
 1

TECHNOLOGY GUIDE
Intel Corporation

Intel® Advanced Vector Extensions 512 - FP16 Instruction
Set for Intel® Xeon® Processor Based Products

Author and Editor
Daniel Towner

Contributors
Steven Wood

Pengfei Wang

Marius Cornea

Cristina Anderson

Amit Gradstein

1 Introduction
This document describes the new FP16 instruction set architecture (ISA) for Intel®
Advanced Vector Extensions 512 (Intel® AVX-512) that is added to 4th generation Intel®
Xeon® Scalable processors. The new ISA supports a wide range of general-purpose
numeric operations for 16-bit half-precision IEEE-754 floating-point and complements
the existing 32-bit and 64-bit floating-point instructions already available in the Intel
Xeon processor-based products. The new ISA also provides complex-valued native
hardware support.

The new ISA is ideal for numeric operations where reduced precision can be used, such
as signal and media processing. For example, wireless signal processing operations such
as beam-forming, precoding, and minimum mean squared error (MMSE) perform well
with this ISA. Furthermore, traditional signal processing such as real or complex-valued
fast Fourier transform (FFTs) also works well with this instruction set. The advantage of
using reduced precision in these cases is that because fewer bits are processed for each
element, the overall compute throughput can be increased, allowing precision and speed
to be traded against each other.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview ... 4
3 FP16 Numeric Instructions .. 4

3.1 Data Type Support .. 5
3.2 Overview of Intrinsics ... 5
3.3 Fundamental Complex-Valued Support ... 6
3.4 Using AVX-512 Bit Masks for Real-Valued Operations ... 6
3.5 Using AVX-512 Bit Masks for Complex-Valued Operations .. 7

4 Numerics ... 10
4.1 Introduction to FP16 Number Format .. 10
4.2 Observations on Representing Numbers in FP16 Format ... 10
4.3 Numeric Accuracy Guarantees ... 12
4.4 Handling Denormal Values ... 12
4.5 Embedded Rounding .. 12
4.6 Legacy FP16 Data Type Conversion .. 13
4.7 FP16 Conversions to and from Other Data Types .. 13
4.8 Approximation Instructions and Their Uses ... 14

4.8.1 Approximate Reciprocal ... 14
4.8.2 Approximate Division .. 14
4.8.3 Approximate Reciprocal Square Root ... 15

4.9 Approximate Square Root ... 15
5 Using Existing Intel AVX-512 Instructions to Augment FP16 Support .. 16

5.1 Using Existing Instructions to Extend Intel AVX-512 FP16 Intrinsics.. 16
5.2 Common Convenience Intrinsics .. 16
5.3 Using Integer Comparisons for Fast Floating-Point Comparison ... 17

6 Math Library Support ... 17
7 Summary ... 18

Figures
Figure 1. Layout of a 128-Bit Register Representing Four Complex FP16 (CFP16) Values ... 5
Figure 2. Illustration of a Zero-Masked FP16 Add on Two 128-Bit Vectors ... 7
Figure 3. Illustration of a Masked Complex Multiplication... 7
Figure 4. Illustration of Using a Real-Valued FP16 Vector Operation for Implementing a Masked Complex Addition .. 8
Figure 5. Function for Converting from a Complex-Valued Mask To a Real-Valued Mask by Duplicating Adjacent Bits ... 8
Figure 6. Comparison Operation Between Two Complex-Valued Vectors. The Mask Bits Are Generated Using a Real-Valued Comparison, and

Then Adjacent Bits Combined Using AND. .. 9
Figure 7. Function for Converting from a Real-Valued Mask to a Complex-Valued Mask By AND-Combining Adjacent Bits .. 9
Figure 8. Function for Converting from a Real-Valued Mask To a Complex-Valued Mask By OR-Combining Adjacent Bits .. 10
Figure 9. Bit Layout of Three Types of Floating-Point Formats ... 10
Figure 10. Landmark Numbers on the Real-Valued FP16 Axis ... 11
Figure 11. Heat-map Showing Relative ULP Error for Different Combinations of Divisor and Dividend Value Ranges .. 15
Figure 12. Function to Implement the 16-Bit Compress Operation on FP16 Vector Elements ... 16
Figure 13. Function That Performs Fast Floating-Point Minimum Using Integer Instructions .. 17

Tables
Table 1. Reference Documents ... 3
Table 2. Supported FP16 Data Types .. 5
Table 3. Example Intrinsic Names .. 5
Table 4. Conjugation Instructions .. 6
Table 5. Useful or Interesting FP16 Numbers ... 11
Table 6. Rounding Modes ... 13
Table 7. Convenience Intrinsics .. 17

https://intel-my.sharepoint.com/personal/carolynx_lusk_intel_com/Documents/Documents/Experience%20Kits/AVX512-FP16%20TechGuide%20v3%20-%2022.04/IntelAVX-512-FP16_InstructionSet_for_IntelXeonProcessor_TechnologyGuide_669773v3.docx#_Toc102654735
https://intel-my.sharepoint.com/personal/carolynx_lusk_intel_com/Documents/Documents/Experience%20Kits/AVX512-FP16%20TechGuide%20v3%20-%2022.04/IntelAVX-512-FP16_InstructionSet_for_IntelXeonProcessor_TechnologyGuide_669773v3.docx#_Toc102654737
https://intel-my.sharepoint.com/personal/carolynx_lusk_intel_com/Documents/Documents/Experience%20Kits/AVX512-FP16%20TechGuide%20v3%20-%2022.04/IntelAVX-512-FP16_InstructionSet_for_IntelXeonProcessor_TechnologyGuide_669773v3.docx#_Toc102654738

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 3

Document Revision History

REVISION DATE DESCRIPTION

001 October 2021 Initial release.

002 January 2022 Clarified naming of rounding modes and provided a faster code sequence for approximate square root.

003 May 2022 Clarified when embedded rounding is permitted. Revised the document for public release to Intel®
Network Builders.

1.1 Terminology
TERMINOLOGY DESCRIPTION

CFP16 Complex-valued floating-point format comprising two FP16 values representing the real and imaginary values
respectively. When used in SIMD, the individual real/imaginary values from each complex value are interleaved in the
register.

Denormal A subset of denormalized numbers that fill the underflow gap around zero in floating-point arithmetic.

FP16 Half precision 16-bit floating-point data format.

FP32 Single precision 32-bit floating-point data format

FP64 Double precision 64-bit floating-point data format

FFT Fast Fourier Transform

IEEE 754-2019 The current IEEE Standard for Floating-Point Arithmetic used in Intel AVX-512 FP16

Intel® AVX/Intel®
AVX2/Intel® AVX-512

Intel® Advanced Vector Extensions, Intel® Advanced Vector Extensions 2, Intel® Advanced Vector Extensions 512
Advanced Vector Extensions. Available in three major revisions, ranging from basic 256-bit SIMD support in AVX,
through additional instructions and data types in Intel AVX2, and on to the most recent 512-bit support in Intel AVX-
512.

Intel® AVX-512 FP16 A new ISA for handling half precision floating-point, added as an extension to Intel AVX-512.

Intrinsic A function that can be called from a high-level language, such as C/C++, that gives direct access to the underlying ISA.
Intrinsics allow the programmer to bypass the compiler and directly specify that a particular instruction be used.

ISA Instruction Set Architecture

MMSE Minimum Mean Squared Error

NaN Not A Number. A way to represent a value that is undefined or unrepresentable. For example, the square root of a
negative number would generate a NaN value.

Normal A floating-point number that can be represented without leading zeros in its significand.

SIMD Single instruction, multiple data. A way of packing several data elements into a single container and operating on
them all at once.

SINR Signal-to-Interference-plus-Noise Ratio

SSE SIMD Streaming Extensions. The predecessor to AVX.

1.2 Reference Documentation

Table 1. Reference Documents

REFERENCE SOURCE

Intel® AVX-512-FP16 Architecture Specification https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-
architecture-specification.html

Intel® 64 and IA-32 Architectures Optimization
Reference Manual

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf

Intel® 64 and IA-32 Architectures Software
Developer Manuals

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Intel® Intrinsics Guide, an online reference guide https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 4

2 Overview
In this document, we describe the addition of a new FP16 ISA for Intel AVX-512 into the Intel Xeon processor family to handle IEEE
754-20191 compliant half-precision floating-point operations (also known officially as binary16, or unofficially as FP16). This new
instruction set is general-purpose and can be used for all numeric operations that could be reasonably expected, including numeric
operations (add, subtract, divide, multiply), fused operations (for example, fused multiply-add), comparisons, conversions to and
from other data types, and many more. Broadly, the new instruction set mirrors the floating-point support that is already available
in Intel Xeon processors for 32-bit (FP32) and 64-bit (FP64), although there are a few exceptions to this, which will be noted where
appropriate. There is one notable new feature of FP16 when compared to existing FP32 and FP64 instruction sets: The addition of
native complex-value support for interleaved FP16 data, which is useful in scientific computing and signal processing.

The two major advantages of using the new FP16 instruction set compared to other floating-point formats are increased execution
throughput and reduced storage requirements. Half-precision floating-point values only require 16 bits for storing each value, as
opposed to the 32 or 64 bits needed for other common IEEE floating-point formats. This allows FP16 to handle twice as many
operations per each clock cycle compared to FP32, and four times as many compared to FP64. Similarly, the reduced size means
that more values can be stored in a given memory region compared to the other formats, increasing the effectiveness of the
registers and the cache hierarchy. The disadvantages are the reduced range and precision. It is the responsibility of the programmer
to decide whether this floating-point format is suitable for a certain application.

Half-precision floating-point is useful for building systems where the dynamic range of floating-point is required but a lower
numeric precision can be easily tolerated and traded for higher compute performance. Typical applications for half-precision
floating-point include signal processing, media or video processing, artificial intelligence, and machine learning.

Historically, some limited support for half-precision data types was available in processors from the 3rd generation Intel® Core™
processor onwards, but the operations were restricted to converting between half-precision and FP32 values. On older platforms,
all numeric operations had to be implemented using higher precision formats and down-converted on completion. Those
instructions were useful for compatibility with other platforms (for example, Intel® GPUs), but did not realize the benefits in higher
compute performance brought about in FP16.

IEEE FP16 is not the only 16-bit floating-point format. Another common type is bfloat16, which is primarily used in artificial
intelligence and machine learning. Intel Xeon processors support some bfloat16 operations, including type conversions and a few
limited numeric operations, but not the full range of general-purpose operations that are supported in FP16 for Intel AVX-512. This
document describes only the instruction set relating to IEEE 754-2019.

This document covers both the general-purpose instruction set as well as the new complex-valued instructions. We then look at the
numeric implications of using FP16 and discuss how to write optimal code sequences for some common operations.

The examples provided in this document use the intrinsic and data type support provided as part of the Intel® oneAPI DPC++
Compiler.

3 FP16 Numeric Instructions
FP16 is an instruction set extension that mirrors the existing support for other floating-point operations in Intel AVX-512 and
makes it available in IEEE-754 FP16 (binary16) number format. It is a general-purpose instruction set, and features instructions that
support all common operations that are required in typical numeric software applications. Briefly, the following classes of
instructions are supported:

Fundamental IEEE numeric: Addition, subtraction, multiplication, division, square root

Fused: Fused (multiply-accumulate) operations covering fmadd, fmsub, negated fma, fmaddsub, and
fmsubadd

Comparison: Minimum, maximum, compare-to-mask (for example, neq, lt, gt)

Conversions: Conversions to and from other common data types, including 16/32/64-bit integer and
FP32/FP64 floating-point

Approximation: Fast, but approximate operations to support reciprocal and reciprocal-square-root.

Specialized: Significand (mantissa)/exponent manipulation, scaling, and rounded scaling

Complex: Native complex-value multiply and fused-multiply operations

1 https://standards.ieee.org/standard/754-2019.html

https://standards.ieee.org/standard/754-2019.html

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 5

We will now look at how to use these new instructions, the impact on performance, and the consequences of the reduced floating-
point decision.

3.1 Data Type Support
Table 2 shows the new data types supported with the FP16 instruction set. In each case, the name of the equivalent type in C or C++
is provided.

Table 2. Supported FP16 Data Types

TYPE FORMAT C/C++ TYPE NAME NOTES

Scalar _Float16 Single 16-bit value stored in IEEE FP16 format

128-bit AVX register __m128h 8 x FP16 values, or 4 x complex FP16 values (CFP16)

256-bit AVX2 register __m256h 16 x FP16 values, or 8 x complex FP16 values (CFP16)

512-bit AVX-512 register __m512h 32 x FP16 values, or 16 x complex FP16 values (CFP16)

The complex instructions operate on standard SIMD vector types, such as __m128h, but internally those instructions treat the
register as sets of complex-valued pairs, as shown in Figure 1. Note that we shall refer to a complex pair of FP16 values as `CFP16’.
The CFP16 type is laid out as though it were an array of two FP16 values, or a C++ type such as std::complex<_Float16>.

e7 e6 e5 e4 e3 e2 e1 e0

128-bits

CFP16(3) CFP16(2) CFP16(1) CFP16(0)

Figure 1. Layout of a 128-Bit Register Representing Four Complex FP16 (CFP16) Values

In the latest Intel OneAPI compilers, 16-bit floating-point literals can be created by suffixing a value with f16. For example:
_Float16 value = 12.34f16;

3.2 Overview of Intrinsics
In common with the intrinsics for other vector instruction sets, FP16 intrinsics take the following form:

result = _mmBITLENGTH_OPNAME_ELEMENTTYPE(arguments)

The bit-length can be 512, 256, or 128 bits, and in the 128-bits case the BITLENGTH field is empty. The OPNAME is a short
descriptor or abbreviation of what the operation does (for example, add, sub, fmadd). The element type is sh for FP16 scalar (scalar-
half), ph for a vector of FP16 values (packed-half), or pch for a vector of CFP16 values (packed-complex-half). Table 3 gives a few
examples to illustrate the naming conventions.

Table 3. Example Intrinsic Names

INTRINSIC NAME DESCRIPTION

_mm_sub_sh Subtract a single scalar FP16 element from another scalar FP16 element

_mm_add_ph Add a pair of 8xFP16 vector registers to form a result containing 8xFP16 outputs

_mm256_add_ph Add a pair of 16xFP16 vector registers to form a result containing 16xFP16 outputs

_mm512_add_ph Add a pair of 32xFP16 vector registers to form a result containing 32xFP16 outputs

_mm256_fmadd_ph Multiply a pair of 16xFP16 vector registers and add the result to a third vector register of 16xFP16
values, forming a result containing 16xFP16 vector elements

_mm512_rcp_ph Compute the reciprocal of a vector register containing 32xFP16 values, generating an output of another
vector register containing 32xFP16 values.

_mm256_fmadd_pch Compute the complex multiplication of 8xCFP16 (complex-FP16) values, adding the result to another
such register, and generating a result containing 8xCFP16 elements.

_mm512_conj_pch Compute the conjugate of a 512-bit register containing 16xCFP16 (complex-FP16) elements.

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 6

Note that pch complex operation intrinsics are only provided for multiply and fused-multiply-add operations since these require
special hardware support. No intrinsics are provided for operations like addition, since the existing add_ph intrinsic behaves
correctly for those without extra support requirements.

For a complete list of all the intrinsics provided as part of FP16, refer to the Intel® Intrinsics Guide.

In the remainder of this document where we give the names of intrinsics, we typically only show the 128-bit variant. Because
AVX512-FP16 supports VL encoding, all three length variants of the intrinsics are available (that is, 128-bit, 256-bit, 512-bit).

3.3 Fundamental Complex-Valued Support
For complex-valued operations, the primary place where hardware support is provided is in multiplication. Complex multiplication
requires several steps, and the new FP16 ISA accelerates those steps. Simpler operations, such as addition and subtraction, do not
require explicit complex support since these can be handled using the other FP16 instructions (for example, addition of two
complex numbers is just the addition of respective real and imaginary values from the two inputs, so _mm_add_ph can be directly
used). Note that complex division is not supported in hardware as this is an uncommon operation, and it can be constructed from
the hardware multiplier and complex multiplier support if required.

To illustrate the mechanics of how complex multiplication is supported, consider the following complex multiply:

(a + bi) * (c + di)

This operation can be refactored as follows:

(ac – bd) + (ad + bc)i

Note that to compute each of the real and imaginary components of the multiply a stand-alone multiply is used first, followed by a
suitable fmadd/fmsub instruction. The hardware support for complex-valued multiplies uses these partial mul/fmadd instructions
in sequence to perform the entire complex multiply. The hardware can schedule and route the data inside the processor to do this
more quickly and efficiently than using an explicit instruction sequence to move the real and imaginary data into the correct places.
Note however that each intermediate step produces a temporary FP16 answer, so the final result will have had an FP16
quantization step.

Using the symbols from the example above, a complex-fma (that is, accumulating against another complex number) can be
implemented using the following refactoring:

((accReal + ac) – bd) + ((accImag + ad) + bc)i

This sequence is equivalent to two FMA operations being performed for each of the real/imag components.

The conjugate of a complex number is formed by negating its imaginary component. A common operation with conjugation is to
multiply a complex number with a conjugate of another complex number. Conjugation in FP16 is supported using three classes of
intrinsic, as illustrated in Table 4.

Table 4. Conjugation Instructions

INTRINSIC NAME DESCRIPTION

_mm_conj_pch Compute the conjugate of a register containing CFP16 (complex-FP16) elements by negating each
imaginary value.

_mm_fcmul_pch Compute the multiplication of a conjugated value with another complex value.

_mm_fcmadd_pch Compute the multiplication of a conjugated value with another complex value, adding the result to a
third complex-vector register.

Both the multiply and the FMA are able to perform the conjugation as part of the instruction operation itself. It is not necessary to
conjugate the value first. For example, an _mm_fcmul_pch intrinsic is functionally equivalent to:

_mm_fcmul_pch(_mm_conj_pch(lhs), rhs)

But _mm_fcmul_pc will operate in fewer cycles than calling that sequence explicitly. When the compiler notices a separate
conjugate and multiply intrinsics being used it fuses them into a single conjugate-multiply.

3.4 Using AVX-512 Bit Masks for Real-Valued Operations
FP16 is able to use the bit-mask features of Intel AVX-512 both to control when operations in a vector register take place, and to
generate masks that store the results of performing tests on vector registers.

Masks allow execution of an instruction to be conditionally applied to selected elements of a vector register. Most instructions
permit such a mask register to be supplied as part of the operation, where each bit within the mask corresponds to a different
element of the vector register. If a given mask bit is set, then the instruction operates on the corresponding element. While if the bit

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 7

is cleared, the operation is not performed and that element’s output is replaced by another value. The cleared output value can
either be taken from another source register, or it can be zeroed. The operation of a masked instruction is illustrated in Figure 2.
Note that the operation only takes place where the 8-element mask has a corresponding bit set and all other outputs are zeroed.

a7 a6 a5 a4 a3 a2 a1 a0

LSBMSB
128-bits

b7 b6 b5 b4 b3 b2 b1 b0

0 a6+b6 0 a4+b4 a3+b3 0 a1+b1 0

0 1 0 1 0101
8-element bit mask

Source A

Source B

_mm_maskz_add_ph(m, srcA, srcB)

Figure 2. Illustration of a Zero-Masked FP16 Add on Two 128-Bit Vectors

Note that masks also control whether faults within an instruction are suppressed. If an operation generates a fault in a particular
element, but the element’s operation has been disabled by a zero bit in the mask, then the fault is not reported.

Some instructions in Intel AVX-512 can generate mask registers, and with FP16 these are normally the result of a comparison
operation. For example, consider the following code snippet:
whichElementsAreLess = _mm512_cmp_ph_mask(lhs, rhs, _CMP_LT_OS);

In this example, every element of the left-hand vector is compared to see if it is less than the corresponding element in the right-
hand vector. If the left element is less than the right element, then a 1 is generated in the mask bit output, otherwise a zero is
emitted. This comparison instruction allows all the major binary comparison operations to be performed between two vectors.

The FP16 instruction also provides support to test for special values using the _mm_fpclass_ph_mask instruction. This
instruction takes a special immediate value that directs the instruction to the numeric classes to look for in the vector register (for
example, infinities, NaN, zero, denormal). This instruction is often used in combination with other instructions to remove special
case values from a register and replace them with something different. For example, the following code snippet removes NaN
values and replaces them with zero.
__mmask8 whichAreNan = _mm_fpclass_ph_mask(values, QUIET_NAN | SIGNAL_NAN);
__m128h valuesWithNoNan = _mm_mask_blend_ph(whichAreNan, values, __m128h());

In Intel AVX-512, there is a special instruction that does direct replacement of special values with known constants called
_mm_fixupimm_ps/pd, but this is not available in FP16.

3.5 Using AVX-512 Bit Masks for Complex-Valued Operations
When a mask operation is applied to an intrinsic that operates directly on complex instruction data (for example,
_mm512_mask_fmadd_pch), then each mask bit refers to a complex pair of FP16 values, not to the individual FP16 values. This is
illustrated in Figure 3. Note that there are 8 FP16 elements, grouped into 4 CFP16 complex values. The 4 mask bits correspond to
the 4 CFP16 values.

LSBMSB
128-bits

b7 b6 b5 b4 b3 b2 b1 b0

 0 0

1011
4-element bit mask

Source A

Source B

_mm_maskz_mul_pch(m, srcA, srcB)

a7 a6 a5 a4 a3 a2 a1 a0

cfpA0 * cfpB0cfpA2 * cfpB2cfpA3 * cfpB3

Figure 3. Illustration of a Masked Complex Multiplication

No direct numeric support is provided for complex operations such as addition, subtraction, and real-valued scaling, but their
standard real-valued equivalent instructions can be used instead. However, if such an operation has to be masked on a per-

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 8

complex-element basis, then the incoming complex-valued mask needs to be expanded into pairs of identical bits, one pair per
complex-element. An example of this is illustrated in Figure 4. Note that the incoming mask bit, which is per CFP16 element, needs
to be expanded to duplicate each bit for the real-valued intrinsic.

LSBMSB
128-bits

b7 b6 b5 b4 b3 b2 b1 b0

1011
4-bit complex mask

Source A

Source B

_mm_maskz_add_ph(m, srcA, srcB)

a7 a5 a4 a3 a2 a1 a0

a7+b7 a6+b6 a5+b5 a4+b4 0 0 a1+b1 a0+b0

1111

8-bit expanded mask

1001

a6

Figure 4. Illustration of Using a Real-Valued FP16 Vector Operation for Implementing a Masked Complex Addition

The operation to expand the incoming complex-mask-bits to generate real-valued mask could be performed in numerous different
ways, but one efficient way to achieve this operation is shown in Figure 5. This code fragment uses the fast mask-to-vector and
vector-to-mask instructions to effect the upscaling of the bit-mask elements.

It may also be necessary to perform a similar operation in reverse, where pairs of bits representing adjacent FP16 values need to be
reduced in some way into a single bit representing the complete complex element (for example, AND, OR). For example, if two
complex vectors must be compared for equality then the individual FP16 elements must be compared for equality first, and then if
two adjacent mask bits are both set (that is, the logical AND of those bits), then the complex element as a whole must be equal. This
comparison test is illustrated in Figure 6. Note that some of the sub-elements in each CFP16 do compare equal when using the
_mm_cmp_ph_mask intrinsic, but both elements in each CFP16 value must be equal for the complex values to be truly equal to each
other.

__mmask8 getRealMaskFromComplexMask(__mmask8 m)
{
 // 4 incoming bits representing the 4 complex elements in a 128-bit register.
 // Each mask bit is converted into an entire element in a vector register
 // where a 0-mask generates 32x0, and a 1-mask generates 32x1. For example
 // 0010 -> [000....00], [000...000], [111....111], [000....000]
 auto wholeElements = _mm_movm_epi32(m);

 // Each complex element can now be treated as a pair of 16-bit elements instead,
 // and the MSB of each 16-bit unit can extracted as a mask bit in its own right.
 return _mm_movepi16_mask(wholeElements);
}

Figure 5. Function for Converting from a Complex-Valued Mask To a Real-Valued Mask by Duplicating Adjacent Bits

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 9

LSB
128-bits

34 12 90 87 0 43 11 3

Source A

Source B

_mm_cmp_ph_mask(srcA, srcB, _MM_CMP_EQ_OS)

34 90 31 67 43 21 23

12

0111 0100

MSB

01 00 mask-pair reduction with AND

Figure 6. Comparison Operation Between Two Complex-Valued Vectors. The Mask Bits Are Generated Using a Real-Valued
Comparison, and Then Adjacent Bits Combined Using AND.

One implementation of the function to combine adjacent mask bits using an AND operation is shown in Figure 7. Like the example
above, it uses the mask-to-vector and vector-to-mask instructions to good effect.

Note that the individual mask bits are expanded to 8-bit elements and then compared for equality as 16-bit elements to combine
adjacent elements. There is no need to expand to the same size as the data being processed (that is, 16/32-bit respectively in this
case), since the bitwise pairing is independent of the original data element sizes. By using smaller registers, efficiency is very slightly
improved compared to using wider registers.

The adjacent mask bits could also be combined using an OR operation, which might be useful if testing whether a complex value is
NaN (that is, a complex value is NaN if either of its individual elements is NaN). A sequence for determining an OR of adjacent mask
bits is shown in Figure 8.

__mmask8 getComplexMaskFromRealMask_AND(__mmask8 m)
{
 // 8 incoming bits representing the 4 real-valued elements in a 128-bit register.
 // Broadcast the bits into 8-bit elements of all 1's or all 0's.
 auto wholeElements = _mm_movm_epi8(m);

 // Generate an entire vector of 1's (typically a ternlogic will be used, which is
 // very cheap and can be done in parallel with the movm above, or hoisted when
 // used repeatedly.
 const auto allOnes = _mm_set1_epi16(-1);

 // Extract single mask bits from each 16-bit element which are the logical ANDs of the
 // MSBs of each incoming 8-bit element. Because the movm above generated all 0/1 bits
 // across the whole element the only combinations of values in each 32-bit unit are
 // both all zero, both all one, or one of each. The logical AND of the MSBs can only
 // occur when both 8-bit sub-elements are all ones, so this is equivalent to
 // comparing the 16-bit block as though it were entirely 1, which is a direct
 // equality comparison.
 return _mm_cmp_epi16_mask(wholeElements, allOnes, _MM_CMPINT_EQ);
}

Figure 7. Function for Converting from a Real-Valued Mask to a Complex-Valued Mask By AND-Combining Adjacent Bits

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 10

4 Numerics
Using FP16 instead of the more conventional and widely used FP32 and FP64 formats introduces a number of interesting numeric
behaviors. It is beyond the scope of this paper to discuss these fully or to describe the numeric methods required to build FP16
algorithms, but in this section, we highlight a few of the properties and behaviors of the FP16 number format and the consequences
that arise from this.

4.1 Introduction to FP16 Number Format
An FP16 floating-point number is represented using 16 bits, which are laid out as shown in Figure 9. The figure also shows two
other floating-point number formats for comparison, one being the common 32-bit FP32 format, and the other being the
alternative 16-bit floating-point format called brain-float 16, which is used for machine learning. Note how bfloat16 is simply the
upper 16-bits of the FP32 format, giving it the same dynamic range as FP32 but with considerably reduced precision, making this
ideal for machine-learning applications. In contrast, the IEEE FP16 format modifies the sizes of the significand and the exponent to
produce a more balanced blend of precision and range, which is more suitable for general purpose algorithms.

Significand (10)Exponent (5)s

Significand (23)Exponent (8)s

Significand (5)Exponent (8)s

32-bit single
precision (FP32)

16-bit half
precision (FP16)

16-bit brain float
(BFP16)

Figure 9. Bit Layout of Three Types of Floating-Point Formats

Certain bitwise operations can be used to manipulate the floating-point numbers without requiring special hardware support. For
example, an absolute operation (that is, convert the value to its positive equivalent) can be implemented as a bitwise AND of the
lower 15 bits of the value, thereby stripping off any sign bits. Similarly, functions like negate, negative-absolute (nabs), copy-sign,
test-sign, and so on can also be implemented using existing Intel AVX-512 bitwise intrinsics.

4.2 Observations on Representing Numbers in FP16 Format
Although FP16 behaves functionally the same way as FP32 and FP64, the limited number of bits in its representations means that
some surprising limits are imposed on the permitted values. In FP32 and FP64, most of the useful human-comprehensible numbers
can be easily represented without considering too much about the limitations in value representation imposed by the floating-point
format, but those limitations show up in FP16 limitations more easily. In Figure 10 some landmark values on the real-valued
positive number line are illustrated, and in Table 5 further useful numbers are listed.

Figure 8. Function for Converting from a Real-Valued Mask To a Complex-Valued Mask By OR-Combining Adjacent Bits

__mmask8 getComplexMaskFromRealMask_OR(__mmask8 m)
{
 auto wholeElements = _mm_movm_epi16(m);

 // Similar logic to the AND variant above but now any 32-bit element which
 // isn't zero represents the logical OR or two adjacent 16-bit block
 // elements in one 32-bit block.
 return _mm_cmp_epi32_mask(wholeElements, __m128i(), _MM_CMPINT_NE);
}

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 11

0 ∞

Smallest normal
≈0.000061

First non-
representable

integer
2049

Largest normal
number
65504

Largest int16_t
32767

Denormal Normal Infinite

First non-
representable
even integer

4098

Figure 10. Landmark Numbers on the Real-Valued FP16 Axis

Table 5. Useful or Interesting FP16 Numbers

VALUE HEX REPRESENTATION DESCRIPTION

0 0x0000 Zero

0.000000059604645 0x0001 Smallest denormal value

0.000060975552 0x03ff Largest denormal value

0.00006103515625 0x0400 Smallest normal value

1 0x3c00 One

Inf 0x7c00 Positive Infinity

-Inf 0xfc00 Negative Infinity

Some consequences of using the FP16 number format include:

• Denormal numbers are not very small – it is easy to generate a number that gets too small to be represented using an FP16
normal value.

• Infinity starts very low down; it is only slightly less than the maximum value of an unsigned 16-bit integer. Overflow of
values converted from 16-bit integers can quickly lead to infinities.

• Only integers up to a magnitude of 2048 can be fully represented. Beyond that, the permitted integers become very sparse
very quickly. Rounding from a real integer type to an FP16 value introduces large absolute integer errors if the integer is
above 2048.

These limitations may seem cumbersome at first, but there are good reasons why FP16 representation is a good fit for many signal-
processing applications. Firstly, it is important to consider the Signal-to-Interference-plus-Noise ratio, or SINR. In a typical signal-
processing system, such as a wireless receiver, the signals of interest are almost always subject to measurement noise. In the case of
a wireless system, this noise would be introduced by receiver thermal-noise or in-band interference.

With FP16 number representation, any value on the real number-line within the normal range is subject to approximately -73.7 dB
of quantization noise when quantized to FP16 format (IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS,
VOL. 63, NO. 6, JUNE 2016: Quantization Noise Power Estimation for Floating-Point DSP Circuits Gabriel Caffarena, Senior Member,
IEEE, and Daniel Menard, Member, IEEE2). To use common signal-processing parlance, the SINR is always ~73.7 dB – meaning that
the quantizing error variance is 10−7.37 times the squared-magnitude of the signal. When compared to a typical received SINR of 25
dB, this means that the variance of the additional error introduced by the FP16 quantization is 1048.7 10⁄ ~74,131 times lower than the
measurement noise of the signal. In effect, it adds a negligible extra noise power.

Other signal processing requirements include dynamic range. The FP16 representation is able to maintain the 73.7 dB SINR over the
complete dynamic range of a perfect 16-bit ADC. Care must be taken to exploit the floating-point aspect of FP16 and not directly
convert integers to FP16, as squaring operations will likely result in “Inf”. However, this is easily overcome by converting 16-bit
integers to FP16 and then scaling by a fixed constant: 1 256⁄ is a good choice.

2 https://ieeexplore.ieee.org/document/7407669

https://ieeexplore.ieee.org/document/7407669

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 12

4.3 Numeric Accuracy Guarantees
In any floating-point calculation, it is impossible to give the result of every possible computation because not every value has a valid
representation. The output has to be quantized to a nearby value which *can* be represented in that number format. If the result is
not representable, the distance between the next lowest representable value and the next highest representable value is called the
unit-in-last-place, or ULP (and less commonly but equivalently, the unit-of-least-precision), and the actual answer will lie
somewhere between the two. When the output value is rounded up or down to the nearest representable value, it therefore follows
that the error in that calculation is no more than 0.5 ULP.

In IEEE 754 floating-point arithmetic, the standard mandates that the result of any hardware implementation will generate a
correctly rounded result that has no more than 0.5 ULP of error when rounding `to nearest’ for the following operations:

• Addition
• Subtraction
• Multiplication
• Division
• Square root
• Fused multiply-add

When rounding up, down, or toward zero, the error is less than 1 ULP.

The fused multiply-add is interesting because it guarantees that the intermediate result of the multiplication is kept in a higher
precision form internally before being added. This means that the result of an FMA operation can have less overall error than doing
a sequence of individual multiply and add instructions.

AVX512-FP16 is compliant with IEEE Standard 754-2019, and arithmetic operations on it are implemented in the spirit of the
Standard (which does not require arithmetic operations for binary16). Consequently, all the operations listed above yield correctly
rounded results. FP16 also contains a few instructions (not defined in IEEE 754-2019) that produce approximate results to within
0.5625 ULP error. These include:

• Reciprocal (rcp)
• Reciprocal square-root (rsqrt)

Further examination of these special cases is given in later sections.

Note also that complex multiplications (and fused multiplications) have an intermediate quantization to FP16 because, as described
earlier, the hardware implements these operations as a sequence of FMAs. Each step of that sequence introduces quantizing, so the
overall effect of the complete complex multiply has some small error.

4.4 Handling Denormal Values
FP16 differs from FP32 and FP64 floating-point by allowing computations involving denormals to be performed with no impact on
cycle count. This is in contrast to FP32 and FP64 computation modes where handling denormals under some conditions can
introduce cycle performance penalties. In FP32 and FP64 computations, when a denormal value is encountered the instruction
might trap and call into a software routine to handle the computation instead, which increases the number of processor cycles
required. Describing when this occurs and what the penalties would be is beyond the scope of this document. However, it is
common to attempt to avoid denormal values in FP32 and FP64 computation where possible by modifying two FP execution flags:

DAZ Denormals Are Zero Any denormal inputs are replaced by zero before use

FTZ Flush To Zero Any outputs that would be denormal are replaced by zero

Since FP16 handles denormals at full speed, all FP16 computations ignore the DAZ and FTZ flags and modifying these flags has no
impact on FP16 numeric behavior or performance.

4.5 Embedded Rounding
In common with other AVX-512 instructions, FP16 allows the use of an instruction attribute called Static Rounding Mode. Rather
than depending upon the contents of a global control register (called MXCSR) to set the floating-point rounding mode, most
instructions in AVX512-FP16 can override the rounding mode behavior for only that instruction. Some permitted rounding modes
are shown in Table 6.

For convenience, intrinsics are provided to give easy access to embedded rounding modes. For example, the FP16 addition
instruction can have the rounding mode controlled by using the following intrinsic:

__m128h _mm512_add_round_ph (__m128h a, __m128h b, int rounding);

The third parameter, which supplies the rounding mode immediate, can be taken from the third column of Table 6, which describes
four of the IEEE rounding modes and the required selector to invoke that behavior.

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 13

Table 6. Rounding Modes

IEEE 754-2019 ROUNDING MODE DESCRIPTION C INTRINSIC CONSTANT SELECTOR

roundTiesToEven Round toward nearest
floating point, with ties to
even

_MM_FROUND_TO_NEAREST_INT |
_MM_FROUND_NO_EXC

roundTowardPositive Round toward negative
infinity

_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC

roundTowardNegative Round toward positive
infinity

_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC

roundTowardZero Round toward zero _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC

The following points should be noted:

• When a rounding mode is explicitly used, then this implies that the `suppress-all-exceptions’ flag is also set for that
instruction. Therefore, an instruction that uses embedded rounding never raises a floating-point exception.

• The C intrinsic constant selector name _MM_FROUND_TO_NEAREST_INT is not ideal, but that name has been historically
used for so long in all common compilers that it is difficult to change to something more meaningful.

• Embedded rounding is only permitted on full width AVX-512 intrinsics (e.g., __mm512_OP_round_pX) or scalar operations
(e.g., _mm_OP_round_sX). It is not permitted on AVX-512 VL encoded 128-bit or 256-bit operations.

4.6 Legacy FP16 Data Type Conversion
Two older Intel instruction sets already supported FP16 values as a storage format and provided conversion instructions to and
from other data types. For example:

_mm_cvtph_ps Convert from FP16 to FP32

_mm_cvtps_ph Convert from FP32 to FP16

These instructions were originally available in the FP16C ISA for 128-bit and 256-bit registers. The Intel AVX-512 FP16 ISA further
extended these instructions to work with 512-bit registers, and also added the option to conditionally mask selected elements (for
example, _mm512_mask_cvtph_ps).

These instructions do not have embedded broadcast modes. It is recommended that the newer conversion instructions described in
the next section be used instead.

4.7 FP16 Conversions to and from Other Data Types
The Intel AVX-512 FP16 contains a comprehensive set of instructions that convert to and from most of the other supported data
types, with and without rounding.

Conversions from FP16 to other data types take the following intrinsic forms:

_mm_cvtph_epi16 Convert from half-precision to 16-bit integer

_mm_cvtph_epi64 Convert from half-precision to 64-bit integer

_mm_cvtxph_ps Convert from half-precision to FP32

Note that an extra x appears in some of the intrinsics to differentiate the intrinsics from their older FP16C/Intel AVX-512 F ISA
counterparts. Only instructions that could be confused with older instruction sets have an x in their name (for example, the int16
conversion only appears in Intel AVX-512 FP16 so it does not need to be disambiguated).

When an FP16 denormal value is converted to a higher-precision FP32 or FP64 value, the denormal is converted to a normal
representation in the output format.

Although the older conversion instructions perform type conversion as expected, they do not support embedded broadcasts. It is
recommended to use the newer instructions wherever possible to get some instruction encoding advantages.

Conversions to FP16 format from other data types all take the intrinsic form shown in the following examples:

_mm_cvtepi16_ph Convert from 16-bit integer to half-precision

_mm_cvtepi64_ph Convert from 64-bit integer to half-precision

_mm_cvtxph_ph Convert from FP32 to half-precision

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 14

Note that some care must be taken when converting from higher precision types into FP16. For example, conversion from a signed
16-bit integer value to FP16 generates the equivalent integers in FP16, albeit with some small loss possibly (for example, integer
values greater than 2048 may be quantized to a nearby integer, not the exact integer). However, a more serious issue is that values
that are converted from full-range 16-bit unsigned integer format are converted into FP16 values, which are at the very upper end
of the permitted FP16 number range. Almost any numeric operation on such values could lead to overflow and the generation of
infinities. In such scenarios, it is beneficial to perform some scaling on the value after conversion, to bring the range of the new
values into the middle of the FP16 number range, thereby making it more difficult to hit infinities or denormals through normal
compute operations.

Note that some care must be taken when converting to and from integer types to FP16. In particular, it must be noted that not all
values in the 16-bit signed integer range of -32768 to +32767 can be represented in FP16. There will be some quantization effects
with values above 2048. As discussed in Section 4.2, this additional quantizing noise power is negligible in most signal processing
applications. However, the 16-bit integer range includes numbers that become close to Inf in FP16 format (values above 65504 are
Inf). To avoid potential problems when performing typical signal-processing tasks such as cross-correlations, which operate in
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠2, 16-bit integer values should be scaled after conversion to FP16. A typical scale would be 1 256⁄ . In this scheme, 32768
would be converted to 128.00f16. Note that both 128.002 = 16384.00 and (2 256⁄)2 = 0.00006103515625 are within the normal
range of FP16 values. This means that most typical signal-processing operations can be performed with values mostly in the normal
range (with (1 256⁄)2 just falling outside of the normal range). So, by the simple expedient of applying a fixed scaling, FP16
representation can be used to comfortably span the dynamic-range presented by 16-bit ADCs and DACs.

4.8 Approximation Instructions and Their Uses
In common with Intel AVX-512, the new FP16 instructions support a number of approximation functions, including reciprocal (rcp),
and reciprocal-sqrt (rsqrt). Although many instructions in Intel AVX-512 FP16 are accurate to within 0.5 ULP, as guaranteed by IEEE
754, the approximation instructions give very slightly less accurate results, but these are still useful, especially when compared with
their equivalents in FP32 and FP64.

In FP32 and FP64 the approximation instructions are quite rough (that is, have a very high ULP error) and can only be used as a
substitute for full-precision operations if combined with one or two Newton-Raphson iterations to refine the initial approximation to
a point where it becomes sufficiently accurate. However, in FP16 the approximation functions give results that are so close to their
full precision results - within 0.5 ULP for 98% of the possible values and within 0.5625 ULP for the remaining 2% of values – that
there is no need to add Newton-Raphson iterations. This makes the approximation instructions very useful. They give virtually the
correct answer, but with substantial benefits in performance over their full-accuracy counterparts. The following sections examine
each approximation instruction in more detail.

4.8.1 Approximate Reciprocal
The reciprocal instruction in Intel AVX-512 FP16 behaves almost identically to the equivalent code sequence implemented using a
division of the constant 1.0. For example, consider the following two code fragments:
__m512h trueRcp = _mm512_div_ph(_mm512_set1_ph(1.0f16), x); // #1
__m512h approxRcp = _mm512_rcp_ph(x); // #2

The first, true reciprocal-by-division is guaranteed to be within 0.5 ULP, assuming rounding to nearest-even is used, but it takes
approximately 15 cycles in 128 or 256-bit mode, and 24 cycles in 512-bit mode. It has a throughput of one instruction every 8
cycles in 128/256 bits mode, or one every 16 cycles in 512 bits mode. In contrast, the approximate reciprocal instruction is within
0.5 ULP for 98% of the possible valid input values, and the remaining 2% of values are within 0.5625 ULP, but it has a latency of
only 4 cycles (or 6 cycles in 512 bits mode), and a throughput of 1 cycle (or 1.5 cycles in 512-bit mode). This dramatic improvement
in compute performance of rcp_ph for almost no difference in numeric performance makes it ideal whenever that particular use
case is required. Only when there is an absolute requirement for IEEE floating-point behavior should the division sequence be used
instead.

4.8.2 Approximate Division
The two code fragments below show how a division could be implemented:
__m512h trueDiv = _mm512_div_ph(lhs, rhs); // #1
__m512h approxRcp = _mm512_mul_ph(lhs, mm512_rcp_ph(rhs)); // #2

The first of these uses the actual division instruction and is accurate to within 0.5 ULP (that is, correctly rounded, regardless of
rounding mode).

The second sequence implements division by multiplying by the reciprocal, where the reciprocal is computed using the
approximate function. We have already seen in the section above that the reciprocal approximation is very good, and this means
that performing division using this sequence also turns out to be very good for most FP16 values. To illustrate how good the
approximation of the divide is, consider the heat-map shown in Figure 11. It shows how the ULP error changes for all the possible
values of divisors and dividends. The green areas show that the approximation sequence gives identical results to a real division

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 15

operation when the dividend is large and the divisor is small, or when the divisor is large and the dividend is small. The yellow
region shows the cases where both the dividend and divisor fall into the middle-range of FP16 values, which is where a numerically
well-designed algorithm falls, and indicates that 98% of values are within 0.5625 ULP of being correct, and every possible
combination of dividend and divisor is never less accurate than about 1.5 ULP. The only places where the approximate division
breaks down is when the divisor is very small (i.e., the left-hand red strip corresponding to the denormals), or very large (that is, the
right-hand red strip where the exponent is at, or close to the maximum).

Figure 11. Heat-map Showing Relative ULP Error for Different Combinations of Divisor and Dividend Value Ranges

A division instruction is relatively expensive, taking 24 cycles with a throughput of 16 in 512-bit mode. In contrast, both multiply
and reciprocal are cheap instructions, even when used in sequence, and consequently the approximation to division is ~3x faster.
This speed, coupled with the low error for most FP16 values, means that well-designed algorithms could use the approximation
sequence with little disadvantage.

4.8.3 Approximate Reciprocal Square Root
The reciprocal square root instruction in Intel AVX-512 FP16 is numerically very good. It gives a value that is within 0.5 ULP for 98%
of the valid inputs, and the remaining 2% are within 0.5625 ULP of the true result.

An obvious implementation of a reciprocal square root, which uses the correctly rounded operations, is shown below:
__m512h rsqrtSequence = _mm512_div_ph(_mm512_set1_ph(1.0f16), _mm512_sqrt(x));

This also gives a very good answer – within 0.5 ULP of the true result for 73% of possible inputs, and within 1 ULP for the remaining
23% - but that is slightly worse than the _mm_rsqrt_ph instruction itself, so the approximation intrinsic should be used in
preference.

The approximate reciprocal square root takes 6 cycles, compared to the alternative sequence above that takes 48 cycles when in
512-bit mode.

4.9 Approximate Square Root
Although a square root instruction exists and is within 0.5 ULP of the true answer, it is possible to combine a product and rsqrt to
get a good approximation, as shown in the code fragment below:
__m512h sqrtSequence = _mm512_mul_ph(x, _mm512_rsqrt(x));
This sequence gives an answer that is identical to that from the sqrt instruction for 70% of the possible input values and is never
more than 1 ULP away from the true result for any FP16 input value. The throughput of the product is twice the throughput of the
reciprocal square root approximation, allowing for some flexibility in internal scheduling. The speed of this instruction sequence,
coupled with its negligible error, makes it suitable for fast sqrt for any algorithms except those that require guaranteed IEEE
rounding.

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 16

5 Using Existing Intel AVX-512 Instructions to Augment FP16 Support
Intel AVX-512 FP16 provides purely numeric operations that require hardware support and cannot easily be implemented in any
other way. For all other related operations needed to support the use of vector FP16 (for example, permuting FP16 elements in a
register), it is necessary to use the instructions that are already provided as part of the existing Intel AVX-512 instruction set. As a
convenience, the compiler provides many support functions. For example, the intrinsic called _mm512_mask_blend_ph, which
blends FP16 elements from two registers into one, is implemented using the underlying mask_blend_epi16 instruction. In cases
where the compiler does not provide such convenience functions it will be necessary for programmers to create a wrapper to
handle this themselves. In this section we show how such functions could be implemented, list some of the common convenience
instructions, and show one example where extra performance can be achieved by exploiting the Intel AVX-512 instruction set to
handle floating-point comparisons more efficiently.

5.1 Using Existing Instructions to Extend Intel AVX-512 FP16 Intrinsics
Suppose we wish to use a bit mask to compress the elements of an FP16 vector register, creating something that would act as you
would expect from a non-existent intrinsic called _mm512_mask_compress_ph. Although such an intrinsic does not exist, it can be
created as shown in Figure 12.

Figure 12. Function to Implement the 16-Bit Compress Operation on FP16 Vector Elements

The strategy followed in the example is to take the incoming vector of FP16 values and recast to a vector of int16_t values using the
castph_si512 intrinsic. The newly cast values are then processed as though they are a vector of int16_t elements instead. This step
does not change the individual 16-bit element blocks; it just moves them around within the register. On completion, the value is
recast back to its original type as a vector of FP16 elements.

Note that the cast operations have no runtime impact and are purely used to inform the compiler that the programmer is treating
the underlying bits in the incoming register as though they were a different type. No type conversion takes place. In practice, the
entire code sequence in the example function collapses into a single compress instruction.

This same strategy can be used to apply any sort of data movement instructions as a method of moving data around within FP16
vector registers. The code is somewhat verbose but can be easily hidden away as a library function. Furthermore, many common
utility intrinsics of this sort have already been implemented in the Intel OneAPI compiler and can be used directly. It should only be
necessary to build additional intrinsic support functions for more unusual operations.

In addition to data movement instructions, other bitwise operations like abs, nabs, negate, and copy-sign, can also be implemented
using the underlying Intel AVX-512 foundation instructions.

5.2 Common Convenience Intrinsics
Convenience instructions are provided for the common cases where FP16 support is implemented with existing Intel AVX-512
instructions, without requiring the definition of verbose intrinsics given in the compress_ph example above. Table 7 provides a list
of some common convenience intrinsics.

__m512h compress_ph(__mmask32 mask, __m512h value)
{
 const auto asInt16 = _mm512_castph_si512(value);
 const auto comp = _mm512_mask_compress_epi16(mask, asInt16);
 return _mm512_castsi512_ph(comp);
}

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 17

Table 7. Convenience Intrinsics

MODE PURPOSE AND IMPLEMENTATION

_mm512_conj_pch Compute the conjugate of a complex number by using bitwise XOR operation to
flip the sign bit of the imaginary elements.

_mm512_abs_ph Compute the absolute numeric value of an FP16 element by using a bitwise AND
instruction to mask off the sign bit.

_mm512_mask_blend_ph Use the underlying _mm512_mask_blend_epi16 intrinsic to provide an FP16
(_ph) equivalent.

_mm512_permute[x]var_ph Reorder FP16 elements from one or two source registers.

_mm512_reduce_[add/min/max]_ph Generate a sequence of instructions that performs a reduction operation across all
the elements of an FP16 vector register. This is more complicated than the other
examples because it performs a sequence of permutes and reorders to pull the
data together and intersperses those operations with numeric reduction
operations that perform addition, multiplication, minimum, and so on.

5.3 Using Integer Comparisons for Fast Floating-Point Comparison
IEEE floating-point values have the interesting property that all non-NaN values that are either both known to be positive or known
to have different signs can be directly compared by treating their bit pattern as a 16-bit signed integer. This does not work when
both values are negative. The fast-integer property can be exploited to give a low-latency minimum (or maximum) function as
shown in the code fragment in Figure 13.

Figure 13. Function That Performs Fast Floating-Point Minimum Using Integer Instructions

By using the int16_t minimum instead, the instruction takes only 1 cycle to execute, which is faster than the equivalent FP16
minimum, and can be used to accelerate latency or dependency-sensitive code. Note however that the throughput is lower than the
equivalent FP16 minimum instruction, so code that is exclusively performing minimum operations may do better using the FP16
minimum.

For comparison operations all data types take the same number of cycles to compare so using the equivalent int16_t form of the
instruction to perform a comparison makes no difference to performance.

6 Math Library Support
The math libraries provided with Intel® compilers offer full functionality for the float16 data type (_Float16). Compiler support for
the float16 data type can be enabled with -arch=sapphirerapids (ICX compiler). Float16-specific optimizations are available for
vectorized math library calls.

Scalar math library functionality is available in the LIBM. These functions have not yet been optimized for Intel AVX-512 FP16 and
currently rely on existing float32 implementations. Scalar float16 function names use the f16 suffix (for example, expf16, logf16,
sinf16, cosf16).

At the default accuracy level (4 ULP or better), most common functions in the short vector math library (SVML) are optimized to take
full advantage of the new Intel AVX-512 FP16 instruction set. Higher accuracy versions (1 ULP) are also available, and most have
been optimized; however, the 1 ULP versions frequently rely on single precision computation to achieve the required accuracy. It is
thus expected that the 4 ULP implementations will provide noticeably better performance. SVML calls are generated by the
compiler as part of loop vectorization. Compiler intrinsics for SIMD float16 calls (for example, _mm_log_ph) are not yet available.

// Assume the inputs are sane values, and are either both positive or opposite signs.
__m128h fast_special_min(__m128h lhs, __m128h rhs)
{
 const auto lhsInt16 = _mm_castph_si128(lhs);
 const auto rhsInt16 = _mm_castph_si128(rhs);
 const auto smallest = _mm_min_epi16(lhsInt16, rhsInt16);
 return _mm_castsi128_ph(smallest);
}

Technology Guide | Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processor Based Products

 18

The Intel AVX-512 FP16 instruction set includes several operations that support efficient implementation of math libraries. These
operations are extensions of Intel AVX-512 transcendental support instructions and include VGETEXP, VGETMANT, VSCALEF,
VFPCLASS, VREDUCE, VRNDSCALE (in addition to VRCP, VRSQRT).

VGETEXP (get normalized exponent) and VGETMANT (get normalized mantissa) are used together in implementations of functions
such as log(), pow(), cbrt(). In the absence of these operations, denormal and special inputs would require treatment in a separate
path (or alternatively, a slower main path that treats all inputs correctly). Denormals are reasonably likely to occur as inputs to
float16 SVML calls due to the narrow float16 format range. The relative frequency of special inputs also increases with a wider SIMD
length (32 packed float16 inputs per 512-bit SIMD register), so it is especially helpful to avoid branches. As an example, VGETEXP
and VGETMANT can be used to reduce the log() computation to log(x)=VGETEXP(x)*log(2) + log(VGETMANT(x,8)). VGETMANT with
an immediate value of 8 returns the normalized mantissa (in the [1,2) range) for positive inputs, and QNaN_Indefinite for negative
inputs (which helps with special case handling).

VSCALEF(a,b)=a*2floor(b) is used in exponential and power functions; other possible applications include software division. This
operation helps with correct overflow and underflow treatment in the main path. It also includes support for special exp() cases,
thus eliminating the need for branches or other fixup code for this function family.

VFPCLASS is used to test for multiple special case categories (sNaN, negative finite, denormal, -Infinity, +Infinity, -0, +0, qNAN). This
helps when redirecting special inputs to a secondary path (for example, in the pow() function), or to generate a fixup mask for
setting special case results in the main path.

VRNDSCALE (round to specified number of fractional bits, using specified rounding mode) is used in function argument reduction,
and to help generate lookup table indices (also as part of argument reduction). VRNDSCALE is a generalized form of round-to-
integral, so it provides ceil/floor/trunc functionality, and also helps with floating-point remainder operations.

VREDUCE is closely related to VRNDSCALE: VREDUCE(x, imm) = x – VRNDSCALE(x,imm). This instruction helps further speed up
argument reduction for certain functions (for example, exp2, pow).

The existing Intel AVX-512 permute operations (VPERM, VPERMT2, VPERMI2 for 16-bit and 32-bit data) provide fast vector gather
support for those implementations that need lookup tables (up to 32 16-bit entries for VPERMW, up to 64 16-bit entries for
VPERMT2W/VPERMI2Wn operations).

7 Summary
In this document we have introduced the new Intel AVX-512 FP16 instruction set, discussed what changes it brings, and shown how
to use it effectively. This document will continue to be updated to clarify behaviors, and to introduce new best practices as they
become known.

If any information in this document appears to be missing or confusing, or could benefit from more explanation, contact your Intel
representative.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0522/DN/WIT/PDF 669773-003US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	3 FP16 Numeric Instructions
	3.1 Data Type Support
	3.2 Overview of Intrinsics
	3.3 Fundamental Complex-Valued Support
	3.4 Using AVX-512 Bit Masks for Real-Valued Operations
	3.5 Using AVX-512 Bit Masks for Complex-Valued Operations

	4 Numerics
	4.1 Introduction to FP16 Number Format
	4.2 Observations on Representing Numbers in FP16 Format
	4.3 Numeric Accuracy Guarantees
	4.4 Handling Denormal Values
	4.5 Embedded Rounding
	4.6 Legacy FP16 Data Type Conversion
	4.7 FP16 Conversions to and from Other Data Types
	4.8 Approximation Instructions and Their Uses
	4.8.1 Approximate Reciprocal
	4.8.2 Approximate Division
	4.8.3 Approximate Reciprocal Square Root

	4.9 Approximate Square Root

	5 Using Existing Intel AVX-512 Instructions to Augment FP16 Support
	5.1 Using Existing Instructions to Extend Intel AVX-512 FP16 Intrinsics
	5.2 Common Convenience Intrinsics
	5.3 Using Integer Comparisons for Fast Floating-Point Comparison

	6 Math Library Support
	7 Summary

