

Document Number: 834791

Intel® AI System for Edge Verified Reference
Blueprint – Small for Computer Vision, and
GEN AI

Reference Architecture

Revision 1.0
October 2024

Authors
Timothy Miskell
Abhijit Sinha
Ai Bee Lim

Key Contributors
Jonathan Tsai
Jessie Ritchey
Edel Curley

2 Reference Architecture

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel® products
described herein.

No license (express or implied, by estoppel or otherwise) to any Intel®lectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel® representative to obtain the latest Intel® product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Intel® Corporation. All rights reserved. Intel®, the Intel® logo, Xeon, Verified Reference Blueprint and other Intel® marks are trademarks of
Intel® Corporation or its subsidiaries. Intel® warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel®'s standard warranty but reserves the right to make changes to any products and services at any time without notice.

Intel® assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Intel®. Intel® customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services.

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel® technologies may require enabled hardware, software or service activation.

© Intel® Corporation. Intel®, the Intel® logo, and other Intel® marks are trademarks of Intel® Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

*Other names and brands may be claimed as the property of others.

Copyright © 2024, Intel® Corporation. All rights reserved.

Reference Architecture 3

Contents
1 Introduction ... 5
2 Design Compliance Requirements ... 8

2.1 Platform Requirements... 8
2.2 BIOS Settings ... 9
2.3 Solution Architecture .. 10
2.4 Platform Technology Requirements .. 12
2.5 Platform Security .. 12
2.6 Side Channel Mitigation .. 12

3 Platform Tuning for Edge AI Node .. 13
3.1 Boot Parameter Setup... 13
3.2 Installing the i915 Driver .. 13
3.3 Kubernetes Installation ... 14

3.3.1 Install Docker and cri-dockerd ... 14
3.3.2 Install Kubernetes ... 14
3.3.3 Install Calico .. 15

4 Performance Verification ... 16
4.1 Memory Latency Checker (MLC) .. 16
4.2 Intel® Automated Self-Checkout on Core .. 17
4.3 Intel® Automated Self-Checkout on GPU ... 18
4.4 Generative AI on Core ... 19
4.5 Generative AI on GPU .. 20
4.6 Malconv and BERT .. 27
4.7 Performance Summary .. 29

5 Summary .. 32
Appendix A Appendix .. 34

A.1 Automated Self-Checkout Test Methodology ... 34
A.2 Generative AI Test Methodology ... 36

A.2.1 vLLM Testing Methodology on Core .. 36
A.2.2 IPEX-LLM Testing Methodology on GPU ... 37

A.3 Network Security AI Test Methodology .. 38
A.3.1 Malconv AI Test Methodology .. 38
A.3.2 BERT AI Test Methodology ... 38

Figures

Figure 1. Architecture of the Intel® AI System for Edge Verified Reference Blueprint 11
Figure 2. Intel® Automated Self-Checkout Workload Entry Configuration Performance 18
Figure 3. Intel® Automated Self-Checkout Workload Entry Configuration Performance 19
Figure 4. Intel® Automated Self-Checkout Workload Mainstream Configuration Performance 19

4 Reference Architecture

Figure 5. Generative AI Entry Configuration Performance Graph (Phi-3 4K Instruct with Intel® 14th
Generation Core i9-14900) ... 20

Figure 6. Generative AI Entry Configuration Performance Graph (flan-t5 with Intel® ARC380) 21
Figure 7. Generative AI Entry Configuration Performance Graph (flan-t5 with Intel® ARC750) 22
Figure 8. Generative AI Entry Configuration Performance Graph (TinyLlama with Intel® ARC380) 23
Figure 9. Generative AI Entry Configuration Performance Graph (TinyLlama with Intel® ARC750) 24
Figure 10. Generative AI Entry Configuration Performance Graph (Phi-3 4K-Instruct with Intel®

ARC380) ... 25
Figure 11. Generative AI Entry Configuration Performance Graph (Phi-3 4K-Instruct with Intel®

ARC750) .. 26
Figure 12. Malconv AI Entry Platform Performance Graph .. 28
Figure 13. BERT AI Entry Platform Performance Graph ... 29
Figure 14. Performance Summary for the Vision AI Workload ... 29
Figure 15. Performance Summary for the Generative AI Workload ... 30
Figure 16. Performance Summary for the Malconv Network Security AI Workload ... 30
Figure 17. Performance Summary for the Bert Network Security AI Workload .. 31
Figure 18. Test Methodology for the Automated Self-Checkout Proxy Workload ... 34
Figure 19. vLLM Continuous Batching ... 36

Tables

Table 1. Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI - Base Configuration .. 8

Table 2. Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI - Plus Configuration ... 8

Table 3. Recommended BIOS Settings ... 9
Table 4. SW Configuration .. 11
Table 5. Platform Technology Requirements .. 12
Table 6. Memory Latency Checker... 16
Table 7. Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads .. 17
Table 8. Intel® Automated Self-Checkout Workload Configuration ... 17
Table 9. Generative AI Workload Configuration ... 20
Table 10. Malconv AI Workload Configuration .. 27
Table 11. BERT AI Workload Configuration ... 28

Reference Architecture 5

Revision History

Document

Number

Revision

Number
Description Revision Date

834791 1.0 Initial release October 2024

§

Document Number: 834791

1 Introduction
Intel® Enterprise AI systems are a range of optimized commercial AI systems delivered and
sold through OEM/ODM in the Intel® ecosystem. They are commercial platforms verified-
configured, tuned, and benchmarked using Intel®’s reference AI software application on Intel®
hardware to deliver optimal performance for Enterprise applications.

Intel® AI Systems offer a balance between computing and AI acceleration to deliver optimal
TCO, scalability, and security. AI systems enable enterprises to jumpstart development
through a hardened system foundation verified by Intel®. AI systems enable the ability to add
AI functionality through continuous integration into business applications for better business
outcomes and streamlined implementation efforts.

To support the development of these AI systems, Intel® is offering reference design and
verified reference configuration blueprints with AI system configurations that are tuned and
benchmarked for different AI System types that support Enterprise AI use cases. Verified
reference blueprints (VRB) include Hardware BOM, Foundation Software configuration (OS,
Firmware, Drivers) tested and verified with supported Software stack (software framework,
libraries, orchestration management).

This document describes a verified reference blueprint using architecture for the 14th Gen
Intel® Core processor family.

When network operators, service providers, cloud service providers, or enterprise
infrastructure companies choose an Intel® AI System for the edge Verified Reference
Blueprint, they should be able to deploy the AI workload more securely and efficiently than
ever before. End users spend less time, effort, and expense evaluating hardware and software
options. Intel® AI System Verified Reference Blueprint helps end users simplify design choices
by bundling hardware and software pieces together while making the high performance more
predictable.

Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI is based on single-node architecture, that provides environment to execute multiple AI
workloads that are common to be deployed at the edge, such as the Intel® Automated Self-
Checkout Reference Package, “Generative AI” and “Network AI based on Malconv”.

All Intel® AI System for Edge Verified Reference Blueprints feature a workload-optimized
stack tuned to take full advantage of an Intel® Architecture (IA) foundation. To meet the
requirements, OEM/ODM systems must meet a performance threshold that represents a
premium customer experience.

There are two configurations for Intel® AI System for Edge Verified Reference Blueprint –
Small for Computer Vision, and GEN AI covering a Base and Plus configuration:

• Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and
GEN AI Plus configuration for the Node is defined with at least a 32-core 14th Generation
Intel® Core processor and high-performance network, with storage and integrated platform
acceleration products from Intel® for maximum containerized workload density.

Introduction

Reference Architecture 7

• Intel® AI System for Edge Verified Reference Blueprint—Small for Computer Vision and
GEN AI Plus configuration for the Node are defined with a 24-core 14th Generation Intel®
Core processor, with storage and add-in platform acceleration products from Intel®
targeting optimized value and performance-based solutions.

Bill of Materials (BOM) requirement details for the configurations are provided in Chapter 2 of
this document.

Intel® AI System for Edge Verified Reference Blueprint is defined in collaboration with
enterprise vertical users, service providers, and our ecosystem partners to demonstrate the
solution's value for AI Inference use cases. The solution leverages hardened hardware,
firmware, and software to allow customers to integrate on top of this known-good foundation.

Intel® AI System for Edge Verified Reference Blueprint provides numerous benefits to ensure
end users have excellent performance for their AI Inference applications. Some of the key
benefits of the Reference Blueprint on the 14th Generation Intel® Core Processor Family
include:

• High core count and per-core performance

• Compact, power-efficient system-on-chip platform

• Streamlined path to cloud-native operations

• Accelerated AI inference with integrated processor capabilities

• Discrete GPU support to accelerate for AI inference workload

• Accelerated encryption and compression

• Platform-level security enhancements

§

Design Compliance Requirements

8 Reference Architecture

2 Design Compliance Requirements
This chapter focuses on the design requirements for Intel® AI System for Edge Verified
Reference Blueprint – Small for Computer Vision, and GEN AI.

2.1 Platform Requirements

The checklists in this chapter are a guide for assessing the platform’s conformance to Intel® AI
System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN AI. The
hardware requirements for the Base Configuration and Plus Configuration are detailed below.

Table 1. Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI - Base Configuration

Ingredient Requirement
Required/

Recommended
Quantity

Processor
Intel® 14th Generation CoreTM i7-14700
Processor 8 P-Cores, 12 E-Cores, 65 W or
higher number SKU

Required 1

Memory 128 GB DDR5 4800 MT/s Required 1

Network Intel® Ethernet Network Adapter i226-
V/LM/IT (2.5 Gbps)

Required 1

Storage
(Boot/Capaci
ty Drive)

1 TB or equivalent boot drive Required 1

dGPU
Intel® Arc 380

Required 1

IP cameras
4K video streaming with support for at
least 15 FPS and RTSP Required 4

LAN on
Motherboard
(LOM)

1 Gbps I219-LM for Operation,
Administration and Management (OAM) Required 1

Table 2. Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI - Plus Configuration

Ingredient Requirement
Required/

Recommended
Quantity

Processor
Intel® 14th Generation CoreTM i9-14900E
Processor 8 P-Cores, 16 E-Cores, 65 W or
higher number SKU

Required 1

Memory 128 GB DDR5 4800 MT/s Required 1

Design Compliance Requirements

Reference Architecture 9

Ingredient Requirement
Required/

Recommended
Quantity

Network
Intel® Ethernet Network Adapter i226-
V/LM/IT (2.5 Gbps) Required 1

Storage
(Boot/Capaci
ty Drive)

1 TB or equivalent boot drive Required 1

dGPU Intel® Arc 750 Required 1

IP cameras
4K video streaming with support for at
least 15 FPS and RTSP Required 8

LAN on
Motherboard
(LOM)

1 Gbps I219-LM for Operation,
Administration and Management (OAM) Required 1

2.2 BIOS Settings

To meet the performance requirements for an Intel® AI System for Edge Verified Reference
Blueprint – Small for Computer Vision, and GEN AI , Intel® recommends using the BIOS
settings for enabling processor p-state and c-state with Intel® Turbo Boost Technology
(“turbo mode”) enabled. Hyperthreading is recommended to provide higher thread density.
For this solution Intel® recommends using the NFVI profile BIOS settings for on-demand
Performance with power consideration.

Refer to the following table for the set of recommended BIOS settings.

Table 3. Recommended BIOS Settings

Setting Value

Hardware Prefetcher Enabled

Intel® (VMX) Virtualization Technology Enabled

Hyper-Threading Enabled

Intel® Speed Shift Technology Enabled

Turbo Mode Enabled

C-States Enabled

Enhanced C-States Enabled

C-State Auto Demotion C1

C-State Un-Demotion C1

MonitorMWait Enabled

Enforce DDR Memory Frequency POR POR

Maximum Memory Frequency Auto

Primary Display Auto

Design Compliance Requirements

10 Reference Architecture

Setting Value

Internal Graphics Auto

Graphics Clock Frequency Max CdClock freq based on Reference Clk

VT-d Enabled

Re-Size BAR Support Enabled

SR-IOV Support Enabled

BIOS settings differ from vendor to vendor. Please contact your Intel® Representative if you
do not see the exact setting in your BIOS.

2.3 Solution Architecture

Figure 1 shows the architecture diagram of Intel® AI System for Edge Verified Reference
Blueprint – Small for Computer Vision, and GEN AI. The software stack consists of three
categories of AI software:

1. Vision AI

2. Generative AI

3. Network Security AI

All three applications are containerized using docker.

For the Vision AI use case, we are using the Intel® Automated Self-Checkout application,
which measures stream density. The video data is ingested and pre-processed before each
inferencing step. The inference is performed using two models: YOLOv5 and EfficientNet.
The YOLOv5 model detects objects, and the EfficientNet model classifies Objects.

For the Generative AI use case, we are using large language models (LLMs) and Intel®
Extension of PyTorch (IPEX) framework to perform LLM inference on Intel® CPU and Intel®
GPU.

For Network Security AI, we are using Malconv and finetuned BERT-base-cased for malicious
portable executable (PE) file detection and email phishing detection respectively.

Design Compliance Requirements

Reference Architecture 11

Figure 1. Architecture of the Intel® AI System for Edge Verified Reference Blueprint

The table below is a guide for assessing the conformance to the software requirements of the
Intel® AI System for Edge Verified Reference Blueprint ensure that the platform meets the
requirements listed in the table below.

Table 4. SW Configuration

Ingredient SW Version Details

OS Ubuntu* 22.04.4 LTS

Kernel 6.5 (in-tree generic)

OpenVINO 2024.0.1

Docker Engine 27.1.0

Docker Compose 2.29

Intel® Level Zero for GPU 1.3.29735.27

Intel® Graphics Driver for GPU (i915) 24.3.23

Media Driver VAAPI 2024.1.5

Intel® OneVPL 2023.4.0.0-799

Mesa 23.2.0.20230712.1-2073

OpenCV 4.8.0

DLStreamer 2024.0.1

FFmpeg 2023.3.0

Design Compliance Requirements

12 Reference Architecture

2.4 Platform Technology Requirements

This section lists the requirements for Intel®’s advanced platform technologies.

The Reference Blueprint recommends that the Intel® Virtualization Technology (VT) to be
enabled to reap the benefits of hardware virtualization. Either Intel® Boot Guard or Intel®
Trusted Execution Technology establishes the firmware verification, allowing for platform
static root of trust.

Table 5. Platform Technology Requirements

Platform Technologies Enable/Disable Required/Recommended

Intel® VT Intel® CPU Virtual
Machine Extension
(VMX) Support

Enable Required

Intel® I/O
Virtualization

Enable Required

Intel® Boot
Guard

Intel® Boot Guard Enable Required

Intel® TXT Intel® Trusted
Execution
Technology

Enable Recommended

2.5 Platform Security

For Intel® AI System for the Edge, it is recommended that Intel® Boot Guard Technology to be
enabled so that the platform firmware is verified suitable during the boot phase.

In addition to protecting against known attacks, all Intel® Accelerated Solutions recommend
installing the Trusted Platform Module (TPM). The TPM module enables administrators to
secure platforms for a trusted (measured) boot with known trustworthy (measured) firmware
and OS. This allows local and remote verification by third parties to advertise known safe
conditions for these platforms through the implementation of Intel® Trusted Execution
Technology (Intel® TXT).

2.6 Side Channel Mitigation

Intel® recommends checking your system’s exposure to the “Spectre” and “Meltdown”
exploits. This reference implementation has been verified with Spectre and Meltdown
exposure using the latest Spectre and Meltdown Mitigation Detection Tool, which confirms
the effectiveness of firmware and operating system updates against known attacks.

The spectre-meltdown-checker tool is available for download at
https://github.com/speed47/spectre-meltdown-checker.

§

https://github.com/speed47/spectre-meltdown-checker

Platform Tuning for Edge AI Node

Reference Architecture 13

3 Platform Tuning for Edge AI Node

3.1 Boot Parameter Setup

For the workload testing, note that it is not necessary to enable hugepage support nor is
necessary to enable isolcpu support. If SR-IOV will be utilized, then in the “/etc/default/grub”
file update the line “GRUB_CMDLINE_LINUX” to include the following parameters:

“Intel®_iommu=on iommu=pt”

After modifying the grub file, run “update-grub” and “reboot” to apply the changes and verify
the change with “cat /proc/cmdline”:

cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-6.5.0-45-generic root=UUID=2f851afa-7405-4e84-8c11-
5f541adfd173 ro Intel®_iommu=on iommu=pt quiet splash vt.handoff=7

3.2 Installing the i915 Driver

Follow the instructions provided below to install the Intel® i915 GPU Driver:

1. Install the prerequisites to add the necessary repository access.
sudo apt update
sudo apt install -y gpg-agent wget

2. Add the online network package repository.
. /etc/os-release
if [[! " jammy " =~ " ${VERSION_CODENAME} "]]; then
 echo "Ubuntu version ${VERSION_CODENAME} not supported"
else
 wget -qO - https://repositories.Intel®.com/gpu/Intel®-graphics.key |
\
 sudo gpg --yes --dearmor --output /usr/share/keyrings/Intel®-
graphics.gpg
 echo "deb [arch=amd64 signed-by=/usr/share/keyrings/Intel®-
graphics.gpg] https://repositories.Intel®.com/gpu/ubuntu
${VERSION_CODENAME}/lts/2350 unified" | \
 sudo tee /etc/apt/sources.list.d/Intel®-gpu-${VERSION_CODENAME}.list
 sudo apt update
fi

3. Install the kernel and Intel® XPU System Management Interface (XPU-SMI) packages on a
bare metal system. Installation on the host is sufficient for hardware management and
support of the runtimes in containers and bare metal.

sudo apt install -y \
 linux-headers-$(uname -r) \
 linux-modules-extra-$(uname -r) \
 flex bison \
 Intel®-fw-gpu Intel®-i915-dkms xpu-smi
sudo reboot

4. Install the packages responsible for computing and media.
sudo apt install -y \

Platform Tuning for Edge AI Node

14 Reference Architecture

 Intel®-opencl-icd Intel®-level-zero-gpu level-zero \
 Intel®-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
 libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev
libgl1-mesa-dri \
 libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12
libxatracker2 mesa-va-drivers \
 mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo
clinfo

5. Install the development packages.
sudo apt install -y \
 libigc-dev Intel®-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev

6. List the group assigned ownership of the render nodes and the groups you are a member
of. There are specific groups that users must be a part of to access certain functionalities
of the GPU. The render group specifically allows access to GPU resources for the
rendering tasks without giving full access to display management or other potentially
more sensitive operations.

stat -c "%G" /dev/dri/render*
groups ${USER}

7. If you are not a member of the same group used by the DRM render nodes, add your user
to the render node group.

sudo gpasswd -a ${USER} render

8. Change the group ID of the current shell.
newgrp render

3.3 Kubernetes Installation

3.3.1 Install Docker and cri-dockerd

Follow the instructions at https://docs.docker.com/engine/install/ubuntu/ to install Docker
Engine on Ubuntu*, and follow the instructions at https://www.mirantis.com/blog/how-to-
install-cri-dockerd-and-migrate-nodes-from-dockershim/ to install cri-dockerd. Download the
cri-dockerd binary package for version 0.3.4.

3.3.2 Install Kubernetes

Follow the instructions at https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/install-kubeadm/ to install Kubernetes including the kubelet,
kubeadm, and kubectl packages. To continue to initialize the Kubernetes cluster, follow the
steps below:

Note that setup does not use swap memory so it must be disabled
swapoff -a
systemctl enable --now kubelet
systemctl start kubelet

cat <<EOF > /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system

https://docs.docker.com/engine/install/ubuntu/
https://www.mirantis.com/blog/how-to-install-cri-dockerd-and-migrate-nodes-from-dockershim/
https://www.mirantis.com/blog/how-to-install-cri-dockerd-and-migrate-nodes-from-dockershim/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

Platform Tuning for Edge AI Node

Reference Architecture 15

In the below command, update the Kubernetes version being used and the host-ip to that of
the system being used
kubeadm init --kubernetes-version=v1.28.0 --pod-network-
cidr=10.244.0.0/16 --apiserver-advertise-address=<host-ip> --token-ttl 0
--ignore-preflight-errors=SystemVerification --cri-
socket=unix:///var/run/cri-dockerd.sock

3.3.3 Install Calico

Follow the instructions at https://docs.tigera.io/calico/latest/getting-
started/kubernetes/quickstart to install Calico. In the second step of the “Install Calico”
section, the cidr address of the file needs to be modified, so run the following steps instead of
step 2 listed in the instructions:

Update the URL if necessary
wget
https://raw.githubusercontent.com/projectcalico/calico/v3.26.1/manifests/
custom-resources.yaml

Update the cidr address in the “custom-resources.yaml” file to 10.244.0.0/16
kubectl create -f custom-resources.yaml

Once completed, wait for the Calico pods to be running before starting to use the cluster.

§

https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart
https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart

Performance Verification

16 Reference Architecture

4 Performance Verification
This chapter aims to verify the performance metrics for the Intel® AI System for Edge Verified
Reference Blueprint to ensure that there is no anomaly seen. Refer to the information in this
chapter to ensure that the performance baseline for the platform is as expected.

The Entry solution was tested on August 31, 2024, with the following hardware and software
configurations:

• 1 NUMA nodes

• 1x Intel® 14th Generation Core® i9-14900E processor

• Total Memory: 128 GB, 4 slots/32 GB/3600 MT/s DDR5

• Hyperthreading: Enabled

• Turbo: Enabled

• C-State: Enabled

• Storage: 1x 1TB Advantech SQFlash (SQF-S25V4-1TDSDC)

• Network devices: 1x Intel® Ethernet I226-LM, 1x Intel® Ethernet I219-LM

• Network speed: 1 GbE

• BIOS: American Megatrends International, LLC. 5.27

• Microcode: 0x123

• OS/Software: Ubuntu* 22.04.4 (kernel 6.5.0-45-generic)

4.1 Memory Latency Checker (MLC)

The Memory Latency Checker which can be downloaded from
https://www.Intel®.com/content/www/us/en/developer/articles/tool/Intel®r-memory-
latency-checker.html. Download the latest version, unzip the tarball package, go into the
Linux* folder, and execute ./mlc. Table 6 and Table 7 below should be used as a reference for
verifying the validity of the system setup.

Table 6. Memory Latency Checker

Key Performance Metric Local Socket (Entry)

Idle Latency (ns) 123.8

Memory Bandwidths between nodes within the system
(using read-only traffic type) (MB/s)

53577.1

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

Performance Verification

Reference Architecture 17

Table 7. Peak Injection Memory Bandwidth (1 MB/sec) Using All Threads

Peak Injection Memory Bandwidth (1 MB/sec) using all threads Entry Solution

All Reads 52574.6

3:1 Reads-Writes 50359.3

2:1 Reads-Writes 50319.6

1:1 Reads-Writes 50145.0

STREAM-Triad 50231.9

Loaded Latencies using Read-only traffic type with Delay=0
(ns) 464.78

L2-L2 HIT latency (ns) 47.0

L2-L2 HITM latency (ns) 47.3

If the latency performance and memory bandwidth performance are outside the range, please
verify the validity of the Platform components, BIOS settings, kernel power performance profile
used, and other software components.

4.2 Intel® Automated Self-Checkout on Core

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source components. The Intel® Automated Self-Checkout serves as a proxy
workload for Vision AI applications and leverages the YOLOv5 model for performing detection
along with the efficient net-b0 model for performing classification.

Table 8. Intel® Automated Self-Checkout Workload Configuration

Ingredient Software Version Details

OpenVino 2024.0.1

DLStreamer 2024.0.1

FFmpeg 2023.3.0

VPL 2023.4.0.0-799

Python 3.8+

OS Ubuntu* Desktop LTS Kernel 6.5 (gcc 11.4.0)

Performance Verification

18 Reference Architecture

Figure 2. Intel® Automated Self-Checkout Workload Entry Configuration Performance

Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI – Entry configuration platform with Intel® 14th Generation Core i9-14900E should be able to
service up to 7 IP camera streams at 14.95 FPS per stream, for an aggregate of up to 105.75
FPS.

4.3 Intel® Automated Self-Checkout on GPU

The Intel® Automated Self-Checkout Reference Package provides critical components
required to build and deploy a self-checkout use case using Intel® hardware, software, and
other open-source components. The Intel® Automated Self-Checkout serves as a proxy
workload for Vision AI applications and leverages the YOLOv5 model for performing detection
along with the efficient net-b0 model for performing classification.

Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI – Base platform with Intel® ARC380 should be able to service up to 10 IP camera streams at
14.95 FPS per stream, for an aggregate of up to 150.31 FPS.

Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and GEN
AI – Plus platform with Intel® ARC750 should be able to service up to 12 IP camera streams at
14.95 FPS per stream, for an aggregate of up to 180.06 FPS.

Refer to Table 8 for the software version details.

0

50

100

0
50

100
150

0 1 2 3 4 5 6 7 8

Intel® 14th Generation Core i9-14900

%

Cu
m

ul
at

iv
e

Th
ro

ug
hp

ut
 (F

PS
)

Number of Streams

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Batch Size: 1, Target FPS: 14.95

1 - Sum of Cumulative Throughput (FPS) 1 - Sum of Average CPU Utilization (%)

7x 14.95 FPS

Higher is Better

Performance Verification

Reference Architecture 19

Figure 3. Intel® Automated Self-Checkout Workload Entry Configuration Performance

Figure 4. Intel® Automated Self-Checkout Workload Mainstream Configuration Performance

4.4 Generative AI on Core

The Large Language Model (LLM) proxy workload highlights the Generative AI processing
capabilities of the Intel® AI System for Edge Verified Reference Blueprint – Small for
Computer Vision, and GEN AI configuration - Base platform, specifically with the Phi-3 4K
Instruct model supported directly on Intel® 14th Generation Core processors.

 Intel® AI System for Edge Verified Reference Blueprint – Small Base Platform, ensure that
the results of the system follow the expected results as shown below in order to baseline the
performance of the platform. The results shown include performance values for the next token
latency, the achievable number of tokens per second, along with the time per query.

0
50
100

0
100
200

0 1 2 3 4 5 6 7 8 9 10 11

ARC380

%

Cu
m

ul
at

iv
e

Th
ro

ug
hp

ut
 (F

PS
)

Number of Streams

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Target FPS: 14.95

1 - Sum of Cumulative Throughput (FPS) 1 - Sum of Average CPU Utilization (%)

Higher is Better

10x 14.95
FPS

0

50

100

0

100

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13

ARC750

%

tiv
e

Th
ro

ug
hp

ut
 (F

PS
)

Number of Streams

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Batch Size: 1, Target FPS: 14.95

1 - Sum of Cumulative Throughput (FPS) 1 - Sum of Average CPU Utilization (%)

Higher is Better

12x 14.95 FPS

Performance Verification

20 Reference Architecture

Table 9. Generative AI Workload Configuration

Ingredient Software Version Details

Docker Engine 27.1.0

Docker Compose 2.29

OpenVino Toolkit 20224.1.0

OS Ubuntu* 22.04 LTS Kernel 6.5

Figure 5. Generative AI Entry Configuration Performance Graph (Phi-3 4K Instruct with Intel® 14th
Generation Core i9-14900)

4.5 Generative AI on GPU

The large language model (LLM) proxy workload highlights the Generative AI processing
capabilities of the Intel® AI System for Edge Verified Reference Blueprint—Small Base and
Plus platform. It includes multiple models, including the Flan-t5, TinyLLama 1B, Phi-3 4K
Instruct, and Llama3 8B models with Intel® ARC380 and Intel® ARC750 GPUs.

 Intel® AI System for Edge Verified Reference Blueprint – Small Base platform and Plus
platform ensure that the results of the system follow the expected results as shown below in
order to baseline the performance of the platform. The results shown include performance
values for the next token latency, the achievable number of tokens per second, along the time
per query.

50.25 58.62
68.77 77.3 81.01 81.18

0

200

400

600

800

0
20
40
60
80

100

1 2 4 8 16 32

be
r o

f P
re

-e
m

pt
ed

 R
eq

ue
st

s

To
ke

ns
/s

KV Cache Size (GB)

Phi-3 4K Instruct, FP16, vLLM, Intel 14th Generation i9-14900
1024 Output Token Size

Sum of Tokens/s Sum of Number of pre-empted requests

Performance Verification

Reference Architecture 21

Figure 6. Generative AI Entry Configuration Performance Graph (flan-t5 with Intel® ARC380)

14 14 16 19 20 23
15 15 18 20 22 26

14 19
27

20 26
34

14
27

43

20
31

44

0
10
20
30
40
50

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

BF16 FP16

ARC380

N
ex

t T
ok

en
 L

at
en

cy
 (m

s)

flan-t5, 1024 Output Token Size, Next Token Latency (Lower is
Better)

32B Input Token 256B Input Token 1024B Input Token 2048B Input Token

52
99

176

51
89

152

51
76

118

49 64
91

0
50

100
150
200

1 Batch 2 Batches 4 Batches

FP16

ARC380

To
ke

ns
/s

ec
on

d

flan-t5, 1024 Output Token Size, Tokens/Second (Higher is Better)

32B Input Token 256B Input Token 1024B Input Token 2048B Input Token

14 15 1715 15 1815 19
28

15
27

44

0
10
20
30
40
50

1 Batch 2 Batches 4 Batches

BF16

ARC380

In
fe

re
nc

e
Ti

m
e

(s
)

flan-t5, 1024 Output Token Size, Inference Time (Lower is Better)

32B Input Token 256B Input Token 1024B Input Token 2048B Input Token

Performance Verification

22 Reference Architecture

Figure 7. Generative AI Entry Configuration Performance Graph (flan-t5 with Intel® ARC750)

10 10 11
17 21

10 10 11
20 25

11 10 13
25

36

10 12 17

32

0
10
20
30
40

1 Batch 2 Batches 4 Batches 8 Batches 16 Batches

FP16

ARC750

N
ex

t T
ok

en
 L

at
en

cy
 (m

s)

flan-t5, 1024 Output Token Size, Average Next Token Latency
(Lower is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

102
210

377
463

749

96
202

371 392

632

93
196

311 319
446

99 168 238 248

0
200
400
600
800

1 Batch 2 Batches 4 Batches 8 Batches 16 Batches

FP16

ARC750

To
ke

ns
/s

ec
on

d

flan-t5, 1024 Output Token Size, Cumulative Tokens/Second (Higher is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

10 10 11
18 22

11 10 11
21

26

11 10 13

26

37

10 12
17

33

0
10
20
30
40

1 Batch 2 Batches 4 Batches 8 Batches 16 Batches

FP16

ARC750

In
fe

re
nc

e
Ti

m
e

(s
)

flan-t5, 1024 Output Token Size, Inference Time (Lower is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

Performance Verification

Reference Architecture 23

Figure 8. Generative AI Entry Configuration Performance Graph (TinyLlama with Intel® ARC380)

14 14 16

8
11

1314 14
16

8
11

1415 15
17

9
12

1515 16
20

10
13

17

0

5

10

15

20

25

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

Av
er

ag
e

N
ex

t T
ok

en
 L

at
en

cy

(m
s)

TinyLlama 1B, 1024 Output Token Size, Average Next Token Latency (lower is better)

32 Input Token 256 Input Token

1024 Input Token 2048 Input Token

72

141

258

122

185

303

72

139

250

120

182

293

69

132

229

112

170

265

65

123

205

102

156

232

0

50

100

150

200

250

300

350

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

To
ke

ns
/s

TinyLlama 1B, 1024 Output Token Size, Cumulative Tokens/Second (lower is
better)32 Input Token

256 Input Token
1024 Input Token

14 15 16

8
11

1414 15 17

9
11

1415 16
19

10
13

1717 18

23

11
15

21

0

5

10

15

20

25

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

In
fe

re
nc

e
Ti

m
e

(s
)

TinyLlama 1B, 1024 Output Token Size, Inference Time (lower is better)

32 Input Token 256 Input Token

Performance Verification

24 Reference Architecture

Figure 9. Generative AI Entry Configuration Performance Graph (TinyLlama with Intel® ARC750)

4 6 7
10

18

7 7 8
11

18

4
6 8

11

20

7 7 8
11

19

4
7 9

12

7 7 9
13

5
7

10
15

7 8
10

14

0
5

10
15
20
25

1 Batch 2
Batches

4
Batches

8
Batches

16
Batches

1 Batch 2
Batches

4
Batches

8
Batches

16
Batches

INT4 INT8Av
er

ag
e

N
ex

t T
ok

en
 L

at
en

cy

(m
s)

TinyLlama 1B, 1024 Output Token Size, Average Next Token Latency (lower is better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

240
336

543

777
911

152

299

511

760

904

244
318

507

720
799

154

296

487

705
844

224
298

460

647

146
275

450

636

203
271

404

547

136
252

398

554

0
200
400
600
800

1000

1 Batch 2 Batches4 Batches8 Batches 16
Batches

1 Batch 2 Batches4 Batches8 Batches 16
Batches

INT4 INT8

To
ke

ns
/s

TinyLlama 1B, 1024 Output Token Size, Cumulative Tokens/Second (higher is
better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

4
6 8

11

18

7 7 8
11

18

4
7

8
12

21

7 7 9
12

20

5
7

9

14

7 8
10

14

5
8

11

18

8 9
12

17

0

5

10

15

20

25

1 Batch 2 Batches4 Batches8 Batches 16
Batches

1 Batch 2 Batches4 Batches8 Batches 16
Batches

INT4 INT8

In
fe

re
nc

e
Ti

m
e

(s
)

TinyLlama 1B, 1024 Output Token Size, Inference Time (higher is better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

Performance Verification

Reference Architecture 25

Figure 10. Generative AI Entry Configuration Performance Graph (Phi-3 4K-Instruct with Intel®
ARC380)

27 32 37
51 49 51

29 33 39
53 50 53

34 35 45 53
41

0
10
20
30
40
50
60

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

ARC380

N
ex

t T
ok

en
 L

at
en

cy
 (m

s)
Phi-3 4K-Instruct, 1024 Output Token Size, Average Next Token Latency (Lower is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

36
63

107

19
41

78
35

61
102

19
40

76
29

56
90

3824

0
20
40
60
80

100
120

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

ARC380To
ke

ns
 /

 S
ec

on
d

Phi-3 4K-Instruct, 1024 Output Token Size, Cumulative Tokens/Second (higher is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

28 33 39
53 50 53

30 34
41

54 51 55

36 39
50

56
45

0
10
20
30
40
50
60

1 Batch 2 Batches 4 Batches 1 Batch 2 Batches 4 Batches

INT4 INT8

ARC380

In
fe

re
nc

e
Ti

m
e

(s
)

Phi-3 4K-Instruct, 1024 B Output Token Size, Inference Time (Lower is
Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

Performance Verification

26 Reference Architecture

Figure 11. Generative AI Entry Configuration Performance Graph (Phi-3 4K-Instruct with Intel®
ARC750)

10 13 16 19 17
22 24 20

13 15
19

26
22 26 27 30

18 18
27 27 28

36
30

24
31

40

0
10
20
30
40
50

1 Batch 2 Batches 4 Batches 8 Batches 1 Batch 2 Batches 4 Batches 8 Batches

INT4 INT8

ARC750

N
ex

t T
ok

en
 L

at
en

cy
 (m

s)

Phi-3 4K-Instruct, 1024 Output Token Size, Next Token Latency (Lower is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

103
157

249

411

58 89
169

394

79
134

206

302

45 78
146

265

55
109

147

38 71
112

34
85

32 50

0
100
200
300
400
500

1 Batch 2 Batches 4 Batches 8 Batches 1 Batch 2 Batches 4 Batches 8 Batches

INT4 INT8

ARC750To
ke

ns
 /

 S
ec

on
d

Phi-3 4K-Instruct, 1024 Output Token Size, Next Tokens/Second (Higher is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

10 13 17 20 18
23 24 21

13 16 20
28

23 26 28 32

19 20
30 28 30

39
32 28

33
44

0
10
20
30
40
50

1 Batch 2 Batches 4 Batches 8 Batches 1 Batch 2 Batches 4 Batches 8 Batches

INT4 INT8

ARC750In
fe

re
nc

e
Ti

m
e

(s
)

Phi-3 4K-Instruct, 1024 Output Token Size, Inference Time (Lower is Better)

32 Input Token 256 Input Token 1024 Input Token 2048 Input Token

Performance Verification

Reference Architecture 27

4.6 Malconv and BERT

AI inference is used in network/security to help prevent advanced cyber-attacks. To improve
the latency associated with this application, the Intel® Xeon® Scalable Processor contains
technologies to accelerate AI inference such as AVX-512, Advanced Matric Extensions
(AMX), and Vector Neural Network Instructions. The Malconv AI workload utilizes the
TensorFlow deep-learning framework, Intel® oneAPI Deep Neural Network Library (oneDNN),
AMX, and Intel® Neural Compressor to improve the performance of the AI inference model.

The starting model for the Malconv AI workload is an open-source deep-learning model called
Malconv which is given as a pre-trained Keras H5 format file. This model is used to detect
malware by reading the raw execution bytes of files. An Intel® optimized version of this h5
model is used for this workload, and the testing dataset is about a 32GB subset of the dataset
from https://github.com/sophos/SOREL-20M. The performance of the model can be
improved by various procedures including conversion to a floating-point frozen model and
using the Intel® Neural Compressor for post-training quantization to acquire BF16, INT8, and
ONNX INT8 precision models.

Ensure that the test results follow the expected results, as shown in the following tables, to
establish a baseline for the platform's performance. Table 10 shows the software used for the
testing while Figure 12 shows a graph of the mean inference time for each model. With 8 cores
per instance, the INT8 model with AVX512_CORE_VNNI enabled was able to reach a
performance of less than 10 ms.

Refer to https://hub.docker.com/r/Intel®/malconv-model-base for the Intel® Optimized
Malconv Model.

Table 10. Malconv AI Workload Configuration

Ingredient Software Version Details

TensorFlow 2.13.0

Intel® Extension for Tensorflow 2.13.0.1

oneDNN 2024.2.0

Python 3.11.7

Intel® Neural Compressor 2.6

ONNX 1.16.1

https://hub.docker.com/r/intel/malconv-model-base

Performance Verification

28 Reference Architecture

Figure 12. Malconv AI Entry Platform Performance Graph

BERT is a pre-trained language representation model developed by Google AI Language
researchers in 2018, which consists of transformer blocks with a variable number of encoder
layers and a self-attention head. The model used in the testing is a fine-tuned version of the
Hugging Face BERT base model.

To detect phishing emails, the input email is first tokenized into chunks of words using the
Hugging Face tokenizer, with a special CLS token added at the beginning. The tokens are then
padded to the maximum BERT input size, which by default is 512. The total input tokens are
converted to integer IDs and fed to the BERT model. A dense layer is added for email
classification, which takes the last hidden state for the CLS token as input.

Ensure that the test results follow the expected results, as shown in the following graph, to
establish a baseline for the platform's performance. Table 11 shows the software used for the
testing, while Figure 13 shows a graph of the results for the FP32 BERT model. With 8 cores
per instance, the mean latency of the model reaches below 150ms.

Note: Refer to https://huggingface.co/bert-base-cased for the original Hugging Face BERT base
model.

Note: The phishing email test dataset can be found at https://github.com/IBM/nlc-email-
phishing/tree/master/data

Table 11. BERT AI Workload Configuration

Ingredient Software Version Details

Torch 2.1.2

Intel® Extension for PyTorch 2.1.100

oneDNN 2024.2.0

Python 3.11.7

Intel® Neural Compressor 2.6

115.5

70.2

36.9
43.6

63.0

27.3
17.4 20.9

49.9

15.6 11.9 17.1

44.0

10.1 8.8
15.3

0.88
0.88 0.87

0.85

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

Keras h5 FP32 INT8 with VNNI ONNX INT8

M
ea

n
In

fe
re

nc
e

Ti
m

e
(m

s)

Model

Malconv, Core i9-14900
1 Core 2 Cores 4 Cores

Lower is better Higher is better

https://huggingface.co/bert-base-cased
https://github.com/IBM/nlc-email-phishing/tree/master/data
https://github.com/IBM/nlc-email-phishing/tree/master/data

Performance Verification

Reference Architecture 29

Figure 13. BERT AI Entry Platform Performance Graph

4.7 Performance Summary

The following presents the range of performance achievable for the Intel® AI System for Edge
Verified Reference Blueprint – Small configuration across each of the Vision AI, Generative AI,
and Network Security AI workloads.

Figure 14. Performance Summary for the Vision AI Workload

1092.8

545.283

274.48
146.4

0.98

0.90

0.92

0.94

0.96

0.98

1.00

0

200

400

600

800

1000

1200

FP32

M
ea

n
La

te
nc

y
(m

s)

Model

BERT, Core i9-14900

1 Core 2 Cores 4 Cores 8 Cores F1 Score
Lower is Higher

F1 Score

7 10 12 23 38 26 50 73

66.31

50.9

22.55

97.36

67.78

41.56
54.94

76.02

0

20

40

60

80

100

0
10
20
30
40
50
60
70
80

i9-14900
Config 1 &

Config 3
SMALL

1x ARC 380
Config 1 &

Config 3
SMALL

1x ARC 750
Config 2
SMALL

1x Xeon
6538N

Config 3
MEDIUM

2x Xeon
6538N

Config 5
MEDIUM

1x Flex170
Config 6
MEDIUM

2x Flex 170
Config 6
MEDIUM

2x Xeon
8592+

Config 4
LARGE

CP
U

 U
TI

LI
ZA

TI
O

N
 (%

)

N
U

M
BE

R
O

F
ST

RE
AM

S

Retail Self-Checkout, yolov5s, efficientnet-b0, INT8
OpenCV 4.7.0, DLStreamer 1.7.0, Gstreamer 1.20.3

Batch Size: 1, Target FPS: 14.95

Number of Streams CPU Utilization

Performance Verification

30 Reference Architecture

Figure 15. Performance Summary for the Generative AI Workload

Figure 16. Performance Summary for the Malconv Network Security AI Workload

30
3

77
7 83

0

10
96

10
7

41
1

18

36
1 44

8

40

21
5 25

7

25
0

70
5 80

6

10
22

76

26
5 34

2

36
7

18
8 23

6

176

749

0

200

400

600

800

1000

1200

4 16 4 8 8 16 4 8 1 8 16 2 8 8

Arc380 Arc750 Arc380 Arc750 1xFlex1702xFlex170PPArc380 Arc750 3xFlex1401xFlex1702xFlex170PP3xFlex1401xFlex1702xFlex170PP

flan-t5 tinyLlama phi-3 mini Llama3 8B

TO
KE

N
S/

S

Summary, 1024 Output Token, 32-256 Input Token, Cumulative Tokens/Second
(higher is better)

Sum of INT4 Sum of INT8 Sum of FP16

0

8

0 0 0

4

00

16 16 16

2

8

0
0
2
4
6
8

10
12
14
16
18

Keras h5 FP32 BF16 with
AMX

BF16 with
BF16

INT8 with
AMX

INT8 with
VNNI

ONNX INT8

CO

RE
S

PE
R

IN
ST

AN
CE

MODEL

Malconv, # Cores per Instance to meet SLA <=10 ms

Supermicro sys111-ad Supermicro E403

Lower is better

Performance Verification

Reference Architecture 31

Figure 17. Performance Summary for the Bert Network Security AI Workload

§

19.0 18.6 18.6

146.4 146.7 150.4
170.3

154.6 153.4

0
20
40
60
80

100
120
140
160
180

Config 1 (i9-
14900)

Config 2 (i9-
14900)

Config 3 (i9-
14900)

Config 4
(8592+)

Config 5
(6538N)

Config 6
(6538N)

M
EA

N
 L

AT
EN

CY
 (M

S)

CONFIGURATION

BERT, Mean Latency, 8 cores per instance

INT8 FP32
Lower is better

Summary

32 Reference Architecture

5 Summary
The Intel® AI System for Edge Verified Reference Blueprint – Small for Computer Vision, and
GEN AI defined on 14th Gen Intel® Core processors with Intel® Arc GPUs addresses the
capabilities for AI inference by offering the following value proposition:

1. For Vision AI use case using Processor AI acceleration only

• Up to 7 IP camera streams of Vision AI use case with the Intel® Automated Self-Checkout
Reference Package on Small Base CPU configuration

• Up to 10 IP camera streams of Vision AI use case with the Intel® Automated Self-Checkout
Reference Package on Small Plus configuration on 1x ARC380 GPU

• Up to 12 IP camera streams of Vision AI use case with the Intel® Automated Self-Checkout
Reference Package on Small Plus configuration on 1x ARC 750 GPU

2. For Generative AI use case

With Processor AI inference offload

• Up to 68 tokens/s on Phi-3 mini 4K Instruct model with FP32 precision KV Cache Size of
4GB on Small Base CPU configuration

With GPU AI inference Offload

• Up to 157-176 tokens/s on Flan-t5 model with FP16 precision Batch size of 4 on Small Plus on
1x ARC380 GPU configuration

• Up to 632-740 tokens/s on Flan-t5 model with FP16 precision Batch size of 16 on Small Plus
on 1x ARC750 GPU configuration

• Up to 250-303 tokens/s on TinyLlama model with INT4 or INT8 precision Batch size of 4 on
Small Plus on 1x ARC 380 GPU configuration

• Up to 705-777 tokens/s on TinyLlama model with INT4 or INT8 precision Batch size of 8 on
Small Plus on 1x ARC 750 GPU configuration

• Up to 76-107 tokens/s on Phi-3 mini 4k Instruct model with INT4 or INT8 precision Batch
size of 4 on Small Plus on 1x ARC 380 GPU configuration

• Up to 265-411 tokens/s on Phi-3 mini 4k Instruct model with INT4 or INT8 precision Batch
size of 8 on Small Plus on 1x ARC 750 GPU configuration

• Up to 275-285 tokens/s on Llama3 8B model with INT4 precision Batch size of 8 on Small
Plus configuration on 1x ARC 750 GPU configuration

3. For Network Security AI use case

• Malconv testing, the INT8 model with AVX512_VNNI enabled was able to reach a
performance of less than 10 ms. with 8 cores per instance.

• Bert testing, the mean latency of the FP32 model reaches below 150ms with 8 cores per
instance.

This blueprint, combined with architectural improvements, feature enhancements, and
integrated Accelerators with high memory and IO bandwidth, provides a significant
performance and scalability advantage in support of today’s AI workload.

Summary

Reference Architecture 33

These processors are optimized for network, cloud native, wireline, and wireless core-intensive
workloads, and are especially suited for AI workloads coupled with Intel® Arc GPUs and
OpenVINO.

§

Appendix

34 Reference Architecture

Appendix A Appendix
The following section provides detailed instructions for benchmarking a platform with each of
the proxy workloads for Vision AI, Generative AI, along Network Security AI. The
benchmarking process leverages the tools and scripts provided as part of the Intel® AI System
for Edge Verified Reference Blueprint will be available later, please reach out to your Intel®
Field Representative for access.

A.1 Automated Self-Checkout Test Methodology
Figure 18. Test Methodology for the Automated Self-Checkout Proxy Workload

Per Frame Processing Pipeline

Camera
Source Camera Sink

DLStreamer

Streaming Video Content
Original Resolution: 1920 X 1080

Draw
Bounding

Box

Object
Detection
(YOLOv5s)

Tracking
Crop

Detected
Object

Text
Detection

Crop
Detected

Text

Text
Recognition

(OCR)

Classification
(efficient-

netb0)

Resolution:
412 X 412

The test methodology implements the following to measure the maximum number of streams
that the system can sustain:

• Detection Model: Yolov5s

• Classification Model: efficient net-b0

• OpenVino 2024.0.1.

• DLStreamer 2024.0.1

• FFmpeg 2023.3.0

• VPL 2023.4.0.0-799

• The test measures the number of streams that the server can sustain at the target FPS. For
each test iteration, the number of camera streams is monotonically increased until the
currently measured FPS value falls below the target FPS value.

• Upon test completion the results are captured for the average FPS, the cumulative FPS,
along with the peak number of streams achieved at the target FPS.

• Optionally, platform metrics can be collected including CPU utilization, CPU power, CPU
frequency, CPU temperature, along wall power.

To run the automated self-checkout test follow the steps below:

Appendix

Reference Architecture 35

1. Change to the automated self-checkout test directory and initialize the environment:
cd enterprise_ai/common/retail-self-checkout/
./init_rsc.sh

2. Optionally, update the collect_server_power.sh script with the BMC information of the
server to collect the wall power metrics during the automated self-checkout benchmark.

Note: The collect_server_power.sh script is provided for convenience to collect wall power
measurements and is designed to be run within a lab environment and not within a production
environment.

$EDITOR collect_server_power.sh

#!/usr/bin/env bash

…
ip_address=<server-ip-address>
un=<bmc-username>
pw=<bmc-password>
…

3. Start the benchmark against 14th Generation Intel® Core using a batch size of 1.

Note: By default the benchmark will use a target FPS of 14.95 along with an initial duration of 40
seconds to allow the system to reach steady state.

./benchmark_rsc.sh 1 cpu

4. The results will be stored within a CSV file located under rsc_results.
cat ~/rsc_results/stream-density-cpu-yolov5s-effnetb0-density-
increment_1_init-duration_40_target-fps_14_95_batch_1.csv

5. Optionally, if turbostat is installed on the server then CPU related metrics can converted
into a CSV file as follows:

./turbostat_log_parser.py --log-file
~/rsc_results/turbostat_cpu_batch_1.log --csv-file-name
~/rsc_results/turbostat_cpu_batch_1.csv

6. Optionally, if the BMC credentials have been provided then server power related metrics
can be converted into a CSV file as follows:

./server_power_log_parser.py --log-file
~/rsc_results/server_power_cpu_batch_1.log --csv-file-name
~/rsc_results/server_power_cpu_batch_1.csv

7. Start the benchmark against Intel® ARC GPUs using a batch size of 1.

Note: By default the benchmark will use a target FPS of 14.95 along with an initial duration of 40
seconds to allow the system to reach steady state.

./benchmark_rsc.sh 1 gpu

8. The results will be stored within a CSV file located under rsc_results.
cat ~/rsc_results/stream-density-gpu-yolov5s-effnetb0-density-
increment_1_init-duration_40_target-fps_14_95_batch_1.csv

Appendix

36 Reference Architecture

9. Optionally, if turbostat is installed on the server then CPU related metrics can converted
into a CSV file as follows:

./turbostat_log_parser.py --log-file
~/rsc_results/turbostat_gpu_batch_1.log --csv-file-name
~/rsc_results/turbostat_gpu_batch_1.csv

10. Optionally, if the BMC credentials have been provided then server power related metrics
can be converted into a CSV file as follows:

./server_power_log_parser.py --log-file
~/rsc_results/server_power_cpu_batch_1.log --csv-file-name
~/rsc_results/server_power_cpu_batch_1.csv

A.2 Generative AI Test Methodology

A.2.1 vLLM Testing Methodology on Core

The Generative AI benchmark on the 14th Generation Intel® Core leverages vLLM, which, as
shown in the figure below, performs continuous batching of requests to the LLM.

Figure 19. vLLM Continuous Batching

Query 1 Query 2 Query 3

Query 1

Query 2

Query 3

Query 4

Query 5

Query 6

Query 1 Query 2

Synchronous Requests

Batched Requests

Query 1

Query 2

Query 3

Query 4

Query 5

Query 6

vLLM Continuous Batching of Requests

Query 7

To set the vLLM test and benchmark on core:

1. Clone the vLLM project and install the baseline dependencies:
git clone https://github.com/vllm-project/vllm.git

https://github.com/vllm-project/vllm.git

Appendix

Reference Architecture 37

cd vllm
pip install -e .
apt-get update
apt-get install python3
pip install –upgrade pip
pip install -r requirements-build.txt –extra-index-url
https://download.pytorch.org/whl/cpu

2. Install vLLM with the OpenVino backend:
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
VLLM_TARGET_DEVICE=openvino python -m pip install -v .

3. Download the Phi-3 4K Instruct model from HuggingFace:
huggingface-cli download microsoft/Phi-3-mini-4k-instruct --local-dir
~/Phi-3-mini-4k-instruct

4. Download the dataset:

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resol
ve/main/ShareGPT_V3_unfiltered_cleaned_split.json

5. Set the vLLM environment variables. For example, to use a KV cache size of 1GB:
export VLLM_OPENVINO_KVCACHE_SPACE=1
export VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8
export VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON
export TOKENIZERS_PARALLELISM=false

6. Start the vLLM benchmark:
python3 ./benchmark_throughput.py --model ~/Phi-3-mini-4k-instruct --
dataset ./ShareGPT_V3_unfiltered_cleaned_split.json --enable-chunked-
prefill --max-num-batched-tokens 256

A.2.2 IPEX-LLM Testing Methodology on GPU

The Generative AI benchmark on Intel® ARC GPUs leverages the IPEX-LLM framework and is
deployed in a containerized manner.

To run the Generative AI benchmark on Intel® ARC GPUs:

1. Download the IPEX-LLM container image:
export DOCKER_IMAGE=Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT
docker pull Intel®analytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT

2. Launch the IPEX-LLM container. For example to benchmark with the Phi-3 4K Instruct
model:

export CONTAINER_NAME=ipex-llm-serving-xpu
export MODEL_PATH=~/Phi-3-mini-4k-instruct
docker run -itd Let me know if there is anything else I can help you
with.
 --net=host \
 --device=/dev/dri/card0 \
 --device=/dev/dri/renderD128 \
 --memory="64G" \
 --name=$CONTAINER_NAME \
 --shm-size="16g" \
 -v $MODEL_PATH:/llm/models \
 $DOCKER_IMAGE bash

3. Copy the run-arc-sweep.sh script to the container:

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Appendix

38 Reference Architecture

docker cp ~/applications.platform.Intel®-select-for-
network/enterprise_ai/common/ipex-llm-gpu/run-arc-sweep.sh ipex-llm-
serving-xpu:/benchmark/all-in-one/

4. Login to the container and update the run-arc-sweep.sh script to use the appropriate
model. For example to benchmark with the Phi-3 4K Instruct model:

docker exec -it ipex-llm-serving-xpu /bin/bash
cd /benchmark/all-in-one/
$EDITOR run-arc-sweep.sh

…
current_model_name="Phi-3-mini-4k-instruct"
…

5. Login to the container and start the benchmark:
bash run-arc-sweep.sh

6. Review the benchmark results:
cat optimize_model_gpu-results*.csv

A.3 Network Security AI Test Methodology

A.3.1 Malconv AI Test Methodology

Follow the instructions below to run the Malconv AI testing:

1. You will need to provide your own testing dataset to use. Create the following directories:
 mkdir -p malconv/datasets/KNOWN
 mkdir -p malconv/datasets/MALICIOUS

2. Place the benign files into the “malconv/datasets/KNOWN” directory, and place the
malicious files in the “malconv/datasets/MALICIOUS” directory

3. Use the “build_dockerfile.sh” script to build the Dockerfile image for the Malconv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

4. Run the “run_malconv_test.sh” script to run the Malconv benchmarking test. The
generated “malconv_results.log” file will contain five runs of the mean inference time
results and ROC AUC accuracy of each model tested with different numbers of cores per
instance.

A.3.2 BERT AI Test Methodology

Follow the instructions below to run the BERT testing:

1. Use the “build_dockerfile.sh” script to build the Dockerfile image for the Malconv testing.
If proxy variables for Internet access are needed, please set them in the Dockerfile before
running the script.

2. Run the “run_bert_test.sh” script to run the benchmarking test. The generated
“bert_results.log” file will contain five runs of the testing showing multiple statistics
for different numbers of cores per instance. The mean latency value is highlighted in the
results shown in Section 4.6.

§

	1 Introduction
	2 Design Compliance Requirements
	2.1 Platform Requirements
	2.2 BIOS Settings
	2.3 Solution Architecture
	2.4 Platform Technology Requirements
	2.5 Platform Security
	2.6 Side Channel Mitigation

	3 Platform Tuning for Edge AI Node
	3.1 Boot Parameter Setup
	3.2 Installing the i915 Driver
	3.3 Kubernetes Installation
	3.3.1 Install Docker and cri-dockerd
	3.3.2 Install Kubernetes
	3.3.3 Install Calico

	4 Performance Verification
	4.1 Memory Latency Checker (MLC)
	4.2 Intel® Automated Self-Checkout on Core
	4.3 Intel® Automated Self-Checkout on GPU
	4.4 Generative AI on Core
	4.5 Generative AI on GPU
	4.6 Malconv and BERT
	4.7 Performance Summary

	5 Summary
	Appendix A Appendix
	A.1 Automated Self-Checkout Test Methodology
	A.2 Generative AI Test Methodology
	A.2.1 vLLM Testing Methodology on Core
	A.2.2 IPEX-LLM Testing Methodology on GPU
	A.3 Network Security AI Test Methodology
	A.3.1 Malconv AI Test Methodology
	A.3.2 BERT AI Test Methodology

