
 1

ADQ is a technology designed to improve application specific queuing and steering.
ADQ addresses issues of predictability, latency, and throughput for scaling
containerized applications in a Kubernetes environment.

 Authors

Dave Anderson

Dave Cremins

Niamh Hennigan

Brian Johnson

Stefan Peters

Sridhar Samudrala

Anil Vasudevan

Executive Summary
 A microservices architecture approach delivers many benefits and a few new

challenges. Containerized application workloads bring new latency, predictability, and
scalability issues that must be addressed to realize the full benefit of cloud-native
applications running in a Kubernetes environment.

 Organizations can improve containerized workload performance by adopting
Application Device Queues (ADQ), a technology designed to reduce latency, improve
predictability and throughput when used in concert with Intel® Ethernet 800 Series
Network Adapters.

 For this solution brief, we created a container workload scenario, measured latency,
predictability (tail latency), and throughput. To examine how containerized application
workloads would benefit from ADQ, we ran tests with and without ADQ.

 Test results confirm that ADQ accelerates performance on containerized workloads by
reducing latency, improving response time predictability and throughput.

This document is part of the Network Transformation Experience Kit.

Latency, Predictability, and Challenges at Scale
In a single data center server, serving multiple network applications, the queues responsible
for network traffic may be shared between multiple applications and network resource
contention may occur. The case is the same for cloud-native applications delivered through
containers. As application utilization in Kubernetes orchestrated clusters increases and
becomes more complex, latency response time delays can impact an organization’s ability
to consistently meet service-level agreements (SLAs).

Context switching and stack interrupts are other examples of Linux networking
inefficiencies that can have a negative effect on performance.

The behavior of the latency is an important characteristic to examine. Containerized
applications tend to have latency, which is variable and unpredictable. Variable and
unpredictable container response times can be felt by end customers and may impact an
organization’s ability to quality of service (QoS) commitments.

Containers rely heavily on the network in order to communicate. As containerized
applications scale from hundreds running on a single cluster to thousands running on
distributed clusters, they place higher demands on the network. As network traffic
increases, jitter can occur, resulting in unpredictable containerized application response
times.

Solution Brief
Network and Edge Group

 Intel® Ethernet 800 Series - Application Device
Queues (ADQ) in a Kubernetes Environment

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 2

How ADQ Works to Improve the Performance of Containerized Workloads
Ethernet is like a freeway system for data traveling between different places in the data center and the time taken to complete
each packet’s journey depends on the traffic conditions. Comparable to a freeway during rush hour when there are many cars
with different origins and destinations all sharing the same lanes, there is increased unpredictability. The situation is the same
for web servers and data caching servers that operate with a big data backend.

By dedicating queues for critical containerized workloads, ADQ accelerates performance by reducing latency, improving
response time predictability and throughput.

Figure 1. ADQ acts like an express lane for your containerized application workloads

At the core of ADQ is an application-specific queuing and steering technology that dedicates and isolates application-specific
hardware NIC queues. These queues are then connected optimally to application-specific threads of execution. By preventing
other traffic from contesting for resources with a chosen application’s traffic, performance becomes more predictable and
less prone to jitter. Additionally, application-specific outgoing network bandwidth can be rate-limited, which can be used to
divide or prioritize network bandwidth for specific applications. Unlike other receive queuing and steering technologies,
pinning CPU cores is not required with ADQ.

ADQ can work transparently to the application. It does so through the use of application independent pollers. Advanced
steering modes provide flexibility, depending on the deployment. For more details on the poller and steering mode
configurations used please reference the E810 ADQ Configuration Guide (Table 1 Reference 1). This enables ADQ
acceleration to be applied to a larger set of containerized applications.

ADQ Requirements for Kubernetes environments
• Container Networking Interface with VETH functionality (e.g., Cilium)
• Linux based OS only
• 5.12+ kernel version recommended for best supportability

ADQ in a Kubernetes Environment
Container orchestration is all about managing the lifecycles of containers to control and automate tasks like hardware
abstraction, container provisioning and deployment, resource allocation and scaling, availability management, load balancing
and external exposure of services running in a container with the outside world.

Kubernetes was built as a framework to handle large workloads with many nodes in an efficient manner. While this is true, as
the cluster size increases, so too does the complexity of the networking. The increased density of applications across the
cluster as scaling occurs leads to decreased visibility and the need for increased control on the networking protocols to
maintain the QoS. Multi-tenancy issues can also occur when multiple workloads share resources. Communication and
resources must be carefully monitored and managed to ensure that optimal service is provided to the users, further
highlighting the need for advanced steering in a Kubernetes environment. On this basis, it can be concluded that Kubernetes
will benefit from ADQ features. The figure below illustrates how ADQ works in a Kubernetes environment.

With ADQ
Application traffic filtered into
a dedicated set of queues

Without ADQ
Application traffic intermixed
with other traffic types

https://cdrdv2.intel.com/v1/dl/getContent/609008

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 3

Figure 2. Application Device Queues in a Kubernetes Environment

The ADQ solution for containers running in a Kubernetes environment consists of three main elements: device plugin,
container network interface, and Netprio (net_prio.ifpriomap functionality). Netprio is not essential but can be used as an
optional component dependent on the CNI capabilities.

ADQ Device Plugin is responsible for resource management. It advertises the resources available on the system to the
Kubernetes API server and makes the device available to the container. As shown in Figure 2, the ADQ Device Plugin
advertises queue sets formed with hardware queue pairs, available on the Intel Ethernet 800 Series Network Adapter. A
queue pair consists of a separate transmit (TX) and receive (RX) queue on the network adapter.

ADQ Container Network Interface (CNI) is responsible for creating the network namespace for the pod. It is invoked on the
creation and deletion of a pod and handles the connectivity to the pod and configures the network interface to the pod. Linux
Traffic Control (TC) infrastructure enables the creation of rules that we can put in place to control traffic flowing in an out of
the Linux kernel. ADQ utilizes these TC rules to map hardware queues to software. It also implements filters that allow the
packets for different applications reach their intended queue set. In our case, the ADQ CNI configures the container interface
eth0 to be connected to the relevant queue set and sets the associated filters for that queue set. This allows the queue set to
be connected directly to the workload pod.

Egress queue set steering is accomplished by setting network priority and/or queue mapping for outgoing traffic. To set the
network priority for outgoing traffic, we must know the container ID. When a new pod is being created, a unique cgroup
subdirectory is created. The ADQ Netprio application has a watcher on this directory to inspect any new subdirectories
created and see if any are requesting an ADQ resource. If they are, the ADQ Netprio can then set a new pod watcher that will
wait until it sees a ‘Ready’ status on the newly created container. When the container is up and running the ADQ Netprio will
get the container ID and set the priority of egress traffic on a given interface. If Netprio is not used, the CNI will utilize rtnetlink
API to set the egress queue set/queue steering configuration.

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 4

Test Scenario
Our goal was to measure the performance impact of applying ADQ on containerized application workloads.

An example container workload scenario was created to measure the latency, predictability (tail latency), and throughput of
container workloads. To examine how containerized application workloads would benefit from ADQ, testing was performed
without ADQ (non-ADQ) and with ADQ.

Figure 3. Infrastructure used for comparative ADQ and non ADQ traffic observation

The intention of the example was to illustrate ADQ and non-ADQ traffic co-existing on a network link in a Kubernetes cluster
(non-ADQ meaning without any dedicated hardware queues assigned or established TCs being used). This was an example of
ADQ behavior on a link and was not intended as an exhaustive performance evaluation.

A set of Memcached servers and clients were deployed for measurement. The testing environment consisted of two nodes
where Intel Ethernet Network Adapters were used for back-to-back connectivity. Background traffic was generated using the
opensource Ethr tool to simulate a live network scenario (verified to 100 Gbps link capacity). Subsequently non-ADQ traffic
packets for that application were generated and latency and max throughput was measured. This was then repeated with
traffic control configured, to give a ratio of non-ADQ based traffic and ADQ based traffic queue pools. The latency and max
throughput were measured across three runs. Max throughput was determined when the actual number of requests per
second handled by the Memcached server fell below a requests per second threshold of 5%.

These scenarios were run on two 3rd Gen Intel® Xeon® Scalable processor-based platforms connected back-to-back with a
100Gb cable. The system under test was the worker node, which was 1 node, 2x Intel® Xeon® Platinum 8358 CPU @ 2.60GHz
with configuration found in Appendix 1. Refer to Appendix 1 for additional set-up information.

Test Results
To measure the network connectivity performance, we focused on throughput and latency using the P999 and P9999
standards to examine the tail latency. Throughput refers to how much data can be moved from one location to another in set
amount of time, measured by requests per second (RPS). Latency is the delay in communication response time, measured in
microseconds (µsec). The P999 standard is the latency that 99.90 percent of the requests were completed. The P9999
standard is the latency that 99.99 percent of the requests were completed, and it is the best measurement of how well an
organization is doing to meet the service level agreement (SLA) and quality of service (QoS) commitments.

Testing was performed with and without ADQ optimized (labelled as “non- ADQ”). The SLA was placed at 1000
microseconds for this example scenario. Results are shown in the next two charts.

Throughput and P999 Latency

The combination chart found in Figure 4 shows throughput and P999 latency. Throughput (bars) illustrate requested versus
achieved requests per second (RPS). The ADQ optimized use case (blue bar) scales, achieving ~100K RPS, three times
greater than non-ADQ. The non-ADQ use case (gold bars) plateaus at ~35K RPS (grey bars indicate less than desired RPS).

The P999 latency measurements show both non-ADQ (gold line) and ADQ optimized (navy blue line) use cases meet the

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 5

SLA (red line) and show only minor variation as the requests per second increase.

The test findings show that an organization could use fewer resources by using ADQ to save on infrastructure cost for the
same amount of throughput RPS compared to non-ADQ. The non-ADQ use cases need to use more resources as the
application scales (>35K - 100K RPS).

Also given the predictability of the latencies, software developers could get the added benefit of fast profiling
characterization of the application stack.

Figure 4. Throughput and P999 Tail Latency. Throughput (bars) illustrate requested vs. achieved requests per second (RPS).
Latency (lines) illustrate the SLA compared to non-ADQ and ADQ. [RPC-PERF Memcached with 4 Clients 2 Pools, 3-run
average with 75Gbps of background traffic].

P9999 Latency

The combination chart found in Figure 5 shows throughput and P9999 tail latency. Throughput (bars) illustrate requested
versus achieved requests per second (RPS). Similar to the throughput results shown in Figure 4, the non-ADQ use case (gold
bar) plateaus at ~35K RPS (grey bar). But the ADQ optimized use case (blue bar) scales, achieving ~100K RPS, three times
greater than non-ADQ.

The P9999 latency measurements show non-ADQ use case (gold line) variation as the requests per sec increase and does not
consistently meet the SLA. Conversely, the ADQ optimized use case (navy blue line) consistently meets the SLA even as the
requests per second increase.

Based on these test findings, by using ADQ an organization could use fewer resources to save on infrastructure costs for the
same amount of throughput RPS compared to non-ADQ. Non-ADQ cost could also increase due to the unpredictability of the
tail latencies as they breach the SLA. The organization would need to add more resources at the early stage (~3K RPS).

Also, software developers could get the added benefit of fast profiling characterization of the application stack due to the
predictability of the latencies.

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 6

 Figure 5. Throughput and P999 Tail Latency. Throughput (bars) illustrate requested vs. achieved requests per second (RPS).
Latency (lines) illustrate the SLA compared to non-ADQ and ADQ. [RPC-PERF Memcached with 4 Clients 2 Pools, 3-run
average with 75Gbps of background traffic].

Summary
• Managing latency, predictability and throughput on containerized workloads can be challenging.

• In this example scenario, testing confirms that ADQ improves containerized workload performance by reducing
latency, improving predictability and throughput. By using ADQ, an organization could achieve P9999 standard
and scale to achieve a 3x response per second (RPS):

 Throughput: non-ADQ plateaus at ~35K RPS. ADQ scales, achieving ~100K RPS

 P999 latency: both non-ADQ and ADQ meet the SLA and show only minor variation as the requests per
second increase

 P9999 latency: non-ADQ shows variation and does not consistently meet the SLA. Conversely, ADQ
consistently meets the SLA even as the requests per second increase.

• As application utilization in Kubernetes orchestrated clusters increases and becomes more complex, latency
(response time delays) can impact an organization’s ability to consistently meet SLAs. By reducing latency and
improving throughput, ADQ can help an organization to meet an SLA more easily.

• Containerized applications tend to have latency, which is variable and unpredictable. Variable and unpredictable
container response times can be felt by end customers. ADQ is a technique that can be applied to improve
predictability by reducing tail latency. With a higher level of predictability, an organization can meet QoS goals.

• Organizations can take advantage of ADQ benefits to help to improve their bottom line. Software developers
can get the added benefit being able to optimize the application stack at a fast rate (better deterministic
predictability on tail latencies).

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 7

References

Table 1. References

Reference Source
E810 ADQ Configuration Guide https://cdrdv2.intel.com/v1/dl/getContent/609008

Application Device Queues (ADQ) Resource
Center

https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-
resource-center.html

Performance Testing Application Device
Queues (ADQ) with Memcached

https://www.intel.com/content/www/us/en/architecture-and-
technology/ethernet/performance-testing-application-device-queues-with-
memcached.html

Intel Presents at Networking Field Day 21:
Increasing Predictability at Scale Using Intel
Ethernet 800 Series with ADQ

https://www.youtube.com/watch?v=E9Cu5oT04gE

Video Guide to Intel® Ethernet Application
Device Queues (ADQ)

https://www.intel.com/content/www/us/en/support/articles/000088703/ethernet-
products/800-series-network-adapters-up-to-100gbe.html

Faster, More Predictable Ethernet with the
Intel® Ethernet 800 Series with Application
Device Queues (ADQ)

https://www.intel.com/content/www/us/en/architecture-and-
technology/ethernet/application-device-queues-technology-brief.html

tc(8) — Linux ref manual page for traffic control https://man7.org/linux/man-
pages/man8/tc.8.html#:~:text=qdisc%20is%20short%20for%20'queueing,qdisc%20config
ured%20for%20that%20interface

Linux Kernel Information for network priority
cgroups

https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/net_prio.rst

Learn more about ADQ

Download the ADQ Configuration Guide.

Visit the ADQ Resource Center at intel.com/ADQ.

Contact your Intel sales representative or distributor for more details about Intel® Ethernet 800
Series Network Adapters with ADQ.

https://cdrdv2.intel.com/v1/dl/getContent/609008
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/performance-testing-application-device-queues-with-memcached.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/performance-testing-application-device-queues-with-memcached.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/performance-testing-application-device-queues-with-memcached.html
https://www.youtube.com/watch?v=E9Cu5oT04gE
https://www.intel.com/content/www/us/en/support/articles/000088703/ethernet-products/800-series-network-adapters-up-to-100gbe.html
https://www.intel.com/content/www/us/en/support/articles/000088703/ethernet-products/800-series-network-adapters-up-to-100gbe.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-technology-brief.html
https://man7.org/linux/man-pages/man8/tc.8.html#:%7E:text=qdisc%20is%20short%20for%20'queueing,qdisc%20configured%20for%20that%20interface
https://man7.org/linux/man-pages/man8/tc.8.html#:%7E:text=qdisc%20is%20short%20for%20'queueing,qdisc%20configured%20for%20that%20interface
https://man7.org/linux/man-pages/man8/tc.8.html#:%7E:text=qdisc%20is%20short%20for%20'queueing,qdisc%20configured%20for%20that%20interface
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/net_prio.rst
https://cdrdv2.intel.com/v1/dl/getContent/609008
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 8

Appendix 1: Test Configuration

 ITEM DESCRIPTION

 Product 3rd Generation Intel® Xeon® Platinum 8358
Processor

 Platform Intel M50CYP2SBSTD Server

 Sockets 2

 Speed (MHz) 2600

 No of Cores 128

 Stepping 6

System DDR
Memory

 Vendor Samsung

 Type DDR4

 Part Number M393A2K43DB3-CWE

 Total Memory 256 GB

 Slots 16

 Capacity 16 GB

 Run Speed 3200

Storage – Boot Type Intel SSD

 Size 480 GB

BIOS Vendor Intel Corporation

 Date 04/26/2021

 Version SE5C620.86B.01.01.0003.2104260124

 Microcode 0xd000363

 Turbo Off

 HT On

Operating System OS Version CentOS Stream 8

 Kernel Version 5.13.13

Test Software Memcached Docker image 1.6.10

 rpc-perf image 3.2.0

 Kubernetes 1.24.2

 Container Runtime: containerd 1.6.8

 Cilium 1.12.0

Ethernet Network 2 x Intel Ethernet Network
Adapters

E810-CQDA2 8.0 GT/s PCIe x16 link

 Intel Ethernet Controller firmware 4.00 0x800117e9 1.3236.0

 Cable connectivity 100 Gb

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 9

 Ice driver 1.9.11 COMPILED with ADQ flag. ADQ statistics
enabled.

 ADQ Script Parameters EgressMode: skbedit
FilterPrio 1
Default Queue Set 16 queues
[globals]
arpfilter = false
busypoll = 0
busyread = 0
cpus = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
dev = ens801f0
numa = all
queues = 16
rxadapt = false
rxusecs = 50
txadapt = false
txusecs = 50

ADQ Queue Set 4 Queues
[adqTC3]
cpus = 19
mode = exclusive
numa = all
poller_timeout = 10000
pollers = 1
protocol = tcp
queues = 4

tc qdisc show information for ens801f0
ens801f0_tc_qdisc_entry.1=qdisc mqprio 8004:
root tc 6 map 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0
ens801f0_tc_qdisc_entry.2=queues:(0:15) (16:19)
(20:23) (24:27) (28:31) (32:63)
ens801f0_tc_qdisc_entry.3=mode:channel
ens801f0_tc_qdisc_entry.4=shaper:dcb

tuned profile: throughput-performance
irqbalance disabled

Test Parameters rpc-perf and memcached kubectl exec -it memcached-bench-adq -n adqb --
/bin/bash -c "rpc-perf --endpoint memcached-
adq.memcached-servers:11211 --interval 30 --
windows 4 --clients 4 --poolsize 2 --request-ratelimit
${request_rl} --connect-ratelimit 100 --config
/etc/rpc-perf/config/memcached-benchmark.conf"

kubectl exec -it memcached-bench-noadq -n adqb --
/bin/bash -c "rpc-perf --endpoint memcached-
noadq.memcached-servers:11211 --interval 30 --
windows 4 --clients 4 --poolsize 2 --request-ratelimit
${request_rl} --connect-ratelimit 100 --config
/etc/rpc-perf/config/memcached-benchmark.conf”

memcached-benchmark.conf:

[general]
protocol = "memcache"
interval = 30 # seconds
windows = 4 # run for 4 intervals
clients = 4 # use 4 client thread
poolsize = 2 # each client has 2 connection per
endpoint
tcp_nodelay = false # do not enable tcp_nodelay

Solution Brief | Intel® Ethernet 800 Series - Application Device Queues (ADQ) in a Kubernetes Environment

 10

request_timeout = 1_000_000 # microseconds
connect_timeout = 1_000_000 # microseconds

[[keyspace]]
length = 8 # 8 byte keys
count = 500_000 # limit to 100K keys
weight = 1 # this keyspace has a weight of 1
commands = [# get:set ratio is 1:1
 {action = "get", weight = 4},
 {action = "set", weight = 1},
]
values = [# value length will always be 64 bytes
 {length = 64, weight = 1},
]

Document Revision History

Revision Date Description
001 April 2022 Initial release.

002
June 2022 Updated charts and diagrams for clarity. Corrected links in references. Title changed to follow naming

convention.

003
Sept. 2022 Text updated to reflect new ADQ version 2.0 functionality for containerized applications. Test

configuration, results, conclusion updated to reflect new round of testing done with ADQ version 2.0 using
ice driver 1.9.11.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0922/DN/WIPRO/PDF 715543-003US

http://www.intel.com/PerformanceIndex

	Executive Summary
	Latency, Predictability, and Challenges at Scale
	How ADQ Works to Improve the Performance of Containerized Workloads
	ADQ in a Kubernetes Environment
	Test Scenario
	Test Results
	Summary
	References
	Appendix 1: Test Configuration
	Document Revision History

