
 1

Technology Guide

Intel® Deep Learning Boost (Intel® DL
Boost) - Improve Inference Performance
of Hugging Face BERT Base Model in
Google Cloud Platform (GCP)

Authors
David Lu

Shuangpeng Zhou

Jing Xu

Weizhuo Zhang

Abhijit Sinha

Heqing Zhu

Lulin Deng

1 Introduction
Emails and SMS messages are very popular communication tools, and many people rely on
them every day. There are also cyber attackers who send massive phishing emails or SMS
messages to steal private information. Despite various ways to prevent them, detecting these
attacks can be very difficult due to the use of traffic engineering. With the development of
deep learning technologies, it is proven to be the best way to prevent such advanced
cyberattacks. Network security companies already used many different deep learning
methods such as CNN, LSTM, GRU, and BERT in their security products. While the BERT
model can provide the highest accuracy1, it takes longer inference time. The inference
latency is one of the challenges to adopting deep learning technology.

PyTorch* is one of the most widely used deep-learning frameworks. To boost the
performance on Intel® hardware, Intel provides the open-source Intel® Extension for
PyTorch* (IPEX) with the latest feature optimizations. These optimizations take advantage
of Intel® AVX-512 Vector Neural Network Instructions (Intel® AVX-512 VNNI) and Intel®
Advanced Matrix Extensions (Intel® AMX) on Intel® CPUs as well as Intel® Xe Matrix
Extensions (Intel® XMX) AI engines on Intel discrete GPUs.

Google Cloud Platform* service (GCP) is a suite of cloud computing services offered by
Google. It offers various cloud services to help customers build, deploy, and manage different
kinds of applications and services. GCP facilitates more convenient performance evaluation.
Deploying services on GCP conforms to the customers’ scenario, making the evaluation
results more reliable and authentic.

This guide illustrates how to use PyTorch and Intel IPEX tool to boost deep-learning
inference performance on the Hugging Face BERT base model (cased). The evaluations
were conducted on the GCP using three different hardware configurations. We will show a
Gen-2-Gen performance comparison from 1st Gen Intel® Xeon® Scalable processor to 3rd
Gen Intel® Xeon® Scalable processor.

This solution and its associated resources can serve as a reference for customers to replicate
other workloads. This document is part of the Network Transformation Experience Kits.

1 https://link.springer.com/article/10.1007/s11227-021-04169-6

https://networkbuilders.intel.com/intel-technologies/experience-kits
https://link.springer.com/article/10.1007/s11227-021-04169-6

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology .. 3
1.2 Reference Documentation .. 3

2 Technology Overview ... 3
2.1 Intel® Deep Learning Boost (Intel® DL Boost) ... 3
2.2 PyTorch .. 3
2.3 Intel® Extension for PyTorch* (IPEX) .. 4
2.4 Bidirectional Encoder Representations from Transformers (BERT) .. 4

3 Performance Optimization with Intel Extension for PyTorch (IPEX) ... 4
3.1 Prepare the Benchmark Environment ... 5
3.2 Quantize BERT Model with Intel Extension for PyTorch (IPEX) ... 5
3.3 Evaluate IPEX Quantization Performance ... 6
3.4 Performance Boosting Results .. 6

4 Summary .. 8

 Platform Configuration ... 8

 Software Configuration .. 9

Figures
Figure 1. The workflow of BERT based phishing emails detection .. 4
Figure 2. The comparison chart for performance boost ... 7

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents .. 3
Table 3. Results of Performance Boosting with IPEX ... 7
Table 4. Platform Configuration ...8
Table 5. Software Configuration .. 9

Document Revision History

Revision Date Description
001 April 2023 Initial release.

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
AMX Intel® Advanced Matrix Extensions

AVX Advanced Vector Extensions

BERT Bidirectional Encoder Representations from Transformers

CLS Classification

CNN Convolutional Neural Network

GCP Google Cloud Platform

GRU Gate Recurrent Unit

IPEX Intel® Extension for PyTorch

LSTM Long Short-Term Memory networks

oneDNN Intel® oneAPI Deep Neural Network Library

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
Spam Detection Using BERT https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf

Intel® Deep Learning Boost (Intel® DL Boost) https://www.intel.com/content/www/us/en/artificial-intelligence/deep-
learning-boost.html

Intel® oneAPI Deep Neural Network Library https://github.com/oneapi-src/oneDNN

Intel® Extension for PyTorch https://github.com/intel/intel-extension-for-pytorch

Bert Base model (cased) https://huggingface.co/bert-base-cased

2 Technology Overview
2.1 Intel® Deep Learning Boost (Intel® DL Boost)

Intel Deep Learning Boost (Intel DL Boost) is a set of built-in accelerators to enhance the performance of common AI training and
inferencing workloads. It was introduced in the 2nd Gen Intel® Xeon® Scalable processors and offers AI acceleration within the
same CPU package that already offers exceptional performance, security features, and reliability for traditional workloads in data
centers or the cloud.

The core of Intel DL Boost is Vector Neural Network Instructions (VNNI), which is a specialized instruction set that uses a single
instruction for deep-learning computations that formerly required three separate instructions. VNNI is built to boost the
performance of deep-learning workloads. Intel has invested resources in popular deep-learning frameworks like PyTorch,
TensorFlow*, MXNet*, and Open Neural Network Exchange (ONNX*), helping customers to take advantage of Intel DL Boost to
improve AI workload performance.

2.2 PyTorch

PyTorch is a deep learning library that provides flexible and user-friendly interfaces for building and training neural networks. It is
built with the help of Torch library and has been developed to support dynamic computational graphs, which allows easier and
more flexible building of complex models.

PyTorch supports a wide range of neural network architectures, from simple feedforward networks to more complex models
such as recurrent neural networks and convolutional neural network. It is widely used for a variety of applications including
computer vision, natural language processing, and generative models.

https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://github.com/oneapi-src/oneDNN
https://github.com/intel/intel-extension-for-pytorch
https://huggingface.co/bert-base-cased

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 4

2.3 Intel® Extension for PyTorch* (IPEX)

IPEX provides PyTorch users with up-to-date features and optimizations for Intel hardware, including Intel AVX-512 VNNI and
Intel AMX. With IPEX, users can access simple Python APIs and tools to optimize performance through graph and operator
optimization with only minor code modifications. Graph optimization includes the fusion of frequently used operator patterns,
such as Conv2D+ReLU and Linear+ReLU. IPEX can optimize both eager mode and graph mode.

2.4 Bidirectional Encoder Representations from Transformers (BERT)

BERT is a pre-trained language representation model developed by Google AI Language researchers in 2018, which consists of
transformer blocks with a variable number of encoder layers and a self-attention head. In contrast to traditional one-way
language models or superficial combinations of two one-way language models, BERT prioritizes the use of a new Masked
Language Model (MLM) to generate deep bidirectional representation. This allows BERT to better leverage the information
from both left and right context in the input text, leading to more accurate language processing.

As shown in Figure 1, BERT takes the embeddings of each word in the sentence as the input and uses a special classification
token ([CLS]) and a special separator token ([SEP]) to better understand the sequences. Each input embedding is
corresponding to an output, for instance, C is the output of the last transformer of the classification token ([CLS]), Ti is the
output of the last transformer of corresponding tokens. For some token level tasks, it can take advantage of each output of the
token, and for the sequence level tasks, including the phishing email detection task, it can use the output of the classification
token ([CLS]).

To detect phishing emails, the input email is first tokenized into chunks of words using the Hugging Face tokenizer, with a special
CLS token added at the beginning. The tokens are then padded to the maximum BERT input size, which by default is 512. The
total input tokens are converted to integer IDs and fed to the BERT model. A dense layer is added for email classification, which
takes the last hidden state for the CLS token as input.

Figure 1. The workflow of BERT based phishing emails detection

3 Performance Optimization with Intel Extension for PyTorch (IPEX)
To improve the deep learning inference performance, one common technique is quantization. Quantization is the process of
representing continuous values with a limited number of discrete values, so it is obvious that quantization can reduce storage
requirements since it lowers the data precision. Furthermore, quantization can improve the efficiency of computations. By using
fewer bits to represent values, quantization can reduce the computational load in the machine. There are two main types of
quantization: static quantization and dynamic quantization. Static quantization involves the process of quantizing both the
weights and activations of a model. To achieve optimal quantization parameters for activations, the quantization method
requires a representative dataset to do the calibration. For dynamic quantization, the weights are quantized before the inference
process, while the activations are quantized dynamically during the inference. Normally, static quantization is used when both

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 5

memory bandwidth and compute savings are important. Dynamic quantization can introduce additional run-time overhead since
it quantizes the activations during the inference. Therefore, dynamic quantization is better for those models in which the
memory bandwidth is the bottleneck. In this chapter, we will illustrate how to improve the inference performance by using IPEX
under Hugging Face BERT base model (cased).

3.1 Prepare the Benchmark Environment

First, create a clean virtual environment for benchmarking by using the following commands:

python3 -m venv ipex-bert
source ipex-bert/bin/activate
pip install -U pip
pip install -r requirements.txt

The requirements.txt file enumerates dependent packages, whose content is shown as below:

cat requirements.txt
--extra-index-url https://download.pytorch.org/whl/cpu
torch==1.13.0
intel_extension_for_pytorch==1.13.0
accelerate
transformers
datasets
tqdm

3.2 Quantize BERT Model with Intel Extension for PyTorch (IPEX)

Apply IPEX static quantization method to BERT model by using the following code snippet:

cat ipex_quantize.py
import torch
from tqdm import tqdm
from datasets import load_dataset
from transformers import BertTokenizer, BertForSequenceClassification

import intel_extension_for_pytorch as ipex
from intel_extension_for_pytorch.quantization import prepare, convert
from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig

Define variables
MAX_LENGTH = 512
MODEL_CHECKPOINT = 'bert-base-cased'

Load model and tokenizer
tokenizer = BertTokenizer.from_pretrained(MODEL_CHECKPOINT)
model = BertForSequenceClassification.from_pretrained(MODEL_CHECKPOINT)
model.eval()

Prepare calibration dataset
def preprocess(text):
 return tokenizer(text, max_length=MAX_LENGTH, padding='max_length', truncation=True, return_tensors='pt')
raw_dataset = load_dataset('SetFit/enron_spam', split='test')
calib_dataset = list(map(preprocess, raw_dataset['text'][:1000]))

Execute ipex static quantization
example_inputs = tuple(calib_dataset[0].values())

qconfig = QConfig(activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_affine, dtype=torch.quint8),
 weight=PerChannelMinMaxObserver.with_args(dtype=torch.qint8,
qscheme=torch.per_channel_symmetric))
prepared_model = prepare(model, qconfig, example_inputs=example_inputs, inplace=False)

for encoding in tqdm(calib_dataset):
 prepared_model(**encoding)

converted_model = convert(prepared_model)
Save quantized model
with torch.no_grad():
 traced_model = torch.jit.trace(converted_model, example_inputs, strict=False)
 traced_model = torch.jit.freeze(traced_model)
 traced_model.save(f'{MODEL_CHECKPOINT}_ipex-static-quan.pt')

Run the following command to quantize BERT model with IPEX. Then the quantized model will be saved as a .pt file.

python3 ipex_quantize.py

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 6

3.3 Evaluate IPEX Quantization Performance

Evaluate the quantized BERT model’s performance on the GCP n1-std-8 (1st Gen Intel Xeon Scalable processors), n2-std-8 (2nd
Gen Intel Xeon Scalable processors), n2-std-8 (3rd Gen Intel Xeon Scalable processors) and take the result on n1-std-8 (1st Gen
Intel Xeon Scalable processors) as the baseline. The evaluation code snippet is shown below:

cat evaluate.py
import time
import torch
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
import intel_extension_for_pytorch as ipex
from transformers import BertTokenizer, BertForSequenceClassification

Define variables
MAX_LENGTH = 512
NUM_WARM_UP = 100
MODEL_CHECKPOINT = 'bert-base-cased'

Load and tokenizer
tokenizer = BertTokenizer.from_pretrained(MODEL_CHECKPOINT)

Prepare evaluation dataset
def preprocess(text):
 return tokenizer(text, max_length=MAX_LENGTH, padding='max_length', truncation=True, return_tensors='pt')
raw_dataset = load_dataset('SetFit/enron_spam', split='test')
eval_dataset = list(map(preprocess, raw_dataset['text'][:1000]))

Define benchmark function
def benchmark(model, dataset):
 model.eval()

 latencies = []
 with torch.no_grad():
 for encoding in tqdm(dataset):
 start = time.time()
 model(**encoding)
 elapsed = 1000 * (time.time() - start)
 latencies.append(elapsed)

 latencies = latencies[NUM_WARM_UP:]
 mean_latency = np.mean(latencies)

 return mean_latency

test performance with IPEX static quantization
q_model = torch.jit.load(f'{MODEL_CHECKPOINT}_ipex-static-quan.pt')
mean_latency = benchmark(q_model, eval_dataset)
print(f'mean latency with IPEX static quantization: {mean_latency} ms')

Run following commands on GCP with different virtual machine configurations to get the mean inference time with different
cores.

numactl -C 0 python3 evaluate.py # for 1 core
numactl -C 0-1 python3 evaluate.py # for 2 cores
numactl -C 0-3 python3 evaluate.py # for 4 cores

3.4 Performance Boosting Results

We evaluate the BERT performance on 1st to 3rd generations Intel Xeon Scalable Processors before and after applying IPEX
static quantization, and with different number of cores. The details of mean inference time for each situation are shown in Table
32.

2 Workloads and configurations. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 7

Table 3. Results of Performance Boosting with IPEX

Mean inference
time (ms)

max_seq_length =
512 Batch size = 1

Vanilla PyTorch V1.13 PyTorch V1.13 with IPEX
(Static Quantization) INT8

Performance Boost
n2-std-8(3rd Gen

Intel® Xeon®
Scalable

Processors)
@2.6GHz

vs
n1-std-8(1st Gen

Intel® Xeon®
Scalable

Processors)
@2.0GHz under
Vanilla PyTorch

FP32 INT8

n1-std-8(1st Gen
Intel® Xeon®

Scalable
Processors)

@2.0GHz

n2-std-8(2nd
Gen Intel®

Xeon® Scalable
Processors)

@2.8GHz

n2-std-8(3rd
Gen Intel®

Xeon® Scalable
Processors)

@2.6GHz

n1-std-8(1st Gen
Intel® Xeon®

Scalable
Processors)

@2.0GHz

n2-std-8(2nd
Gen Intel®

Xeon® Scalable
Processors)

@2.8GHz

n2-std-8(3rd Gen
Intel® Xeon®

Scalable
Processors)

@2.6GHz

 1 core 1415.83 976.01 960.07 733.46 218.19 201.38 7.03 X

 2 cores 776.13 531.93 512.76 376.94 113.12 102.67 7.56 X

 4 cores 422.85 300.54 281.94 202.09 59.77 56.26 7.52 X

The comparison chart is shown in Figure 2, which uses a more intuitive way to display the acceleration effect from IPEX3.

Figure 2. The comparison chart for performance boost

3 Workloads and configurations. Results may vary.

Mean Inference Time Lower is Better

1 core 2 cores 4 cores
Vanilla PyTorch V1.13 FP32 GCP: n1-std-

8(1st Gen Intel® Xeon® Scalable
Processors) @2.0GHz

1415.83 776.13 422.85

PyTorch V1.13 with IPEX (Static
Quantization) INT8 GCP: n1-std-8(1st
Gen Intel® Xeon® Scalable Processors)

@2.0GHz

733.46 376.94 202.09

PyTorch V1.13 with IPEX (Static
Quantization) INT8 GCP: n2-std-8(2nd
Gen Intel® Xeon® Scalable Processors)

@2.8GHz

218.19 113.12 59.77

PyTorch V1.13 with IPEX (Static
Quantization) INT8 GCP: n2-std-8(3rd
Gen Intel® Xeon® Scalable Processors)

@2.6GHz

201.38 102.67 56.26

1415.83

776.13

422.85

733.46

376.94

202.09218.19 113.12
59.77

201.38
102.67 56.26

0

200

400

600

800

1000

1200

1400

1600

M
ea

n
In

fe
re

nc
e

Ti
m

e

Performance boost comparison chart

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 8

From the performance comparison of BERT base model shown above, we have the following conclusions:

• Applying IPEX static post-training quantization will always boost the performance of the Hugging Face BERT base
model, irrespective of which generation of Intel® Xeon® Scalable processor is used.

• With the help of the 3rd Gen Intel Xeon Scalable processor and IPEX static post-training quantization, the performance
of BERT base model is 7.52 X faster than 1st Gen Intel Xeon Scalable processor under Vanilla PyTorch without
quantization.4

4 Summary
This guide illustrates the improvement of the IPEX static post-training quantization for BERT base model performance. With the
help of both the 3rd Gen Intel® Xeon® Scalable processor and IPEX static post-training quantization, the BERT base model can
achieve up to 7.03x ~ 7.56x performance improvement compared to the 1st Gen Intel® Xeon® Scalable processor. In addition, it
should be noticed that all the evaluation processes are completed in the GCP considering its flexibility and scalability, which also
provide a more believable and feasible result to the customer since the GCP environment is closer to the real scenarios.
Furthermore, the white paper provides the details of how to apply the IPEX optimization to the model, which is straightforward.

 Platform Configuration

Table 4. Platform Configuration

Name GCP: n1-std-8 SKX GCP: n2-std-8 CLX GCP: n2-std-8 ICX

CPU Model Intel® Xeon® CPU @ 2.00GHz Intel® Xeon® CPU @ 2.80GHz Intel® Xeon® CPU @ 2.60GHz
Stepping 3 7 6
Sockets 1 1 1
Cores per Socket 8 8 8
Hyperthreading Enabled Enabled Enabled
CPUs 16 16 16
Intel Turbo Boost Disabled Disabled Disabled
Base Frequency 2.0GHz 2.8GHz 2.6GHz
Maximum Frequency 2000 MHz 2800 MHz 2600 MHz
NUMA Nodes 1 1 1
Installed Memory 16GB (1x16GB RAM) 16GB (1x16GB RAM) 64GB (4x16GB RAM)
NIC 1x device 1x device 1x device
Disk 1x 100G PersistentDisk 1x 100G PersistentDisk 1x 100G PersistentDisk
BIOS Google Google Google
OS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS
Kernel 5.15.0-1021-gcp 5.15.0-1021-gcp 5.15.0-1021-gcp

4 Workloads and configurations. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google
Cloud Platform (GCP)

 9

 Software Configuration

Table 5. Software Configuration

Software Configuration Config 1 (Vanilla PyTorch for
baseline)

Config 2 (PyTorch with IPEX)

Framework /Toolkit incl version
PyTorch 1.13.0

PyTorch 1.13.0
IPEX 1.13.0

Framework URL https://pytorch.org/

Topology or ML algorithm (include link) https://huggingface.co/bert-base-cased

Libraries (incl version) e.g., MKL DNN, or
DAAL

oneDNN v2.7.3

Dataset (size, shape) https://huggingface.co/datasets/wikipedia, max_seq_length=512

Precision (FP32, INT8., BF16) FP32 INT8

NUMACTL numactl -c

OMP_NUM_THREADS N/A N/A

COMMAND LINE USED python3 evaluate.py

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0423/DN/WIT/PDF 775815-001US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Technology Overview
	2.1 Intel® Deep Learning Boost (Intel® DL Boost)
	2.2 PyTorch
	2.3 Intel® Extension for PyTorch* (IPEX)
	2.4 Bidirectional Encoder Representations from Transformers (BERT)

	3 Performance Optimization with Intel Extension for PyTorch (IPEX)
	3.1 Prepare the Benchmark Environment
	3.2 Quantize BERT Model with Intel Extension for PyTorch (IPEX)
	3.3 Evaluate IPEX Quantization Performance
	3.4 Performance Boosting Results

	4 Summary
	Appendix A Platform Configuration
	Appendix B Software Configuration

