
  1 

Technology Guide 
 

 

Intel® Deep Learning Boost (Intel® DL 
Boost) - Improve Inference Performance 
of Hugging Face BERT Base Model in 
Google Cloud Platform (GCP) 
 

Authors 
David Lu 

Shuangpeng Zhou 

Jing Xu 

Weizhuo Zhang 

Abhijit Sinha 

Heqing Zhu 

Lulin Deng 

 

 

 

 

1 Introduction 
Emails and SMS messages are very popular communication tools, and many people rely on 
them every day. There are also cyber attackers who send massive phishing emails or SMS 
messages to steal private information. Despite various ways to prevent them, detecting these 
attacks can be very difficult due to the use of traffic engineering. With the development of 
deep learning technologies, it is proven to be the best way to prevent such advanced 
cyberattacks. Network security companies already used many different deep learning 
methods such as CNN, LSTM, GRU, and BERT in their security products. While the BERT 
model can provide the highest accuracy1, it takes longer inference time. The inference 
latency is one of the challenges to adopting deep learning technology. 

PyTorch* is one of the most widely used deep-learning frameworks. To boost the 
performance on Intel® hardware, Intel provides the open-source Intel® Extension for 
PyTorch* (IPEX) with the latest feature optimizations. These optimizations take advantage 
of Intel® AVX-512 Vector Neural Network Instructions (Intel® AVX-512 VNNI) and Intel® 
Advanced Matrix Extensions (Intel® AMX) on Intel® CPUs as well as Intel® Xe Matrix 
Extensions (Intel® XMX) AI engines on Intel discrete GPUs.  

Google Cloud Platform* service (GCP) is a suite of cloud computing services offered by 
Google. It offers various cloud services to help customers build, deploy, and manage different 
kinds of applications and services. GCP facilitates more convenient performance evaluation. 
Deploying services on GCP conforms to the customers’ scenario, making the evaluation 
results more reliable and authentic. 

This guide illustrates how to use PyTorch and Intel IPEX tool to boost deep-learning 
inference performance on the Hugging Face BERT base model (cased). The evaluations 
were conducted on the GCP using three different hardware configurations. We will show a 
Gen-2-Gen performance comparison from 1st Gen Intel® Xeon® Scalable processor to 3rd 
Gen Intel® Xeon® Scalable processor. 

This solution and its associated resources can serve as a reference for customers to replicate 
other workloads. This document is part of the Network Transformation Experience Kits. 

 

 
1 https://link.springer.com/article/10.1007/s11227-021-04169-6  

https://networkbuilders.intel.com/intel-technologies/experience-kits
https://link.springer.com/article/10.1007/s11227-021-04169-6
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1.1 Terminology 

Table 1. Terminology 

Abbreviation Description 
AMX Intel® Advanced Matrix Extensions 

AVX Advanced Vector Extensions 

BERT Bidirectional Encoder Representations from Transformers 

CLS Classification 

CNN Convolutional Neural Network 

GCP Google Cloud Platform 

GRU Gate Recurrent Unit 

IPEX Intel® Extension for PyTorch 

LSTM Long Short-Term Memory networks 

oneDNN Intel® oneAPI Deep Neural Network Library 

ReLU Rectified Linear Unit 

RNN Recurrent Neural Networks 

1.2 Reference Documentation 

Table 2. Reference Documents 

Reference Source 
Spam Detection Using BERT https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf  

Intel® Deep Learning Boost (Intel® DL Boost) https://www.intel.com/content/www/us/en/artificial-intelligence/deep-
learning-boost.html  

Intel® oneAPI Deep Neural Network Library https://github.com/oneapi-src/oneDNN  

Intel® Extension for PyTorch https://github.com/intel/intel-extension-for-pytorch  

Bert Base model (cased) https://huggingface.co/bert-base-cased  

2 Technology Overview 
2.1 Intel® Deep Learning Boost (Intel® DL Boost) 

Intel Deep Learning Boost (Intel DL Boost) is a set of built-in accelerators to enhance the performance of common AI training and 
inferencing workloads. It was introduced in the 2nd Gen Intel® Xeon® Scalable processors and offers AI acceleration within the 
same CPU package that already offers exceptional performance, security features, and reliability for traditional workloads in data 
centers or the cloud.  

The core of Intel DL Boost is Vector Neural Network Instructions (VNNI), which is a specialized instruction set that uses a single 
instruction for deep-learning computations that formerly required three separate instructions. VNNI is built to boost the 
performance of deep-learning workloads. Intel has invested resources in popular deep-learning frameworks like PyTorch, 
TensorFlow*, MXNet*, and Open Neural Network Exchange (ONNX*), helping customers to take advantage of Intel DL Boost to 
improve AI workload performance. 

2.2 PyTorch 

PyTorch is a deep learning library that provides flexible and user-friendly interfaces for building and training neural networks. It is 
built with the help of Torch library and has been developed to support dynamic computational graphs, which allows easier and 
more flexible building of complex models. 

PyTorch supports a wide range of neural network architectures, from simple feedforward networks to more complex models 
such as recurrent neural networks and convolutional neural network. It is widely used for a variety of applications including 
computer vision, natural language processing, and generative models. 

https://arxiv.org/ftp/arxiv/papers/2206/2206.02443.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://github.com/oneapi-src/oneDNN
https://github.com/intel/intel-extension-for-pytorch
https://huggingface.co/bert-base-cased
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2.3 Intel® Extension for PyTorch* (IPEX) 

IPEX provides PyTorch users with up-to-date features and optimizations for Intel hardware, including Intel AVX-512 VNNI and 
Intel AMX. With IPEX, users can access simple Python APIs and tools to optimize performance through graph and operator 
optimization with only minor code modifications. Graph optimization includes the fusion of frequently used operator patterns, 
such as Conv2D+ReLU and Linear+ReLU. IPEX can optimize both eager mode and graph mode. 

2.4 Bidirectional Encoder Representations from Transformers (BERT) 

BERT is a pre-trained language representation model developed by Google AI Language researchers in 2018, which consists of 
transformer blocks with a variable number of encoder layers and a self-attention head. In contrast to traditional one-way 
language models or superficial combinations of two one-way language models, BERT prioritizes the use of a new Masked 
Language Model (MLM) to generate deep bidirectional representation. This allows BERT to better leverage the information 
from both left and right context in the input text, leading to more accurate language processing. 

As shown in Figure 1, BERT takes the embeddings of each word in the sentence as the input and uses a special classification 
token ([CLS]) and a special separator token ([SEP]) to better understand the sequences. Each input embedding is 
corresponding to an output, for instance, C is the output of the last transformer of the classification token ([CLS]), Ti is the 
output of the last transformer of corresponding tokens. For some token level tasks, it can take advantage of each output of the 
token, and for the sequence level tasks, including the phishing email detection task, it can use the output of the classification 
token ([CLS]). 

To detect phishing emails, the input email is first tokenized into chunks of words using the Hugging Face tokenizer, with a special 
CLS token added at the beginning. The tokens are then padded to the maximum BERT input size, which by default is 512. The 
total input tokens are converted to integer IDs and fed to the BERT model. A dense layer is added for email classification, which 
takes the last hidden state for the CLS token as input.  

 

Figure 1. The workflow of BERT based phishing emails detection 

3 Performance Optimization with Intel Extension for PyTorch (IPEX) 
To improve the deep learning inference performance, one common technique is quantization. Quantization is the process of 
representing continuous values with a limited number of discrete values, so it is obvious that quantization can reduce storage 
requirements since it lowers the data precision. Furthermore, quantization can improve the efficiency of computations. By using 
fewer bits to represent values, quantization can reduce the computational load in the machine. There are two main types of 
quantization: static quantization and dynamic quantization. Static quantization involves the process of quantizing both the 
weights and activations of a model. To achieve optimal quantization parameters for activations, the quantization method 
requires a representative dataset to do the calibration. For dynamic quantization, the weights are quantized before the inference 
process, while the activations are quantized dynamically during the inference. Normally, static quantization is used when both 
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memory bandwidth and compute savings are important. Dynamic quantization can introduce additional run-time overhead since 
it quantizes the activations during the inference. Therefore, dynamic quantization is better for those models in which the 
memory bandwidth is the bottleneck. In this chapter, we will illustrate how to improve the inference performance by using IPEX 
under Hugging Face BERT base model (cased).  

3.1 Prepare the Benchmark Environment 

First, create a clean virtual environment for benchmarking by using the following commands:   

# python3 -m venv ipex-bert 
# source ipex-bert/bin/activate 
# pip install -U pip 
# pip install -r requirements.txt 

The requirements.txt file enumerates dependent packages, whose content is shown as below: 

# cat requirements.txt 
--extra-index-url https://download.pytorch.org/whl/cpu 
torch==1.13.0 
intel_extension_for_pytorch==1.13.0 
accelerate 
transformers 
datasets 
tqdm 

3.2 Quantize BERT Model with Intel Extension for PyTorch (IPEX) 

Apply IPEX static quantization method to BERT model by using the following code snippet: 

# cat ipex_quantize.py 
import torch 
from tqdm import tqdm 
from datasets import load_dataset 
from transformers import BertTokenizer, BertForSequenceClassification 
 
import intel_extension_for_pytorch as ipex 
from intel_extension_for_pytorch.quantization import prepare, convert 
from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver, QConfig 
 
# Define variables 
MAX_LENGTH = 512 
MODEL_CHECKPOINT = 'bert-base-cased' 
 
# Load model and tokenizer 
tokenizer = BertTokenizer.from_pretrained(MODEL_CHECKPOINT) 
model = BertForSequenceClassification.from_pretrained(MODEL_CHECKPOINT) 
model.eval() 
 
# Prepare calibration dataset 
def preprocess(text): 
    return tokenizer(text, max_length=MAX_LENGTH, padding='max_length', truncation=True, return_tensors='pt') 
raw_dataset = load_dataset('SetFit/enron_spam', split='test') 
calib_dataset = list(map(preprocess, raw_dataset['text'][:1000])) 
 
# Execute ipex static quantization 
example_inputs = tuple(calib_dataset[0].values()) 
 
qconfig = QConfig(activation=MinMaxObserver.with_args(qscheme=torch.per_tensor_affine, dtype=torch.quint8), 
                  weight=PerChannelMinMaxObserver.with_args(dtype=torch.qint8, 
qscheme=torch.per_channel_symmetric)) 
prepared_model = prepare(model, qconfig, example_inputs=example_inputs, inplace=False) 
 
for encoding in tqdm(calib_dataset): 
    prepared_model(**encoding) 
 
converted_model = convert(prepared_model) 
# Save quantized model 
with torch.no_grad(): 
    traced_model = torch.jit.trace(converted_model, example_inputs, strict=False) 
    traced_model = torch.jit.freeze(traced_model) 
    traced_model.save(f'{MODEL_CHECKPOINT}_ipex-static-quan.pt') 

Run the following command to quantize BERT model with IPEX. Then the quantized model will be saved as a .pt file. 

# python3 ipex_quantize.py 
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3.3 Evaluate IPEX Quantization Performance 

Evaluate the quantized BERT model’s performance on the GCP n1-std-8 (1st Gen Intel Xeon Scalable processors), n2-std-8 (2nd 
Gen Intel Xeon Scalable processors), n2-std-8 (3rd Gen Intel Xeon Scalable processors) and take the result on n1-std-8 (1st Gen 
Intel Xeon Scalable processors) as the baseline. The evaluation code snippet is shown below: 

# cat evaluate.py 
import time 
import torch 
import numpy as np 
from tqdm import tqdm 
from datasets import load_dataset 
import intel_extension_for_pytorch as ipex 
from transformers import BertTokenizer, BertForSequenceClassification 
 
# Define variables 
MAX_LENGTH = 512 
NUM_WARM_UP = 100 
MODEL_CHECKPOINT = 'bert-base-cased' 
 
# Load and tokenizer 
tokenizer = BertTokenizer.from_pretrained(MODEL_CHECKPOINT) 
 
# Prepare evaluation dataset 
def preprocess(text): 
    return tokenizer(text, max_length=MAX_LENGTH, padding='max_length', truncation=True, return_tensors='pt') 
raw_dataset = load_dataset('SetFit/enron_spam', split='test') 
eval_dataset = list(map(preprocess, raw_dataset['text'][:1000])) 
 
# Define benchmark function 
def benchmark(model, dataset): 
    model.eval() 
 
    latencies = [] 
    with torch.no_grad(): 
        for encoding in tqdm(dataset): 
            start = time.time() 
            model(**encoding) 
            elapsed = 1000 * (time.time() - start) 
            latencies.append(elapsed) 
 
    latencies = latencies[NUM_WARM_UP:] 
    mean_latency = np.mean(latencies) 
 
    return mean_latency 
 
# test performance with IPEX static quantization 
q_model = torch.jit.load(f'{MODEL_CHECKPOINT}_ipex-static-quan.pt') 
mean_latency = benchmark(q_model, eval_dataset) 
print(f'mean latency with IPEX static quantization: {mean_latency} ms') 

Run following commands on GCP with different virtual machine configurations to get the mean inference time with different 
cores.  

# numactl -C 0 python3 evaluate.py               # for 1 core 
# numactl -C 0-1 python3 evaluate.py             # for 2 cores 
# numactl -C 0-3 python3 evaluate.py             # for 4 cores   

3.4 Performance Boosting Results 

We evaluate the BERT performance on 1st to 3rd generations Intel Xeon Scalable Processors before and after applying IPEX 
static quantization, and with different number of cores. The details of mean inference time for each situation are shown in Table 
32.  
 
  

 
2 Workloads and configurations. Results may vary. 

http://www.intel.com/PerformanceIndex


Technology Guide | Intel® Deep Learning Boost - Improve Inference Performance of Hugging Face BERT Base Model in Google 
Cloud Platform (GCP) 

  7 

Table 3.  Results of Performance Boosting with IPEX 

Mean inference 
time (ms) 

max_seq_length = 
512 Batch size = 1 

Vanilla PyTorch V1.13 PyTorch V1.13 with IPEX 
(Static Quantization) INT8 

Performance Boost  
n2-std-8(3rd Gen 

Intel® Xeon® 
Scalable 

Processors) 
@2.6GHz 

vs  
n1-std-8(1st Gen 

Intel® Xeon® 
Scalable 

Processors) 
@2.0GHz under 
Vanilla PyTorch 

FP32 INT8 

n1-std-8(1st Gen 
Intel® Xeon® 

Scalable 
Processors) 

@2.0GHz 

n2-std-8(2nd 
Gen Intel® 

Xeon® Scalable 
Processors) 

@2.8GHz 

n2-std-8(3rd 
Gen Intel® 

Xeon® Scalable 
Processors) 

@2.6GHz 

n1-std-8(1st Gen 
Intel® Xeon® 

Scalable 
Processors) 

@2.0GHz 

n2-std-8(2nd 
Gen Intel® 

Xeon® Scalable 
Processors) 

@2.8GHz 

n2-std-8(3rd Gen 
Intel® Xeon® 

Scalable 
Processors) 

@2.6GHz 

 1 core  1415.83  976.01  960.07 733.46 218.19 201.38 7.03 X 

  2 cores 776.13 531.93 512.76  376.94 113.12 102.67 7.56 X 

 4 cores 422.85  300.54  281.94 202.09 59.77 56.26 7.52 X 

The comparison chart is shown in Figure 2, which uses a more intuitive way to display the acceleration effect from IPEX3. 
 

Figure 2. The comparison chart for performance boost 

 

 

 
3 Workloads and configurations. Results may vary. 

Mean Inference Time Lower is Better 

1 core 2 cores 4 cores
Vanilla PyTorch V1.13 FP32 GCP: n1-std-

8(1st Gen Intel® Xeon® Scalable
Processors) @2.0GHz

1415.83 776.13 422.85

PyTorch V1.13 with IPEX (Static
Quantization)   INT8 GCP: n1-std-8(1st
Gen Intel® Xeon® Scalable Processors)

@2.0GHz

733.46 376.94 202.09

PyTorch V1.13 with IPEX (Static
Quantization)   INT8 GCP: n2-std-8(2nd
Gen Intel® Xeon® Scalable Processors)

@2.8GHz

218.19 113.12 59.77

PyTorch V1.13 with IPEX (Static
Quantization)   INT8 GCP: n2-std-8(3rd
Gen Intel® Xeon® Scalable Processors)

@2.6GHz

201.38 102.67 56.26
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From the performance comparison of BERT base model shown above, we have the following conclusions: 

• Applying IPEX static post-training quantization will always boost the performance of the Hugging Face BERT base 
model, irrespective of which generation of Intel® Xeon® Scalable processor is used. 

• With the help of the 3rd Gen Intel Xeon Scalable processor and IPEX static post-training quantization, the performance 
of BERT base model is 7.52 X faster than 1st Gen Intel Xeon Scalable processor under Vanilla PyTorch without 
quantization.4 

4 Summary 
This guide illustrates the improvement of the IPEX static post-training quantization for BERT base model performance. With the 
help of both the 3rd Gen Intel® Xeon® Scalable processor and IPEX static post-training quantization, the BERT base model can 
achieve up to 7.03x ~ 7.56x performance improvement compared to the 1st Gen Intel® Xeon® Scalable processor. In addition, it 
should be noticed that all the evaluation processes are completed in the GCP considering its flexibility and scalability, which also 
provide a more believable and feasible result to the customer since the GCP environment is closer to the real scenarios. 
Furthermore, the white paper provides the details of how to apply the IPEX optimization to the model, which is straightforward.  

 Platform Configuration 

Table 4. Platform Configuration 

Name GCP: n1-std-8 SKX GCP: n2-std-8 CLX GCP: n2-std-8 ICX 

CPU Model Intel® Xeon® CPU @ 2.00GHz Intel® Xeon® CPU @ 2.80GHz Intel® Xeon® CPU @ 2.60GHz 
Stepping 3 7 6 
Sockets 1 1 1 
Cores per Socket 8 8 8 
Hyperthreading Enabled Enabled Enabled 
CPUs 16 16 16 
Intel Turbo Boost Disabled Disabled Disabled 
Base Frequency 2.0GHz 2.8GHz 2.6GHz 
Maximum Frequency 2000 MHz 2800 MHz 2600 MHz 
NUMA Nodes 1 1 1 
Installed Memory 16GB (1x16GB RAM) 16GB (1x16GB RAM) 64GB (4x16GB RAM) 
NIC 1x device 1x device 1x device 
Disk 1x 100G PersistentDisk 1x 100G PersistentDisk 1x 100G PersistentDisk 
BIOS Google Google Google 
OS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS Ubuntu 20.04.5 LTS 
Kernel 5.15.0-1021-gcp 5.15.0-1021-gcp 5.15.0-1021-gcp 

 
  

 
4 Workloads and configurations. Results may vary. 

http://www.intel.com/PerformanceIndex
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 Software Configuration 

Table 5. Software Configuration 

Software Configuration Config 1 (Vanilla PyTorch for 
baseline) 

Config 2 (PyTorch with IPEX) 

Framework /Toolkit incl version 
PyTorch 1.13.0 

PyTorch 1.13.0 
IPEX 1.13.0 

Framework URL https://pytorch.org/ 

Topology or ML algorithm (include link) https://huggingface.co/bert-base-cased 

Libraries (incl version) e.g., MKL DNN, or 
DAAL 

oneDNN v2.7.3 

Dataset (size, shape) https://huggingface.co/datasets/wikipedia, max_seq_length=512 

Precision (FP32, INT8., BF16) FP32 INT8 

NUMACTL numactl -c  

OMP_NUM_THREADS N/A N/A 

COMMAND LINE USED python3 evaluate.py 
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