applications.platform.Intel®-select-for-
network/enterprise ai/common/ipex-llm-cpu/benchmark cpu ds.sh ipex-
cpu://home/Ubuntu*/11lm/

# docker cp ~/applications.platform.Intel®-select-for-
network/enterprise ai/common/ipex-llm-cpu/extract kpis.py ipex-
cpu://home/Ubuntu*/11lm/

12. Change the user:group of the scripts inside the container:
# sudo chown Ubuntu*:Ubuntu* benchmark cpu.sh
# sudo chown Ubuntu*:Ubuntu* extract kpis.py

13. Edit the shard model path and model name in the benchmark_cpu_ds.sh script as shown
model shard="/llm/models/llama3-8B/shard model hf"
model name="llama3-8B"

14. Download the prompt json files for model tests

For Llama3 models download the below prompt file

# wget -O prompt.json https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt-3.json
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For other models, use the below prompt file
# wget https://Intel®-extension-for-
pytorch.s3.amazonaws.com/miscellaneous/llm/prompt.json

15. Runthe benchmark script for distributed inference. This script will create a "result-
model_name_mmddyyhhss" folder in the same directory and will contain text files for each

testiteration
# ./benchmark cpu.sh

16. Extract KPIs using the python script. This script generate a CSV file named

llIm_benchmark_results.csv with all the KPls
# python extract kpis.py --results-dir results-model name mmddyyhhss

17. Copy the llm_benchmark_results.csv file from docker to host
# docker cp ipex-—
cpu:/home/Ubuntu*/11lm/11lm benchmark results.csv ./root/workspace

Running IPEX-LLM on Single GPU

The Generative Al benchmark on Intel® Data Center GPU Flex 170 leverages the IPEX-LLM
framework and is deployed in a containerized manner.

To run the Generative Al benchmark on Intel® Data Center GPU Flex 170:

18. Download the IPEX-LLM containerimage:
# export DOCKER IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
# docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT

19. Launch the IPEX-LLM container. For example, to benchmark with the Meta Llama3-8B
model:

# export CONTAINER NAME=ipex-llm-serving-xpu

# export MODEL PATH=~/llama3-8b

# docker run -itd \
--net=host \
--device=/dev/dri/card0 \
--device=/dev/dri/renderD128 \
—--memory="64G" \
--name=5CONTAINER NAME \
--shm-size="16g" \
-v SMODEL PATH:/llm/models \
$DOCKER_IMAGE bash

20. Copy the run-arc-sweep.sh script to the container:

# docker cp ~/applications.platform.Intel®-select-for-

network/enterprise ai/common/ipex-llm-gpu/run-arc-sweep.sh ipex-l1lm-

serving-xpu:/benchmark/all-in-one/

21. Loginto the container and update the run-arc-sweep.sh script to use the appropriate
model. For example, to benchmark with the Meta LIama3-8B model:

# docker exec -it ipex-llm-serving-xpu /bin/bash

# cd /benchmark/all-in-one/

# SEDITOR run-arc-sweep.sh

current model name="llama3-8b"
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22. Loginto the container and start the benchmark:
# bash run-arc-sweep.sh

23. Review the benchmark results:
# cat optimize model gpu-results*.csv

A.2.3.3 Running vLLM-IPEX-LLM on CPU

Create conda environment

$ wget https://github.com/conda-
forge/miniforge/releases/latest/download/Miniforge3-Linux-x86 64.sh
$ chmod +x ./Miniforge3-Linux-x86 64.sh

$ ./Miniforge3-Linux-x86 64.sh

$ conda create -n ipex-vllm python=3.11

$ conda activate ipex-vllm

Install dependencies

pip3 install numpy

pip3 install --pre --upgrade ipex-llm[all] --extra-index-
url https://download.pytorch.org/whl/cpu

pip3 install psutil fastapi "uvicorn[standard]"

pip3 install sentencepiece # Required for LLaMA tokenizer.
pip3 install "pydantic<2" # Required for OpenAI server.

Install vLLM

git clone https://github.com/vllm-project/vllm.git andand \

cd ./v1llm andand \

git checkout v0.4.2 andand \

pip install wheel packaging ninja setuptools==49.4.0 numpy andand \
pip install -v -r requirements-cpu.txt --extra-index-

url https://download.pytorch.org/whl/cpu andand \

sudo apt install build-essential

VLLM TARGET DEVICE=cpu python3 setup.py install

pip install ray

Download Dataset
Swget https://huggingface.co/datasets/anon8231489123/ShareGPT Vicuna unfi
ltered/resolve/main/ShareGPT V3 unfiltered cleaned split.json

Run throughput benchmarking command line:

VLLM CPU KVCACHE SPACE=16 # 16GB for KV _CACHE

python3 ./benchmark throughput.py --device cpu --n 1000
--model Meta-Llama-3-8B --enable-chunked-prefill --dataset
ShareGPT V3 unfiltered cleaned split.json
-—-trust-remote-code --max-num-batched-tokens 256
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Appendix

Network Security Al Test Methodology

MalConv Al Test Methodology

Follow the instructions below to run the MalConv Al testing:

1.

You will need to provide your own testing dataset to use. Create the following directories:

mkdir -p malconv/datasets/KNOWN

mkdir -p malconv/datasets/MALICIOUS
Place the benign files into the “malconv/datasets/KNOWN" directory, and place the
malicious files in the “malconv/datasets/MALICIOUS” directory
Use the “build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

Run the “run_malconv_test.sh” script to run the MalConv benchmarking test. The
generated “malconv_results.log” file will contain five runs of the mean inference time
results and ROC AUC accuracy of each model tested with different numbers of cores per
instance.

Bert Al Test Methodology

Follow the instructions below to run the BERT testing:

1.

Use the “"build_dockerfile.sh” script to build the Dockerfile image for the MalConv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

Runthe “run bert test.sh”scripttorunthe benchmarking test. The generated

“bert results.log” file will contain five runs of the testing showing multiple statistics
for different numbers of cores per instance. The mean latency value is highlighted in the
results shown in Section 4.4.2.
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