
 1

TECHNOLOGY GUIDE
Intel Corporation

Intel® Deep Learning Boost - Boost Network Security AI
Inference Performance in Google Cloud Platform (GCP)
Using Intel® oneAPI Deep Neural Network (oneDNN) and Intel® Neural Compressor with
the 3rd Generation Intel® Xeon® Scalable Processor

Authors
David Lu

Heqing Zhu

Feng Tian

Tong Zhang

Shuangpeng Zhou

John DiGiglio

AG Ramesh

1. Introduction
Applying AI in network and security is a novel approach to address the ever-increasing
cyber threats. AI inference is the new way to prevent advanced cyberattacks. One of the
challenges is the latency when applying the AI technology. TensorFlow is a widely used
deep-learning (DL) framework. Intel has been collaborating with Google to optimize its
performance on Intel® Xeon® processor-based platforms using Intel® oneAPI Deep Neural
Network Library (oneDNN), an open-source, cross-platform performance library for DL
applications. TensorFlow optimizations are enabled via oneDNN to accelerate key
performance-intensive operations such as convolution, matrix multiplication, activation,
inner product, batch normalization, and other primitives. TensorFlow can be configured
to run optimally on a specific target (for example, CPU with AVX instructions or GPU with
Tensor Cores) resulting in performance acceleration greater than 3x. oneDNN
optimizations were first introduced in official TensorFlow 2.5.

Users can enable those CPU optimizations by setting the environment variable
TF_ENABLE_ONEDNN_OPTS=1 when using the official x86-64 TensorFlow release 2.5 or
later. This will help developers seamlessly benefit from the Intel oneAPI Deep Neural
Network Library (oneDNN) optimization. Additional TensorFlow-based applications,
including TensorFlow Extended, TensorFlow Hub, and TensorFlow Serving also include
the oneDNN optimizations. However, oneDNN is disabled by default. The user needs to
enable it manually before running the workload to take advantage of oneDNN
capabilities.

Intel® Neural Compressor helps developers convert a model’s weights from floating point
(32-bits) to integers (8-bits). Although some loss of accuracy may result, it significantly
decreases model size in memory, while also enhancing CPU and hardware accelerator
latency.

This technology guide illustrates how to use Intel’s oneDNN and Intel Neural Compressor
to boost deep learning inference performance. The guide also shows gen-2-gen
performance comparison of Google Cloud Platform (GCP) instances among the 1st
Generation Intel® Xeon® Scalable processor, 2nd Generation Intel® Xeon® Scalable
processor, and 3rd Generation Intel® Xeon® Scalable processor.

Customers can use this solution and associated collateral as a reference to replicate
other workloads as well. This document is part of the Network Transformation
Experience Kit, which is available at https://networkbuilders.intel.com/network-
technologies/network-transformation-exp-kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 2

Table of Contents
1. Introduction.. 1

1.1 Terminology ...3
1.2 Reference Documentation ...3

2. Technology Overview .. 3
2.1 Intel® Deep Learning Boost (Intel® DL Boost) Technologies ..3
2.2 TensorFlow ...4
2.3 Intel® oneAPI Deep Neural Network Library ...4
2.4 Intel® Neural Compressor ...4

3. Using Intel® Deep Learning Boost to Enhance Performance .. 4
3.1 Prepare the benchmark environment ...4
3.2 Evaluate performance using Keras H5 format ..6
3.3 Evaluate performance using FP32 frozen graph model ...7
3.4 Evaluate performance using INT8 frozen graph model ..9

4. Summary ... 11
 Platform Configuration .. 12
 Software Configuration ... 12

Figures
Figure 1. Intel® Deep Learning Boost Technologies .. 4
Figure 2. Comparison of normalized mean inference time of MalConv H5 model without oneDNN under different Intel gen CPUs 7
Figure 3. Comparison of normalized mean inference time of MalConv FP32 frozen model with oneDNN under different Intel gen CPUs 8
Figure 4. Comparison of normalized mean inference time of MalConv INT8 frozen model with oneDNN under different Intel gen CPUs 11

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3. Mean inference time of MalConv H5 model without oneDNN under different Intel gen CPUs .. 6
Table 4. Mean inference time under MalConv H5 model w/o oneDNN and FP32 model w/oneDNN under different Intel gen CPUs 8
Table 5. Mean inference time of MalConv frozen INT8 model under three generations of Intel Xeon Scalable processor GCP instances. 10

Document Revision History

REVISION DATE DESCRIPTION

001 April 2022 Initial release.

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

AI Artificial Intelligence

AVX Advanced Vector Extensions

CPU Central Processing Unit

DL Deep Learning

GCP Google Cloud Platform

GPU Graphics Processing Unit

LSTM Long Short-term Memory

oneDNN Intel® oneAPI Deep Neural Network Library (oneDNN)

RNN Recurrent Neural Network

VNNI Vector Neural Network Instructions

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Malware Detection by Eating a Whole EXE https://arxiv.org/pdf/1710.09435.pdf

Intel® Deep Learning Boost (Intel® DL Boost) https://www.intel.com/content/www/us/en/artificial-
intelligence/deep-learning-boost.html

Intel® oneAPI Deep Neural Network Library https://github.com/oneapi-src/oneDNN

Intel® Neural Compressor https://github.com/intel/neural-compressor

MalConv model https://github.com/elastic/ember/tree/master/malconv

2. Technology Overview
2.1 Intel® Deep Learning Boost (Intel® DL Boost) Technologies

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512): A 512-bit instruction set that can accelerate performance for
demanding workloads and usages like AI inferencing.

• Intel® Deep Learning Boost (Intel® DL Boost): A group of acceleration features introduced in the 2nd Generation Intel Xeon
Scalable processors that aim to provide significant performance1 increases to inference applications built with leading DL
frameworks such as PyTorch, TensorFlow, MXNet, and ONNX (Open Neural Network Exchange). The foundation of Intel
Deep Learning Boost is Vector Neural Network Instructions (VNNI), a specialized instruction set that uses a single
instruction for DL computations that formerly required three separate instructions.

1 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

https://arxiv.org/pdf/1710.09435.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://github.com/oneapi-src/oneDNN
https://github.com/intel/neural-compressor
https://github.com/elastic/ember/tree/master/malconv
http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 4

Figure 1. Intel® Deep Learning Boost Technologies

2.2 TensorFlow
The binary distribution of TensorFlow with Intel oneAPI Deep Neural Network Library primitives, a popular performance library for
deep-learning applications. TensorFlow is a widely used machine-learning framework in the deep-learning arena, demanding
efficient use of computational resources. To take full advantage of Intel® architecture and extract maximum performance, the
TensorFlow framework has been optimized using oneDNN primitives2.

2.3 Intel® oneAPI Deep Neural Network Library
The Intel oneAPI Deep Neural Network Library (oneDNN) helps developers improve productivity and enhance the performance of
their deep-learning frameworks. Use the same API to develop for CPUs, GPUs, or both. Then implement the rest of the application
using Data Parallel C++. This library is included in both the Intel® oneAPI Base Toolkit and Intel® oneAPI DL Framework Developer
Toolkit (DLFD Kit). It supports key data type formats, including 16- and 32-bit floating points, bfloat16, and 8-bit integers. oneDNN
implements rich operators, including convolution, matrix multiplication, pooling, batch normalization, activation functions, recurrent
neural network (RNN) cells, and long short-term memory (LSTM) cells. It accelerates inference performance with automatic
detection of Intel Deep Learning Boost technology.

2.4 Intel® Neural Compressor
Intel® Neural Compressor (formerly known as Intel® Low Precision Optimization Tool) is an open-source Python library running on
Intel® CPUs and GPUs, which delivers unified interfaces across multiple deep-learning frameworks for popular network compression
technologies, such as quantization, pruning, and knowledge distillation. This tool supports automatic accuracy-driven tuning
strategies to help users quickly find out the best quantized model. It also implements different weight pruning algorithms to
generate pruned models with predefined sparsity goals and supports knowledge distillation to distill the knowledge from the
teacher model to the student model.

It’s a Python library designed to help you quickly deploy low-precision inference solutions on popular deep-learning frameworks
such as TensorFlow, PyTorch, MXNet, and ONNX runtime. The tool automatically optimizes low-precision recipes for deep-learning
models to achieve optimal product objectives, such as inference performance and memory usage, with expected accuracy criteria.

3. Using Intel® Deep Learning Boost to Enhance Performance
3.1 Prepare the benchmark environment
In this technical solution, we show how to improve the performance of an open-source deep-learning model named MalConv
(https://github.com/elastic/ember/tree/master/malconv), which performs malware detection on raw bytes of entire executable files.
A public GitHub repository ember already provides the pre-trained Keras H5 format file. You can download the model file with the
following command.

wget https://raw.githubusercontent.com/elastic/ember/master/malconv/malconv.h5

2 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

https://github.com/oneapi-src/oneDNN
https://github.com/intel/neural-compressor
https://github.com/elastic/ember/tree/master/malconv
https://github.com/elastic/ember/tree/master/malconv
http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 5

Before running the malware detection model, it needs a stand-alone Python virtual environment:
python3.7 -m venv tf-dnn
source tf-dnn/bin/activate
pip install --upgrade pip

All package dependencies are listed in requirements.txt as show below:

cat requirements.txt
tensorflow==2.7.0
tensorflow-estimator==2.7.0
keras==2.7.0
neural-compressor
progress

Then, install all the dependencies with following command:

pip install -r requirements.txt

Create inference test file. You can use below sample Python file to evaluate the performance of a TensorFlow model on specified
datasets.

cat test.py
import os
import time
import argparse
import numpy as np
import tensorflow as tf
from progress.bar import Bar

def read_file(filepath, expect_size=1048576):
 if filepath[-4:] == '.npy':
 data = np.load(filepath, allow_pickle=True)
 else:
 data = np.fromfile(filepath, np.ubyte)
 if data.size < expect_size:
 data = np.pad(data, (0, expect_size - data.size), 'constant', constant_values=(0, 0))
 else:
 data = data[:expect_size]
 return np.array([data])

class H5Model:
 def __init__(self, h5_path):
 self.model = tf.keras.models.load_model(h5_path)

 def predict(self, input_data):
 start = time.time()
 result = self.model.predict(input_data)
 finish = time.time()
 return result[0], 1000 * (finish - start)

class FrozenModel:
 def __init__(self, pb_filepath, config=None):
 graph = tf.Graph()
 with graph.as_default():
 graph_def = tf.compat.v1.GraphDef()
 with open(pb_filepath, "rb") as f:
 self.model_path = pb_filepath
 graph_def.ParseFromString(f.read())
 _ = tf.import_graph_def(graph_def, name='')
 self.session = tf.compat.v1.Session(config=config, graph=graph)
 self.input_t1 = graph.get_tensor_by_name("input_1:0")
 self.output_data = graph.get_tensor_by_name("Identity:0")

 def predict(self, input_data):
 start = time.time()
 result = self.session.run(self.output_data, feed_dict={self.input_t1: input_data})
 finish = time.time()
 return result[0][0], 1000 * (finish - start)

class TestOnDataset:
 def __init__(self, model, input_path):
 self.model = model
 self.avg_infer_time = None
 self.standard_deviation = None
 self.all_files = []
 mal_path = os.path.join(input_path, 'MALICIOUS')
 mal_files = [(1, os.path.join(mal_path, fp)) for fp in os.listdir(mal_path)]

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 6

 self.all_files.extend(mal_files)
 clean_path = os.path.join(input_path, 'KNOWN')
 clean_files = [(0, os.path.join(clean_path, fp)) for fp in os.listdir(clean_path)]
 self.all_files.extend(clean_files)

 def run(self):
 input_tensor = read_file(self.all_files[0][1])
 for _ in range(30):
 self.model.predict(input_tensor)
 all_infer_time = []
 bar = Bar('Progress... ', max=len(self.all_files))
 for label, filepath in self.all_files:
 int8_data = read_file(filepath)
 _, infer_time = self.model.predict(int8_data)
 all_infer_time.append(infer_time)
 bar.next()
 bar.finish()
 self.avg_infer_time = np.mean(all_infer_time)
 self.standard_deviation = np.std(all_infer_time)
 print(f'average inference time: {self.avg_infer_time} ms')
 print(f'standard deviation: {self.standard_deviation} ms')
 print(f'filecount: {len(self.all_files)}')

def load_model(model_path):
 if model_path[-2:] == 'h5':
 return H5Model(model_path)
 if os.path.isdir(model_path):
 return SavedModel(model_path)
 return FrozenModel(model_path)

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument(
 '-m', '--model_path', type=str, dest='model_path', help='model path', required=True)
 parser.add_argument(
 '-i', '--input_path', type=str, dest='input_path', help='input dataset path', required=True)
 args = parser.parse_args()
 model = load_model(args.model_path)
 TestOnDataset(model, args.input_path).run()

if __name__ == '__main__':
 main()

3.2 Evaluate performance using Keras H5 format
The mean inference time is an important performance index for AI inference. First, we need to get mean inference time as the
baseline. The open-source project provides a trained MalConv model, however, it is only provided in Keras H5 format. Run the
following command to get mean inference time without enabling oneDNN.

numactl --physcpubind=0 python test.py -m malconv.h5 -i ./datasets

We executed the MalConv model with Keras H5 format under the three generations of Intel Xeon Scalable processor GCP instances.
The mean inference time on single physical core can be found in the following table.

Table 3. Mean inference time of MalConv H5 model without oneDNN under different Intel gen CPUs

Mean Inference Time (ms) One Core H5 format without oneDNN

n1-std-8-SKX (1st gen Intel Xeon Scalable @2.00GHz) 121.56

n2-std-8-CLX (2nd gen Intel Xeon Scalable @2.80GHz) 112.22

n2-std-8-ICX (3rd gen Intel Xeon Scalable @2.60GHz) 90.34

Performance Boost n2-std-8-ICX vs n1-std-8-SKX 1.34 X

The following graph compares the normalized mean inference time of MalConv H5 model without oneDNN on the three GCP
instances.

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 7

Figure 2. Comparison of normalized mean inference time of MalConv H5 model without oneDNN under different Intel gen
CPUs

From the results from running the H5 model shown above, we have the following conclusion3:
• Overall, the mean inference time under n2-std-8-ICX (3rd generation Intel Xeon Scalable at 2.60GHz) is much faster than

n1-std-8-SKX (1st generation Intel Xeon Scalable @2.00GHz) and n2-std-8-CLX (2nd generation Intel Xeon Scalable
@2.80GHz). The results show that the performance of the n2-std-8-ICX instance is 1.34 X faster than the n1-std-8-SKX
instance.

3.3 Evaluate performance using FP32 frozen graph model
In this part, we convert H5 model to FP32 frozen graph model to get further performance gains. To get an FP32 frozen graph
model, we need to first convert Keras H5 format to SavedModel, which is a standard format starting TensorFlow 2.X. Here is the
script to convert Keras H5 format to SavedModel.

cat h5_to_savedmodel.py
import tensorFlow as tf
model = tf.keras.models.load_model("malconv.h5")
model.save("malconv_saved_model")

After we get a SavedModel, we can use the following steps to convert SavedModel to FP32 frozen graph model.

Step 1: Create the following sample Python file.

cat saved_model_to_frozen.py
import sys
import tensorFlow as tf
from tensorFlow.python.saved_model import signature_constants
from tensorFlow.python.training import saver
from tensorFlow.python.framework import convert_to_constants
from tensorFlow.core.protobuf import config_pb2
from tensorFlow.python.grappler import tf_optimizer
from tensorFlow.core.protobuf import meta_graph_pb2
from tensorFlow.python.platform import gfile
from tensorFlow.python.eager import context
assert context.executing_eagerly()
if len(sys.argv) != 3:
 print('Usage:')
 print(f'\tpython3 {sys.argv[0]} model_path output_pbfile')
 sys.exit(1)

model = tf.keras.models.load_model(sys.argv[1])
model.summary()

func = model.signatures[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]

3 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 8

frozen_func = convert_to_constants.convert_variables_to_constants_v2(func)

grappler_meta_graph_def = saver.export_meta_graph(
 graph_def=frozen_func.graph.as_graph_def(), graph=frozen_func.graph)

fetch_collection = meta_graph_pb2.CollectionDef()
for array in frozen_func.inputs + frozen_func.outputs:
 fetch_collection.node_list.value.append(array.name)
grappler_meta_graph_def.collection_def["train_op"].CopyFrom(fetch_collection)

grappler_session_config = config_pb2.ConfigProto()
rewrite_options = grappler_session_config.graph_options.rewrite_options
rewrite_options.min_graph_nodes = -1
opt = tf_optimizer.OptimizeGraph(grappler_session_config, grappler_meta_graph_def, graph_id=b"tf_graph")

f = gfile.GFile(sys.argv[2], 'wb')
f.write(opt.SerializeToString())

Step 2: Run the following command to convert SavedModel to FP32 frozen graph model.

python saved_model_to_frozen.py malconv_saved_model/ malconv_fp32.pb

Now we can run the following command to get mean inference time using FP32 frozen graph model with enabling oneDNN. We
need to add TF_ENABLE_ONEDNN_OPTS=1 to enable oneDNN for TensorFlow 2.5 or later, since oneDNN is disabled by default.
Run the following command to get mean inference time while oneDNN is enabled.

TF_ENABLE_ONEDNN_OPTS=1 numactl --physcpubind=0 python test.py -m malconv_fp32.pb -i ./datasets

We tested MalConv FP32 frozen model under three generations of Intel Xeon Scalable processor GCP instances. The mean
inference time on a single physical core can be found in the following table.

Table 4. Mean inference time under MalConv H5 model w/o oneDNN and FP32 model w/oneDNN under different Intel gen
CPUs

Mean Inference Time (ms) One Core H5 format without
oneDNN

FP32 frozen model with
oneDNN

n1-std-8-SKX (1st gen Intel Xeon Scalable @2.00GHz) 121.56 45.54

n2-std-8-CLX (2nd gen Intel Xeon Scalable @2.80GHz) 112.22 41.40

n2-std-8-ICX (3rd gen Intel Xeon Scalable @2.60GHz) 90.34 33.08

Performance Boost n2-std-8-ICX vs n1-std-8-SKX 1.34 X 1.38 X

Following graph compares the normalized mean inference time of MalConv FP32 frozen model with oneDNN on those three GCP
instances.

Figure 3. Comparison of normalized mean inference time of MalConv FP32 frozen model with oneDNN under different Intel
gen CPUs

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 9

From the results of the FP32 frozen graph model shown above, we can conclude4:

• By using FP32 frozen model, the performance is improved under all those GCP instances especially after enabling oneDNN.
However, n2-std-8-ICX (3rd generation Intel Xeon Scalable @2.60GHz) has the best performance with oneDNN enabled.

• FP32 Frozen model has better performance than H5 model.

• Overall, the mean inference time under n2-std-8 (3rd generation Intel Xeon Scalable processor at 2.60GHz) is much faster
than n1-std-8-SKX (1st generation Intel Xeon Scalable @2.00GHz) and n2-std-8-CLX (2nd generation Intel Xeon Scalable
@2.80GHz). The performance for the n2-std-8-ICX instance is 1.47x faster than the n1-std-8-SKX instance.

3.4 Evaluate performance using INT8 frozen graph model
We have already found that the mean inference is significantly decreased by converting Keras H5 format to F32 frozen graph model
resulting from the use of oneDNN. We are now going to use the Intel® Neural Compressor to perform post-training quantization
(PTQ for short) on MalConv FP32 frozen model, seeking for further performance improvements. Use the following command to
install Intel Neural Compressor.

pip install neural-compressor

For above Python script sample, besides FP32 frozen model of sample security AI workload, it also needs a YAML config file.

cat malconv.yaml
version: 1.0
model:
 name: malconv
 framework: tensorflow
 inputs: input_1
 outputs: Identity

tuning:
 accuracy_criterion:
 relative: 0.01
 exit_policy:
 timeout: 0
 max_trials: 1 random_seed: 9527

 Below is the Python script sample that quantizes FP32 frozen model with Intel Neural Compressor.

cat quantize.py
import os
import argparse
import numpy as np
from neural_compressor.experimental import Quantization, common

def parse_args():
 parser = argparse.ArgumentParser()

parser.add_argument(
 '-m', '--input_model', type=str, dest='input_model', help='frozen fp32 model', required=True)
parser.add_argument(
 '-c', '--input_config', type=str, dest='input_config', help='yaml config file', required=True)
parser.add_argument(
 '-i', '--input_path', type=str, dest='input_path', help='input dataset', required=True)
parser.add_argument(
 '-o', '--output_file', type=str, dest='output_file', help='output file', required=True)

 args = parser.parse_args()
 return args

def load_dataset(input_path):
 result = []
 mal_path = os.path.join(input_path, 'MALICIOUS')
 if os.path.exists(mal_path):
 mal_files = [(1, os.path.join(mal_path, fp)) for fp in os.listdir(mal_path)]
 result.extend(mal_files)
 clean_path = os.path.join(input_path, 'KNOWN')
 if os.path.exists(clean_path):
 clean_files = [(0, os.path.join(clean_path, fp)) for fp in os.listdir(clean_path)]
 result.extend(clean_files)

 return result
def read_file(filepath: str, expect_size: int):
 if filepath[-4:] == '.npy':

4 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 10

 data = np.load(filepath, allow_pickle=True)
 else:
 data = np.fromfile(filepath, np.ubyte)

 if data.size < expect_size:
 data = np.pad(data, (0, expect_size - data.size), 'constant', constant_values=(0, 0))
 else:
 data = data[:expect_size]

 return np.array([data])

class Dataset:
 def __init__(self, input_path):
 self.batch_size = 32
 self.dataset = load_dataset(input_path)

 def __iter__(self):
 for label, filepath in self.dataset:
 data = read_file(filepath, expect_size=1048576)
 yield data, label

 def __len__(self):
 return len(self.dataset)

if __name__ == '__main__':
 os.environ['TF_ENABLE_ONEDNN_OPTS'] = '1'
 args = parse_args()
 quantizer = Quantization(args.input_config)
 quantizer.model = common.Model(args.input_model)
 quantizer.calib_dataloader = Dataset(args.input_path)
 quantizer().save(args.output_file)

By running the quantization Python script on FP32 frozen model with this YAML config file, we can get a quantized INT8 model.

TF_ENABLE_ONEDNN_OPTS=1 python3 quantize.py -m malconv_fp32.pb -c malconv.yaml -i ./datasets -o
malconv_int8.pb

Similar to above, we can run the following command to get mean inference time.

TF_ENABLE_ONEDNN_OPTS=1 numactl --physcpubind=0 python test.py -m malconv_int8.pb -i ./datasets

Table 5. Mean inference time of MalConv frozen INT8 model under three generations of Intel Xeon Scalable processor GCP
instances.

Mean Inference Time (ms) One Core H5 format without oneDNN Frozen INT8 model

n1-std-8-SKX (1st gen Intel Xeon Scalable
@2.00GHz) 121.56 46.49

n2-std-8-CLX (2nd gen Intel Xeon Scalable
@2.80GHz) 112.22 28.15

n2-std-8 (3rd gen Intel Xeon Scalable @2.60GHz) 90.34 19.47

Performance Boost n2-std-8-ICX vs n1-std-8-SKX 1.34 X 2.39 X

The following graph compares the normalized mean inference time of MalConv INT8 frozen model with oneDNN on the three GCP
instances.

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 11

Figure 4. Comparison of normalized mean inference time of MalConv INT8 frozen model with oneDNN under different Intel
gen CPUs

From the above results, we have the following conclusions5:
• By using both oneDNN and Intel Neural Compressor, the n2-std-8 (3rd gen Intel Xeon Scalable @2.60GHz) instance gets

performance improvement from an initial 1.34x to 2.39x.
• The accuracy is minimally impacted after using Intel Neural Compressor to convert FP32 model to INT8 model.
• The mean inference time under n2-std-8 (3rd gen Intel Xeon Scalable @2.60GHz) using INT8 model is 19.47ms, which is

6.11x faster than the H5 model.

4. Summary
From the previous tests, we find that the mean inference time can be dramatically improved under TensorFlow by applying oneDNN
and Intel Neural Compressor. With oneDNN and Neural Compressor, the 3rd generation Intel Xeon Scalable processor-based
instance gets performance improvement from an initial 1.34x to 2.39x. We also showed that the performance tuning with oneDNN
and using the Intel Neural Compressor is easy and straightforward. Intel DL Boost, which contributes to the performance
improvement we observed, is a standard and universally available feature in 2nd and 3rd generation Intel Xeon Scalable processors
without the need to attach auxiliary hardware accelerator.

5 For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 12

 Platform Configuration
Name n1-std-8 SKX n2-std-8 CLX n2-std-8 ICX

Time Mon Jan 10 06:27:51 UTC
2022 Mon Jan 10 06:27:51 UTC 2022 Mon Jan 10 06:27:51 UTC 2022

Manufacturer Google Google Google
Product Name Virtual Machine Virtual Machine Virtual Machine
BIOS Version Google V 1.0 Google V 1.0 Google V 1.0
OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS
Kernel 5.11.0-1026-gcp 5.11.0-1026-gcp 5.11.0-1026-gcp
Microcode 0xffffffff 0xffffffff 0xffffffff
IRQ Balance Disabled Disabled Disabled
CPU Model Intel® Xeon® CPU @ 2.00GHz Intel® Xeon® CPU @ 2.80GHz Intel® Xeon® CPU @ 2.60GHz
Base Frequency 2.0GHz 2.8GHz 2.6GHz
CPU(s) 8 8 8
Thread(s) per Core 2 2 2
Core(s) per Socket 4 4 4
Socket(s) 1 1 1
NUMA Node(s) 1 1 1
Turbo Disabled Disabled Disabled
Installed 32 GB 32 GB 32 GB
Automatic NUMA Balancing Disabled Disabled Disabled

 Software Configuration

Software

Operating System Ubuntu 20.04.3 LTS

Kernel 5.11.0-1026-gcp

Workload & version elastic/ember/malconv

AI Framework TensorFlow 2.7.0

Libraries N/A

WL Specific Details

Mean Inference time under following

1, H5 model under TensorFlow

2, FP32 frozen model under TensorFlow with oneDNN enabled

3, INT8 frozen model under TensorFlow

The WL performance will take advantage of oneDNN and Intel Neural
Compressor, which convert FP32 model to INT8 model

Technology Guide | Intel® Deep Learning Boost - Boost Network Security AI Inference Performance in Google Cloud Platform
(GCP)

 13

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

0422/DN/WIPRO/PDF 723973-001US

http://www.intel.com/PerformanceIndex

	1. Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2. Technology Overview
	2
	2.1 Intel® Deep Learning Boost (Intel® DL Boost) Technologies
	2.2 TensorFlow
	2.3 Intel® oneAPI Deep Neural Network Library
	2.4 Intel® Neural Compressor

	3. Using Intel® Deep Learning Boost to Enhance Performance
	3
	3.1 Prepare the benchmark environment
	3.2 Evaluate performance using Keras H5 format
	3.3 Evaluate performance using FP32 frozen graph model
	3.4 Evaluate performance using INT8 frozen graph model

	4. Summary
	Appendix A Platform Configuration
	Appendix B Software Configuration

