
 1

Technology Guide

Intel® AVX-512 - Ultra Parallelized Multi-
hash Computation for Data Streaming
Workloads

Authors
Leyi Rong

Yipeng Wang

Weigang Li

Hongjun Ni

1 Introduction
Sketch-based algorithms1 are emerging technologies that are broadly used in network
measurement and network telemetry workloads, generating approximate estimations of
networking flows. It is used to prevent distributed denial-of-service (DDoS) attacks, monitor
network usage, and for various Quality of service (QoS) purposes. Compared to hash tables
or other lossless algorithms, sketch-based algorithms are designed with a compact and
optimized data structure for memory efficiency and computing throughput.

The core data structure, i.e. Sketch, consists of a two-dimensional (2D) array. Each row of the
array corresponds to a resulting digest space indexed by an independently computed hash
function. With more independent hash functions, more accurate estimation results can be
provided. Nevertheless, increasing the number of hash computations increases the amount
of CPU consumption, which may prevent the application from processing high-volume
networking traffic. Thus, a high throughput multi-hash computation methodology is desired
in this domain. Note that the term "multi-hash" in this technology guide does not correspond
to the following Intel whitepaper2, which by contrast proposes extensions to cryptographic
hash algorithms.

This technology guide proposes a novel model to accelerate multi-hash computation by
leveraging Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instructions. This
proposed innovation achieves an average performance gain of up to 2x for the critical key-
add and key-lookup operations, compared with the standard CRC-32 instruction approach
for state-of-the-art algorithms. Moreover, as different workloads have diverse requirements
for the hashing algorithm (randomness, cryptography, small data velocity, etc.), our
proposed model supports algorithm customization for different purposes. The solution
provides developers with a robust, flexible foundation to build high-throughput networking
measurement and monitoring applications. By leveraging its optimized data plane,
implementers can achieve excellent performance across a diverse range of network
telemetry workloads.

This document is part of the Network & Edge Platform Experience Kits.

1 Finding Frequent Items in Data Streams. In Proc. of ICALP.
2 Multi-Hash: A Family of Cryptographic Hash Algorithm Extensions. Intel White Paper (July 2012)

https://networkbuilders.intel.com/intel-technologies/experience-kits

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology .. 3
1.2 Reference Documentation .. 3

2 Overview .. 3

3 Technology Description ... 4
3.1 Background ... 4
3.2 Motivation .. 5
3.3 New Proposal Model .. 5

3.3.1 Parallel Hash Computation with Splitting Input and Vectorized Seeds by Leveraging Intel® AVX-512 6
3.3.2 Accelerate Multiplication and Addition Operations by Leveraging Intel AVX-512 IFMA Instruction in Hash

Computation ...8
3.3.3 Accelerate Sketch Counter Updates by Leveraging Intel AVX-512 Gather and Scatter Instructions8

4 Performance Benchmarking ... 9
4.1 Benchmarking Platform .. 9
4.2 Benchmarking Results .. 9

5 Summary .. 10

Figures
Figure 1. Example Sketch data structure ... 4
Figure 2. Example Bloom filter algorithm ... 5
Figure 3. Example Sketch algorithm with different seeds for hash functions ... 5
Figure 4. Ultra parallelized multi-hash computation workflow .. 6
Figure 5. Parallelized initializing the multi-hash computation ... 7
Figure 6. Continuously processing the input data as 8-byte-block ... 7
Figure 7. Processing the remaining input data less than 8 Bytes ...8
Figure 8. Performance benchmarking on Sketch Add compared with CRC-32 instruction .. 10
Figure 9. Performance benchmarking on Sketch Lookup compared with CRC-32 instruction ... 10

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3. Performance Benchmark Platform Configuration .. 9

Document Revision History
Revision Date Description
001 August 2023 Initial release.

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
CRC-32 32-Bit Cyclic Redundancy Check

DPDK Data Plane Development Kit (dpdk.org)

IFMA Integer Fused Multiply Add

Intel® AVX Intel® Advanced Vector Extensions (Intel® AVX)

ISA Instruction Set Architecture

MAD Multiply-Add-Divide

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
DPDK Official Website https://www.dpdk.org/

Intel® 64 and IA-32 Architectures
Software Developer's Manual

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.htmlhttps://software.intel.com/content/www/us/en/develop/articles/intelsdm.html

Intel® 64 and IA-32 Architectures
Software Optimization Reference
Manual

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf

2 Overview
To our best knowledge, there is no highly parallel solution for multi-hash computation. We came up with the following three
alternative solutions as the initial options:

1. Using specific hardware (for example, network adapter, FPGA) to do the hash computation

2. Using a long-output-size hash function(for example, SHA3-5123), then evenly dividing the results into multiple parts for
the multi-hash results

3. Using CRC-32 instruction accelerated hash function with different seeds

There are some disadvantages of the aforementioned proposed solutions:

1. Specific hardware (for example, network adapter): The hashing algorithm runs in specific hardware that is normally
fixed and rigid, therefore, it can not meet the diverse requirements of the hashing algorithm used in various data stream
algorithms. Also, data stream analysis applications are usually run at the top layer of the networking stack. For example,
many firewalls and networking telemetry applications run after the networking packets are decrypted and
decompressed. Sending data stream back to the hardware devices is subject to long device communication latency. It's
better to produce the hash result close to the workload that runs on the CPU.

2. Long-output-size hash function: Hashing algorithms such as SHA3-512 can generate long hash values that can be used
to substitute multiple shorter hashing computations. But there are several caveats. 1) Existing long-output hashing
algorithms are not flexible enough to be customized for performance-efficiency trade-offs. 2) The algorithm must have
an excellent avalanche effect, i.e., when an input changes slightly, the output should change significantly. This requires
more complex arithmetic, which results in lower performance. The performance on Intel® Xeon® Processor E3-1220 v5
of SHA3-512 is 164 cpb4 (cycle per byte) with 8 byte of input size. Although the performance benchmarking platforms
are not the same, the existing long-output hashing algorithm falls significantly behind in terms of throughput when
compared to the proposed model of 4.5 cpb.

3. CRC-32 instruction: Intel has introduced hardware CRC-32 computation ISA to accelerate CRC hashing computation.
But the CRC-32 based implementation lacks flexibility and parallelism compared to our proposal. The performance data
shows that our proposal achieves 2x throughput by using Intel AVX-512 with a customized hashing algorithm compared
to CRC-32 based algorithm.

3 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. NIST (August 2015)
4 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms#Comparison_of_SHA_functions

https://www.dpdk.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intelsdm.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms#Comparison_of_SHA_functions

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 4

This technology guide proposes a novel model to process multiple hash functions in parallel by leveraging Intel AVX-512
instruction sets. Various data stream algorithms, such as sketch as well as other classic algorithms like Bloom filter, could benefit
from this proposal.

The model consists of three key ideas:

• Parallel hash computation with splitting input and vectorized seeds by leveraging Intel AVX-512

• Accelerate multiplication and addition arithmetic using Intel AVX-512 IFMA instruction in hash computation

• Accelerate sketch counter updates by leveraging Intel AVX-512 gather and scatter instructions

3 Technology Description
3.1 Background
Multi-hash computation (multiple independent hashing functions) has been broadly used in many algorithms of the data stream
analysis domain, like sketch-based algorithms, Bloom filter, etc. Figure 1 shows the fundamental data structure of a sketch as an
example (a d x m 2D array). Sketch-based algorithms are popular and effective approaches used in the network measurement
and network monitoring domains to estimate the size of networking flows. It is used to prevent DDoS attacks, monitor
networking usages, and for various QoS purposes.

In a common scenario, when a data stream (for example, a stream of networking packets) goes through the system, the sketch-
based algorithm will process d times of independent hash computations for each packet. The corresponding hash digests, i.e.,
the results generated by each hash function, will be used to index the counter among m counters (bins) of each row. For each
packet (key) encountered, the corresponding counter will be incremented or decremented. The eventual counter values are
summarized from all d arrays that can be used to estimate the frequency of the key (i.e., the size of a networking flow). The multi-
hash computation will help to improve the accuracy of the frequency estimation results, especially for heavy hitter data streams.
In other words, more hashing computations tend to result in better accuracy.

Figure 1. Example Sketch data structure

Besides sketch, Bloom filter based algorithm also leverages multiple independent hash functions to reduce the false positives
when querying certain items in a data set. As shown in Figure 2, the example Bloom filter array consists of 12 elements, and a set
of four independent hash functions are used to update the array for each key.

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 5

Figure 2. Example Bloom filter algorithm

3.2 Motivation
Based on our analysis and performance profiling of a state-of-the-art sketch-based algorithm, hash computation is the number
one performance hotspot of the total CPU consumption. As high throughput networking applications (100Gb – 1Tb) become
more and more common in data center use cases, it is critical to develop fast multi-hashing algorithms with minimal CPU
consumption.

Our investigation shows that existing CPU-based algorithms are not flexible nor performant enough to meet high throughput
requirements. One may argue that specialized hardware (for example, network adapters, FPGA) can be used to compute hash
instead of using CPU. However, our investigation found networking profiling tasks tend to require maximum flexibility and could
be high in the networking stack. In other words, in many use cases, network adapter-provided computation is either too rigid or
not usable. Softwares such as firewalls and networking telemetry are mainly running in CPU with processed data streams. CPU
cores are still the primary computing resources used by many of our customers' software applications. More discussions can be
found in Section 2.

3.3 New Proposal Model
Multiple independent hash computations require different seeds to be the inputs to each computation. With different seeds, the
same hashing function could generate independent (randomized) results. The seeds can be random numbers to get a good
mixture to result in a hash digest with good randomness. Figure 3 shows a sketch using various seeds but the same hash function
to generate independent hash values.

Figure 3. Example Sketch algorithm with different seeds for hash functions

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 6

Our proposed approach follows data-level-parallelism by taking multiple seeds as input, and calculating multiple hashes in
parallel. The implementation is based on xxHash5, which is a fast and popular non-cryptographic hash algorithm. Other
algorithms can be easily adapted to our model as well for even better throughput. Our key innovations can be summarized as the
following.

3.3.1 Parallel Hash Computation with Splitting Input and Vectorized Seeds by Leveraging Intel® AVX-512

To calculate eight independent hash values, we use eight random seeds, then continuously split the input data stream (for
example, an input key) into 64-bit width data chunks and then get consumed one by one. To fully take advantage of Intel AVX-
512 ISA, the data chunk size multiplies the seed count should be equal to 512. For example, if the seed count is four, then the data
stream should be divided into 128-bit chunks. The process is roughly illustrated in Figure 4.

Figure 4. Ultra parallelized multi-hash computation workflow

We have pre-defined five different prime numbers (P1 to P5) and eight different seeds to be used during the computation. The
five prime numbers are getting involved in the hash computation later to target a good mixture of hash results. Each prime
number is broadcasted into the vector of eight items. The eight different seeds are also put into a 512-bit wide vector register.

The algorithm also broadcasts the truncated 64-bit-wide input data into the 512-bit-wide vector with eight copies. Then it mixes
the 8-seed vector and the pre-defined five prime numbers by using addition, multiplication, rotation, shift, and xor arithmetic
operations in a vectorized style.

The whole process can be broken into the following steps:

1. Initially, the seed vector and the P5 vector are added, and then adds the vectorized stream length in byte count. Then it
temporarily stored the result in vector m. as shown in Figure 5.

5 https://xxhash.com/

https://xxhash.com/

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 7

Figure 5. Parallelized initializing the multi-hash computation

2. Read the input data stream (for example, an input key) by 8-byte-stepping iteratively; then broadcast to an Intel AVX-
512 vector register and execute the vectorized multiplication and rotation operations with input data vector and P2;
then take XOR operation with the step1's result vector m to generate the intermediate result vector m'; then execute a
vectorized left-rotation. After that, multiply with vector P1; then take addition with vector P4 to generate the vector m".
If the input data stream length is larger than 8 bytes(64-bit), the generated vector m" will be taken to participate in the
new round computation with the next 64b length of input data. Until there are no more chunks of 8-byte-block of the
input data left, the arithmetic of the vectorized 8-byte-block data input will be finished. This step is shown in Figure 6.

Figure 6. Continuously processing the input data as 8-byte-block

3. As there might be less than eight bytes of input data left that needs to be processed after the previous 8-byte-stepping
calculation, it might need to cope with the remaining input data. The process is similar to the previous step 2, with
vectorized processing of the remaining input data by leveraging add/multiply/rotate/shift/xor arithmetic operations.
Finally, after consuming all input data, apply the last avalanche operation to the previous intermediate result to get the
final vector digest d of all eight seeds. The full process is shown in Figure 7.

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 8

Figure 7. Processing the remaining input data less than 8 Bytes

3.3.2 Accelerate Multiplication and Addition Operations by Leveraging Intel AVX-512 IFMA Instruction in Hash
Computation

Intel AVX-512 IFMA instruction is introduced in 8th Gen Intel® Core™ i3 Processors and 3rd Gen Intel® Xeon® Scalable
Processors, which can support fused multiply and add operation of integers belonging to Intel AVX-512 instruction sets. Since
MAD (Multiply-Add-Divide) operation is essential in many hash functions to spread out the keys into the hash buckets, the
vectorized Intel AVX-512 IFMA instruction will speed up the process of multiplication and addition operations. Replacing the
vectorized multiplication and addition described in the above section with Intel AVX-512 IFMA instruction can accelerate the
computation.

3.3.3 Accelerate Sketch Counter Updates by Leveraging Intel AVX-512 Gather and Scatter Instructions

Sketch-based algorithms require a counter-update after the proposed hashing computation. Instead of sequentially updating
the sketch counter arrays one by one, the Intel AVX-512 gather and scatter instructions can be used as the multiple hash digests
are already generated in the previous vectorized hash computation. By using Intel AVX-512 gather and scatter instructions, the
sketch counter array can be updated in parallel.

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 9

4 Performance Benchmarking
4.1 Benchmarking Platform
As Intel AVX-512 instructions consume wider data per instruction and use more power, in some Intel processors, the CPU
frequency may be lower when Intel AVX-512 instructions are executed. As the potential frequency reduction when using Intel
AVX-512 is reduced in more recent Intel Xeon Scalable processor families, we use the 4th Gen Intel® Xeon® Scalable processor
as the performance benchmarking platform. Table 3 describes the performance benchmarking platform details6.

Table 3. Performance Benchmark Platform Configuration

Parameter Description
Architecture x86_64
CPU Model Intel® Xeon® Gold 6454S CPU
Socket(s) 2
NUMA node(s) 2
Core(s) per socket 32
BIOS version EGSDREL1.SYS.0091.D05.2210161328
Microcode 0x2b000181
SpeedStep, TurboBoost Disabled
Core Frequency 2.2 GHz
OS Ubuntu 22.04 (Jammy Jellyfish)
Kernel 5.15.0
DPDK Version V23.07
Compiler GCC 11.3.0

Grub Cmdline

hugepagesz=1G hugepages=40 default_hugepagesz=1G isolcpus=1-15,65-79,33-47,97-111
intel_iommu=on iommu=pt nohz_full=1-15,65-79,33-47,97-111 rcu_nocbs=1-15,65-79,33-
47,97-111 nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=0
intel_idle.max_cstate=0 hpet=disable mce=off tsc=reliable numa_balancing=disable
intel_pstate=disable

Test Command
DPDK_TEST=member_perf_autotest ./build/app/test/dpdk-test -l 6 --force-max-simd-
bitwidth=512 --no-pci

4.2 Benchmarking Results

The optimal implementation solution based on the Count-Min Sketch algorithm is upstreamed on DPDK 22.11 release. The key
size for the performance benchmarking is in the range of 4, 8, 9, 13, 16, 32, 37, 40, 48, and 64 bytes, which are the typical key size
of the representative value of a data stream when using a sketch-based algorithm. As the performance benchmarking
comparison reference, the CRC hash implementation, which is accelerated by CRC-32 instruction, is selected. As the CRC
instruction hash implementation is proved as a high-performance hash function and the seed number is eight, in other words, it
can be considered as eight hash functions. The test data set consists of 10 M packets of each key size in the above key size range.
As the Add and Lookup operations are the most common operations in such sketch-based algorithms, both of the operations will
invoke the multiple hash computation as the basic step. Here, the performance benchmarking comparison of Add and Lookup
operations are illustrated in Figure 8 and Figure 9. It shows that the accelerated solution achieves an average 2.7x performance
gain on the Add operation and 2.4x on the Lookup operation. Concerning the hash-collision ratio, it depends on the underlying
hash algorithm. Taking our implementation underlying hash algorithm, xxHash64, for example, the collision test result looks
good7.

6 Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
7 https://github.com/Cyan4973/xxHash/wiki/Collision-ratio-comparison#testing-64-bit-hashes-on-large-inputs-

https://github.com/Cyan4973/xxHash/wiki/Collision-ratio-comparison#testing-64-bit-hashes-on-large-inputs-

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 10

Figure 8. Performance benchmarking on Sketch Add compared with CRC-32 instruction

Figure 9. Performance benchmarking on Sketch Lookup compared with CRC-32 instruction

5 Summary
This technology guide demonstrates a brand new ultra-parallelized multi-hash computation model for data streaming
workloads. The model offers several advantages, which have been detailed through the recently unveiled technique:

1. High-performance: This technology guide proposes a novel model by leveraging Intel AVX-512 instruction sets to
get data-level parallelism when processing multi-hash computations. Based on xxHash, we achieve a performance
gain of up to 2x on key-add and key-lookup operations compared to the standard CRC-32 instruction.

2. Flexibility: Although the algorithm implementation is evaluated based on xxHash, other simpler hashing algorithms
can also be used with this model to gain even more performance, given the flexibility of the model.

3. Scalability: The model can be scaled to support keys of various lengths and various numbers of hashes as required,
based on the level of parallelism supported by Intel AVX-512 instructions.

Technology Guide | Intel® AVX-512 - Ultra Parallelized Multi-hash Computation for Data Streaming Workloads

 11

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not
"commercial" names and not intended to function as trademarks.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0823/DN/WIT/PDF 785248 -001US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	3 Technology Description
	3.1 Background
	3.2 Motivation
	3.3 New Proposal Model
	3.3.1 Parallel Hash Computation with Splitting Input and Vectorized Seeds by Leveraging Intel® AVX-512
	3.3.2 Accelerate Multiplication and Addition Operations by Leveraging Intel AVX-512 IFMA Instruction in Hash Computation
	3.3.3 Accelerate Sketch Counter Updates by Leveraging Intel AVX-512 Gather and Scatter Instructions

	4 Performance Benchmarking
	4.1 Benchmarking Platform
	4.2 Benchmarking Results

	5 Summary

