White Paper

Communications Service Provider

Intel-Dell Verified Reference Configuration for Virtualized Radio Access Networks on Wind River Studio

WNDRVR

Authors

Inte

Ai Bee Lim, Sam Deip, John Morgan, William Meigs

Dell

Nic Lemieux, Komal Bhowad, Ryan Putman, Allan Paulino, Suresh Raam

Wind River

Babak Sar- Ashki, Jerry Bailey, Jeff Gowan

Table of Contents

Introduction	1
Intel VRC for vRAN	1
Partner Solution	2
Solution Software	3
Performance	4
$FlexRAN^TMSoftwareBenchmarks$.	4
Summary	5

Appendix Error! Bookmark not defined.

Introduction

Intel Verified Reference Configuration (VRC) are a family of workload-optimized, infrastructure solutions, based on the Intel® Xeon® Scalable processor family targeting today's complex workloads. This document presents a reference implementation for the 4th Gen Intel® Xeon® Scalable Processor with Intel® vRAN Boost, which includes a selection of Dell PowerEdge XR servers and Wind River Studio Cloud Platform.

When network operators, service providers, cloud service providers, or enterprise infrastructure companies choose a reference architecture for Virtual Radio Access Network (vRAN) deployment based on a 4th Generation Intel® Xeon® Scalable Processor with Intel® vRAN Boost, they should be able to deploy various network-function-virtualized applications more securely and easily than ever before.

The reference implementation simplifies design choices for end users by bundling hardware and software components together, while making high performance more predictable. This saves time, effort, and expense of end users while evaluating hardware and software options.

Additionally, this document features a workload-optimized stack tuned to take full advantage of the Intel® architecture foundation.

Intel VRC for vRAN

This workload optimized VRC is designed to minimize the challenges of infrastructure deployments and optimization efforts, ensuring best performance for low latency vRAN use cases. It defines the software and hardware reference stacks and includes the FlexRANTM software running as a proxy workload to showcase the performance and latencies that can be achieved with this solution.

Partner Solution

Dell has built upon the success of the previous generation XR11 product with a generational improvement by the introduction of the PowerEdge XR5610. In addition, Dell has debuted the XR8000r offering configurable sled options to support the Edge network location.

XR5610

Like its predecessor, the XR5610 is a short-depth ruggedized, single socket, 1U monolithic server, designed for the Edge and Telecom workloads. Its rugged design accommodates military and defense deployments and retail AI including video monitoring, IoT device aggregation, and PoS analytics.

Improvements to the XR5610 include:

- A CPU upgrade to the recently announced 4th cores.
- Support for the new 4th Gen Intel® Xeon® Scalable processors with Intel® vRAN Boost variant, later this vear.
- Will embed a vRAN accelerator in the CPU.
- A doubling of the memory bandwidth with the upgrade Figure 4: XR8620t 2U Compute Sled from DDR4 to DDR5.
- Higher performance I/O capabilities with the upgrade from PCIe Gen 4 to Gen 5.
- Dry inputs, common in remote environments to gain some insights into edge enclosure conditions, such as door open alarms, moisture detection, and more.
- Support for multiple accelerators, such as GPUs, O-RAN L1 Accelerators, and storage options including SAS, SATA or NVMe.

Figure 1: Power Edge XR5610 1U Server

XR8000r

The XR8000r is composed of a 2U, short depth, 400mm class Chassis with options to choose from 1U or 2U half-width hotswappable Compute Sleds with up to 4 nodes per chassis. The XR8000r supports 3 sled configurations designed for flexible deployments. These can be 4 x 1U sleds, 2 x 1U and 1 x 2U sleds or 2 x 2U sleds. The Chassis also supports 2 PSU slots that can accommodate up to 5 power capacities, with both 120/240 AC and -48 VDC input powers supported.

Figure 2: Power Edge XR8000r 2U Chassis

The 1U (XR8610t) and 2U (XR8620t) Compute Sleds are based on Intel's 4th Generation Intel® Xeon® Scalable

Processor, up to 32 cores, with support for both Sapphire Rapids SP and Edge Enhanced (EE) Intel® vRAN Boost processors. Both sled types have 8 x RDIMM slots and support for 2 x M.2 NVMe boot devices with optional RAID1 support, 2 optional 25GbE LAN-on-Motherboard (LoM) ports and 8 Dry Contact Sensors though an RJ-45 connector. The 1U Compute Sleds adds support for one x16 FHHL (Full

Figure 3: XR8610t 1U Compute Sled

Height Half Length) Slot (PCIe Gen5).

 $Generation \, Intel \hbox{$^{\circ}$ Xeon} \hbox{$^{\circ}$ Scalable Processor, up to 32} \quad The \, 2U \, Compute \, Sled \, builds \, upon \, the \, foundation \, of \, the \, 1U \, Sled \, and \, constant \, and \, constan$ and adds support for an additional two x16 FHHL slots.

> These 2 Sled configurations can create both dense compute and dense I/O configurations.

The 2U Sled also provides the ability to accommodate GPUoptimized workloads.

This sledded architecture is designed for deployment into traditional Edge and Cell Site Environments, complementing or replacing current hardware and allowing for the reuse of existing infrastructure.

Dell Hardware and Firmware Details

Details for vRAN solution is based on the hardware configuration which showcases the best combination of latest Intel® CPU technology coupled with Intel® platform technologies, Intel® Ethernet and Intel® acceleration technologies. These technologies are integrated on the motherboard to deliver best-in-class vRAN performance with the low latency requirements using the Data Plane Development Kit (DPDK) and Baseband Device (BBdev).

Table 1 shows the Platform Hardware Configuration and Table 2 provides the Platform Firmware details.

Table 1: Platform Hardware Configuration

Hardware	Description
Processors	20-core or 32-core, 4th Gen Intel® Xeon® Scalable

Hardware	Description
	Processor with Intel® vRAN Boost
DRAM	32GB Dual Rank DDR5 4800MHz 1 DIMM per chancel Total Memory 256GB
Network Interface Card	Quad Port 25GbE Intel® Ethernet Network Adapter E810 XXVAM-DA4 (Gen 4 x8)
Storage	2x 960GB SSD NVMe solution as boot device

Table 2: Platform Firmware

System	Components	Version
XR8620t	BIOS	1.1.3
	iDRAC	6.10.89.00 (Build 17)
	CPLD	1.1.2
XR5610	BIOS	1.1.4
	iDRAC	6.10.25.00 (Build 05)
	CPLD	1.0.1

Intel BIOS Recommendation

Intel recommends using the BIOS settings for Max Performance with low latency configuration to meet the optimized deterministic performance requirements for the vRAN reference implementation.

Refer to document BIOS Settings for FlexRAN^{TM} Platforms based on Intel[®] Xeon[®] Processors (#640685) for information on the BIOS settings.

Dell BIOS Config

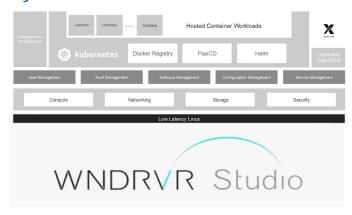
This section describes Dell BIOS Configuration required for achieving optimal performance with low power consumption for FlexRAN $^{\text{TM}}$ implementation. Dell recommends using Telco Optimized Profile as the workload profile.

To set Telco Optimized Profile, navigate to BIOS Setup->System Profile Settings->Workload Profile. Reboot the system after applying the workload profile. Telco Optimized Profile sets other BIOS settings necessary to meet optimized performance. These settings are described in the Appendix section.

Additional BIOS Settings to be Manually Set After Applying Telco Optimized Profile

- Set MADT Core Enumeration to Linear (Location Processor Settings -> MADT Core Enumeration)
- Set SR-IOV Global Enable to Enabled (Location Integrated Devices -> SR-IOV Global Enable)
- Select SR-IOV on individual NICs under use (Location

Device Settings-> (Select NIC) -> Device Level Configuration-> Virtualization Mode)


Notes:

- 1. Reboot is required after applying the above settings for changes to take effect.
- 2. In cases where Telco Optimized Profile is set. and a BIOS is upgraded to a newer version, follow the steps below for updates in Telco Optimized Profile to take effect.
 - a. Load BIOS defaults, and
 - b. Re-apply Telco Optimized Profile

Solution Software

Wind River Studio provides a production-grade Kubernetes cloud platform for managing edge cloud infrastructure. Based on the open source StarlingX project, Studio compiles best-inclass open-source technology to deploy and manage distributed networks.

Figure 5: Studio Cloud Platform Software Stack

Solution deployment is on Wind River Studio Cloud Platform with the following FlexRAN $^{\text{TM}}$ Reference Software revision.

Table 3: Solution Software Version

Ingredient	SW Version Details
DPDK	22.11
FlexRAN™	23.03
Studio Cloud	22.12
Platform	
ICE	1.9.11
lavf	4.5.3
E810 NVM	4.0 0x800118ae
RT_Kernel	5.10.0-6-rt-amd64

Platform CaaS Config

Table 4 lists the Container as a Service (CaaS) configuration for the Intel FlexRANTM Software POD.

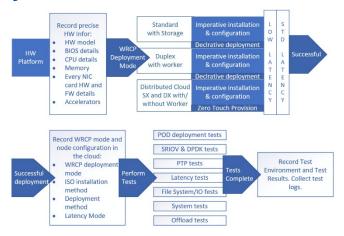
Table 4: CaaS Configuration

Configuration	Setting
Isolated CPUs (logical)	24
Accelerator	1 Virtual Function
Huge Pages	8 x 1G Huge pagesz

Configuration	Setting
CPU Max Frequency	2.5GHz

Note: Not all isolated CPU's are used nor required for the tests. Memory Latency Checker (MLC)

Installation Guide for Wind River Studio Cloud **Platform**


Wind River Studio Cloud Platform 22.12 provides documentation on many methods of installation supported. Please contact Wind River for documentation and for methodologies of installation which is best to employ in your setup environment.

Wind River Hardware Certification

The Ready for Wind River Program is a formal program to validate that the Wind River software is ready for deployment on the hardware that has been certified.

This is a time-consuming task; it involves running many different deployment modes supported by the cloud infrastructures. The validation process ensures successful installation, configuration, and deployment.

Figure 6: Wind River Hardware Certification Flow

Performance

This chapter aims to verify the performance metrics of the vRAN reference implementation ensuring that there is no anomaly seen. Refer to information in this section to ensure that the performance baseline for the platform is as expected.

FlexRAN™ is another key component of the reference implementation for vRAN reference design which provides hardware acceleration for the FEC baseband processing in layer one application. As such, reference implementation for vRAN reference implementation, should meet the performance published in the Performance Report for FlexRAN™23.03.

Performance Baseline

This section includes information on a few applications that are required to be executed after the Platform is configured as per BOM, BIOS configuration, and Software Stack, as described in the earlier section.

The output provides a performance baseline on expected latency performance, memory bandwidth and jitter seen on the system.

The first application is the Memory Latency Checker which can be downloaded from https://software.intel.com/en- us/articles/intelr-memory-latency-checker

Download the latest version and execute this application, unzip the tarball package and go into Linux* folder and execute ./mlc

Cyclictest

For vRAN configurations, the worker node must demonstrate the system latency for the wake-up time of the threads to be below 10us for at least 12 hours.

Testing conducted based on Table 3 solution software version, results for 16 threads is summarized in table 5 below.

Table 5: Test Results of Cyclictest

System	Min latency	Avg Latency	Max latency
XR8620t	lus	lus	9us
XR5610	lus	lus	8us

FlexRAN™ Software Benchmarks

FlexRAN™ Reference Software is being used as the proxy workload to ensure that the performance and latency of the Device Under Test (DUT) are as expected to our internal testing. There are numerous test cases to emulate the RAN workloads supporting narrow band, massive MIMO with different number of cells in timer mode or O-RAN Mode testing.

Table 6: FlexRAN[™] Testing Methods

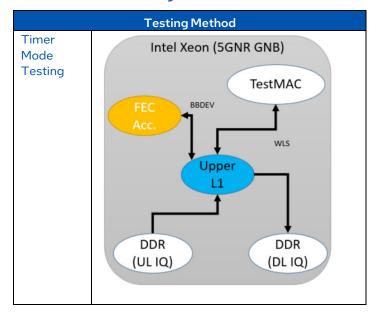


Table 6 shows the testing methods supported by the Intel FlexRAN $^{\text{TM}}$ Software, timer mode and O-RAN mode.

The test case for 6389 and 18220 are tested under timer mode on the system described and the results are tabulated in Table 7. Pass results are established by comparing the published results.

Table 7: FlexRAN™ Software Results

System	6 Cells Massive MIMO Test Case 6389	18 Cells Narrowband 20MHz Test Case 18220
XR8620t	Pass	Pass
XR5610	Pass	Pass

Summary

The Intel virtualized Radio Access Network (vRAN) Reference implementation, Intel VRC based on 4th Gen Intel® Xeon® Scalable processors with Intel® vRAN Boost, combined with architectural improvements, feature enhancements, high memory, and IO bandwidth, is a tremendous performance and scalability advantage in today's network environments. By using Dell PowerEdge XR servers and Wind River Studio, these processors are optimized for network and RAN workloads. The integrated FEC Accelerator offload and Intel® Ethernet E810 Network Controllers offer multiple hundredths of Gigabit per second for front haul and back haul traffic throughput.

Appendix

Table A1: User Adjustable BIOS Settings Set by Telco Optimized Profile

BIOS Knob	Setting	Location in BIOS Setup
AC Power Recovery	Last	System Security->AC Power Recovery
AMP Prefetch	Enabled	Processor Settings-> AMP Prefetch
APS Rocketing	Disabled	System Profile Settings->APS Rocketing
AVX ICCP Pre-Grant Level	512 Heavy	Processor Settings->AVX ICCP Pre-Grant Level
AVX ICCP Pre-Grant License	Enabled	Processor Settings->AVX ICCP Pre-Grant License
AVX P1	Level 2	Processor Settings->AVX P1
CIE	Disabled	System Profile Settings->C1E
CPU C1 Auto Demotion	Disabled	System Profile Settings->CPU C1 Auto Demotion
CPU C1 Auto unDemotion	Disabled	System Profile Settings->CPU C1 Auto unDemotion
CPU Power Management	System DBPM (TELCO)	System Profile Settings->CPU Power Management
C-States (Processor C6 or CPU C6 Report)	Enabled	System Profile Settings->C-States
Custom Uncore Frequency	1.6GHz	System Profile Settings->Custom Uncore Frequency
Dynamic L1	Disabled	System Profile Settings->Dynamic L1
Energy Efficient Policy (ENERGY_PERF_BIAS_CFG mode)	Performance	System Profile Settings->Energy Efficient Policy
Energy Efficient Turbo	Disabled	System Profile Settings->Energy Efficient Turbo
GPSS Timer	Ous	System Profile Settings->GPSS Timer
Homeless Prefetch	Enabled	Processor Settings->Homeless Prefetch
LLC Prefetch	Disabled	Processor Settings->LLC Prefetch
Logical Processor (Hyper-Threading)	Enabled	Processor Settings->Logical Processor
Memory Patrol Scrub (Patrol Scrubbing)	Disabled	System Profile Settings->Memory Patrol Scrub
Monitor/Mwait	Enabled	System Profile Settings->Monitor/Mwait
OS ACPI Cx	OS Cx C2	System Profile Settings->OS ACPI Cx
Package C-States	Disabled	System Profile Settings->Package C-States
PCI ASPM L1 Link Power Management	Disabled	System Profile Settings->PCI ASPM L1 Link Power Management
Scalability	Disabled	System Profile Settings->Scalability
System Profile	Custom	System Profile Settings->System Profile
Turbo Boost (Turbo Mode)	Enabled	System Profile Settings->Turbo Boost
Uncore Frequency (Uncore frequency scaling)	Maximum	System Profile Settings->Uncore Frequency
Uncore Frequency RAPL	Disabled	Processor Settings->Uncore Frequency RAPL

BIOS Knob	Setting	Location in BIOS Setup	
Virtualization Technology (VMX)	Enabled	Processor Settings->Virtualization Technology	
Workload Configuration	I/O Sensitive	System Profile Settings->Workload Configuration	
X2APIC Mode (XAPIC)	Enabled	Processor Settings->X2APIC Mode	

Table A2: Non-adjustable BIOS Settings Set by Telco Optimized Profile

BIOS Knob	Setting
Boot Performance Mode	Max. Performance
EIST PSD Function	HW_ALL
EPP enable	Disabled
HardwarePM Interrupt	Disabled
Hardware P-States	Native with no Legacy Support
Intel SpeedStep (Pstates) Technology	Enabled
Memory Configuration	8-way interleave
Memory Paging Policy (Page Policy)	Closed
Memory POR & Memory Population POR (Enforce POR)	Enabled
Native ASPM	Disabled
PCIE AER Error Handling – PCIE Correctable Errors	Disabled
PCIE ECRC generation and checking	Disable
Power Performance Tuning	BIOS Controls EPB
UMA Based Clustering Status	Quadrant
Virtual NUMA (MCC)	Disabled

Notices & Disclaimers

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.