
  1 

 

 

 

 

 

 

 

 

 
 
 
 
 

ADQ is a technology designed to improve application specific queuing and steering. 
ADQ addresses issues of predictability, latency, and throughput for scaling 
containerized applications in a Kubernetes environment. 
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Executive Summary 
 A microservices architecture approach delivers many benefits and a few new 

challenges.  Containerized application workloads bring new latency, predictability, and 
scalability issues that must be addressed to realize the full benefit of cloud-native 
applications running in a Kubernetes environment. 

 Organizations can improve containerized workload performance by adopting 
Application Device Queues (ADQ), a technology designed to reduce latency, improve 
predictability and throughput when used in concert with Intel® Ethernet 800 Series 
Network Adapters.  

 For this solution brief, we created a container workload scenario, measured latency, 
predictability (tail latency), and throughput. To examine how containerized application 
workloads would benefit from ADQ, we ran tests with and without ADQ. 

 Test results confirm that ADQ accelerates performance on containerized workloads by 
reducing latency, improving response time predictability and throughput. 

This document is part of the Network Transformation Experience Kit. 

Latency, Predictability, and Challenges at Scale 
In a single data center server, serving multiple network applications, the queues responsible 
for network traffic may be shared between multiple applications and network resource 
contention may occur. The case is the same for cloud-native applications delivered through 
containers. As application utilization in Kubernetes orchestrated clusters increases and 
becomes more complex, latency response time delays can impact an organization’s ability 
to consistently meet service-level agreements (SLAs). 

Context switching and stack interrupts are other examples of Linux networking 
inefficiencies that can have a negative effect on performance.  

The behavior of the latency is an important characteristic to examine. Containerized 
applications tend to have latency, which is variable and unpredictable. Variable and 
unpredictable container response times can be felt by end customers and may impact an 
organization’s ability to quality of service (QoS) commitments.  

Containers rely heavily on the network in order to communicate. As containerized 
applications scale from hundreds running on a single cluster to thousands running on 
distributed clusters, they place higher demands on the network. As network traffic 
increases, jitter can occur, resulting in unpredictable containerized application response 
times.  
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How ADQ Works to Improve the Performance of Containerized Workloads 
Ethernet is like a freeway system for data traveling between different places in the data center and the time taken to complete 
each packet’s journey depends on the traffic conditions. Comparable to a freeway during rush hour when there are many cars 
with different origins and destinations all sharing the same lanes, there is increased unpredictability. The situation is the same 
for web servers and data caching servers that operate with a big data backend. 

By dedicating queues for critical containerized workloads, ADQ accelerates performance by reducing latency, improving 
response time predictability and throughput. 

 

Figure 1. ADQ acts like an express lane for your containerized application workloads 

At the core of ADQ is an application-specific queuing and steering technology that dedicates and isolates application-specific 
hardware NIC queues. These queues are then connected optimally to application-specific threads of execution. By preventing 
other traffic from contesting for resources with a chosen application’s traffic, performance becomes more predictable and 
less prone to jitter. Additionally, application-specific outgoing network bandwidth can be rate-limited, which can be used to 
divide or prioritize network bandwidth for specific applications. Unlike other receive queuing and steering technologies, 
pinning CPU cores is not required with ADQ. 

ADQ can work transparently to the application. It does so through the use of application independent pollers. Advanced 
steering modes provide flexibility, depending on the deployment. For more details on the poller and steering mode 
configurations used please reference the E810 ADQ Configuration Guide (Table 1 Reference 1). This enables ADQ 
acceleration to be applied to a larger set of containerized applications. 

ADQ Requirements for Kubernetes environments 
• Container Networking Interface with VETH functionality (e.g., Cilium) 
• Linux based OS only 
• 5.12+ kernel version recommended for best supportability 

ADQ in a Kubernetes Environment 
Container orchestration is all about managing the lifecycles of containers to control and automate tasks like hardware 
abstraction, container provisioning and deployment, resource allocation and scaling, availability management, load balancing 
and external exposure of services running in a container with the outside world. 

Kubernetes was built as a framework to handle large workloads with many nodes in an efficient manner. While this is true, as 
the cluster size increases, so too does the complexity of the networking. The increased density of applications across the 
cluster as scaling occurs leads to decreased visibility and the need for increased control on the networking protocols to 
maintain the QoS. Multi-tenancy issues can also occur when multiple workloads share resources. Communication and 
resources must be carefully monitored and managed to ensure that optimal service is provided to the users, further 
highlighting the need for advanced steering in a Kubernetes environment. On this basis, it can be concluded that Kubernetes 
will benefit from ADQ features. The figure below illustrates how ADQ works in a Kubernetes environment. 

 

With ADQ  
Application traffic filtered into 
a dedicated set of queues 

Without ADQ 
Application traffic intermixed 
with other traffic types 

https://cdrdv2.intel.com/v1/dl/getContent/609008
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Figure 2. Application Device Queues in a Kubernetes Environment 

The ADQ solution for containers running in a Kubernetes environment consists of three main elements: device plugin, 
container network interface, and Netprio (net_prio.ifpriomap functionality). Netprio is not essential but can be used as an 
optional component dependent on the CNI capabilities. 

ADQ Device Plugin is responsible for resource management. It advertises the resources available on the system to the 
Kubernetes API server and makes the device available to the container. As shown in Figure 2, the ADQ Device Plugin 
advertises queue sets formed with hardware queue pairs, available on the Intel Ethernet 800 Series Network Adapter. A 
queue pair consists of a separate transmit (TX) and receive (RX) queue on the network adapter. 

ADQ Container Network Interface (CNI) is responsible for creating the network namespace for the pod. It is invoked on the 
creation and deletion of a pod and handles the connectivity to the pod and configures the network interface to the pod. Linux 
Traffic Control (TC) infrastructure enables the creation of rules that we can put in place to control traffic flowing in an out of 
the Linux kernel. ADQ utilizes these TC rules to map hardware queues to software. It also implements filters that allow the 
packets for different applications reach their intended queue set. In our case, the ADQ CNI configures the container interface 
eth0 to be connected to the relevant queue set and sets the associated filters for that queue set. This allows the queue set to 
be connected directly to the workload pod. 

Egress queue set steering is accomplished by setting network priority and/or queue mapping for outgoing traffic. To set the 
network priority for outgoing traffic, we must know the container ID. When a new pod is being created, a unique cgroup 
subdirectory is created. The ADQ Netprio application has a watcher on this directory to inspect any new subdirectories 
created and see if any are requesting an ADQ resource. If they are, the ADQ Netprio can then set a new pod watcher that will 
wait until it sees a ‘Ready’ status on the newly created container. When the container is up and running the ADQ Netprio will 
get the container ID and set the priority of egress traffic on a given interface. If Netprio is not used, the CNI will utilize rtnetlink 
API to set the egress queue set/queue steering configuration. 
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Test Scenario 
Our goal was to measure the performance impact of applying ADQ on containerized application workloads.  

An example container workload scenario was created to measure the latency, predictability (tail latency), and throughput of 
container workloads. To examine how containerized application workloads would benefit from ADQ, testing was performed 
without ADQ (non-ADQ) and with ADQ. 

 

 

Figure 3. Infrastructure used for comparative ADQ and non ADQ traffic observation 

The intention of the example was to illustrate ADQ and non-ADQ traffic co-existing on a network link in a Kubernetes cluster 
(non-ADQ meaning without any dedicated hardware queues assigned or established TCs being used). This was an example of 
ADQ behavior on a link and was not intended as an exhaustive performance evaluation. 

A set of Memcached servers and clients were deployed for measurement. The testing environment consisted of two nodes 
where Intel Ethernet Network Adapters were used for back-to-back connectivity. Background traffic was generated using the 
opensource Ethr tool to simulate a live network scenario (verified to 100 Gbps link capacity). Subsequently non-ADQ traffic 
packets for that application were generated and latency and max throughput was measured. This was then repeated with 
traffic control configured, to give a ratio of non-ADQ based traffic and ADQ based traffic queue pools. The latency and max 
throughput were measured across three runs. Max throughput was determined when the actual number of requests per 
second handled by the Memcached server fell below a requests per second threshold of 5%.   

These scenarios were run on two 3rd Gen Intel® Xeon® Scalable processor-based platforms connected back-to-back with a 
100Gb cable. The system under test was the worker node, which was 1 node, 2x Intel® Xeon® Platinum 8358 CPU @ 2.60GHz 
with configuration found in Appendix 1. Refer to Appendix 1 for additional set-up information. 

Test Results 
To measure the network connectivity performance, we focused on throughput and latency using the P999 and P9999 
standards to examine the tail latency. Throughput refers to how much data can be moved from one location to another in set 
amount of time, measured by requests per second (RPS). Latency is the delay in communication response time, measured in 
microseconds (µsec). The P999 standard is the latency that 99.90 percent of the requests were completed. The P9999 
standard is the latency that 99.99 percent of the requests were completed, and it is the best measurement of how well an 
organization is doing to meet the service level agreement (SLA) and quality of service (QoS) commitments. 

Testing was performed with and without ADQ optimized (labelled as “non- ADQ”). The SLA was placed at 1000 
microseconds for this example scenario.  Results are shown in the next two charts. 

Throughput and P999 Latency  

The combination chart found in Figure 4 shows throughput and P999 latency. Throughput (bars) illustrate requested versus 
achieved requests per second (RPS). The ADQ optimized use case (blue bar) scales, achieving ~100K RPS, three times 
greater than non-ADQ. The non-ADQ use case (gold bars) plateaus at ~35K RPS (grey bars indicate less than desired RPS). 

The P999 latency measurements show both non-ADQ (gold line) and ADQ optimized (navy blue line) use cases meet the 
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SLA (red line) and show only minor variation as the requests per second increase.   

The test findings show that an organization could use fewer resources by using ADQ to save on infrastructure cost for the 
same amount of throughput RPS compared to non-ADQ. The non-ADQ use cases need to use more resources as the 
application scales (>35K - 100K RPS). 

Also given the predictability of the latencies, software developers could get the added benefit of fast profiling 
characterization of the application stack.  

 

Figure 4. Throughput and P999 Tail Latency. Throughput (bars) illustrate requested vs. achieved requests per second (RPS).   
Latency (lines) illustrate the SLA compared to non-ADQ and ADQ. [RPC-PERF Memcached with 4 Clients 2 Pools, 3-run 
average with 75Gbps of background traffic]. 

P9999 Latency  

The combination chart found in Figure 5 shows throughput and P9999 tail latency. Throughput (bars) illustrate requested 
versus achieved requests per second (RPS). Similar to the throughput results shown in Figure 4, the non-ADQ use case (gold 
bar) plateaus at ~35K RPS (grey bar). But the ADQ optimized use case (blue bar) scales, achieving ~100K RPS, three times 
greater than non-ADQ. 

The P9999 latency measurements show non-ADQ use case (gold line) variation as the requests per sec increase and does not 
consistently meet the SLA.  Conversely, the ADQ optimized use case (navy blue line) consistently meets the SLA even as the 
requests per second increase. 

Based on these test findings, by using ADQ an organization could use fewer resources to save on infrastructure costs for the 
same amount of throughput RPS compared to non-ADQ.  Non-ADQ cost could also increase due to the unpredictability of the 
tail latencies as they breach the SLA. The organization would need to add more resources at the early stage (~3K RPS). 

Also, software developers could get the added benefit of fast profiling characterization of the application stack due to the 
predictability of the latencies. 
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    Figure 5. Throughput and P999 Tail Latency. Throughput (bars) illustrate requested vs. achieved requests per second (RPS).  
Latency (lines) illustrate the SLA compared to non-ADQ and ADQ. [RPC-PERF Memcached with 4 Clients 2 Pools, 3-run 
average with 75Gbps of background traffic]. 

Summary 
• Managing latency, predictability and throughput on containerized workloads can be challenging. 

• In this example scenario, testing confirms that ADQ improves containerized workload performance by reducing 
latency, improving predictability and throughput. By using ADQ, an organization could achieve P9999 standard 
and scale to achieve a 3x response per second (RPS): 

 Throughput: non-ADQ plateaus at ~35K RPS. ADQ scales, achieving ~100K RPS  

 P999 latency: both non-ADQ and ADQ meet the SLA and show only minor variation as the requests per 
second increase  

 P9999 latency: non-ADQ shows variation and does not consistently meet the SLA. Conversely, ADQ 
consistently meets the SLA even as the requests per second increase. 

• As application utilization in Kubernetes orchestrated clusters increases and becomes more complex, latency 
(response time delays) can impact an organization’s ability to consistently meet SLAs. By reducing latency and 
improving throughput, ADQ can help an organization to meet an SLA more easily. 

• Containerized applications tend to have latency, which is variable and unpredictable. Variable and unpredictable 
container response times can be felt by end customers. ADQ is a technique that can be applied to improve 
predictability by reducing tail latency.  With a higher level of predictability, an organization can meet QoS goals. 

• Organizations can take advantage of ADQ benefits to help to improve their bottom line. Software developers 
can get the added benefit being able to optimize the application stack at a fast rate (better deterministic 
predictability on tail latencies). 
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Learn more about ADQ 
 
 

Download the ADQ Configuration Guide. 

Visit the ADQ Resource Center at intel.com/ADQ. 

Contact your Intel sales representative or distributor for more details about Intel® Ethernet 800 
Series Network Adapters with ADQ. 
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Appendix 1: Test Configuration 
 

   ITEM DESCRIPTION 

   Product  3rd Generation Intel® Xeon® Platinum 8358 
Processor 

  Platform  Intel M50CYP2SBSTD Server 

  Sockets 2 

   Speed (MHz) 2600 

   No of Cores 128 

   Stepping  6 

System DDR 
Memory 

 Vendor Samsung 

   Type DDR4 

   Part Number  M393A2K43DB3-CWE 

   Total Memory  256 GB 

   Slots   16 

  Capacity  16 GB 

   Run Speed 3200  

Storage – Boot   Type  Intel SSD 

  Size  480 GB 

BIOS  Vendor Intel Corporation  

   Date 04/26/2021 

  Version SE5C620.86B.01.01.0003.2104260124 

   Microcode 0xd000363 

   Turbo  Off  

   HT On 

Operating System  OS Version  CentOS Stream 8 

   Kernel Version  5.13.13 

Test Software  Memcached Docker image 1.6.10 

   rpc-perf image 3.2.0 

  Kubernetes  1.24.2 

  Container Runtime: containerd 1.6.8 

  Cilium  1.12.0 

Ethernet Network   2 x Intel Ethernet Network 
Adapters 

E810-CQDA2 8.0 GT/s PCIe x16 link 

  Intel Ethernet Controller firmware  4.00 0x800117e9 1.3236.0 

  Cable connectivity  100 Gb 
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  Ice driver  1.9.11 COMPILED with ADQ flag. ADQ statistics 
enabled. 

  ADQ Script Parameters EgressMode: skbedit 
FilterPrio 1 
Default Queue Set 16 queues 
[globals] 
arpfilter = false 
busypoll = 0 
busyread = 0 
cpus = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 
dev = ens801f0 
numa = all 
queues = 16 
rxadapt = false 
rxusecs = 50 
txadapt = false 
txusecs = 50  
 
ADQ Queue Set 4 Queues 
[adqTC3] 
cpus = 19 
mode = exclusive 
numa = all 
poller_timeout = 10000 
pollers = 1 
protocol = tcp 
queues = 4 
 
tc qdisc show information for ens801f0 
ens801f0_tc_qdisc_entry.1=qdisc mqprio 8004: 
root tc 6 map 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 
ens801f0_tc_qdisc_entry.2=queues:(0:15) (16:19) 
(20:23) (24:27) (28:31) (32:63) 
ens801f0_tc_qdisc_entry.3=mode:channel 
ens801f0_tc_qdisc_entry.4=shaper:dcb 
 
tuned profile: throughput-performance 
irqbalance disabled 

Test Parameters  rpc-perf and memcached kubectl exec -it memcached-bench-adq -n adqb -- 
/bin/bash -c "rpc-perf --endpoint memcached-
adq.memcached-servers:11211 --interval 30 --
windows 4 --clients 4 --poolsize 2 --request-ratelimit 
${request_rl} --connect-ratelimit 100 --config 
/etc/rpc-perf/config/memcached-benchmark.conf"  
 
kubectl exec -it memcached-bench-noadq -n adqb -- 
/bin/bash -c "rpc-perf --endpoint memcached-
noadq.memcached-servers:11211 --interval 30 --
windows 4 --clients 4 --poolsize 2 --request-ratelimit 
${request_rl} --connect-ratelimit 100 --config 
/etc/rpc-perf/config/memcached-benchmark.conf” 
 
memcached-benchmark.conf: 
---- 
[general] 
protocol = "memcache" 
interval = 30 # seconds 
windows = 4 # run for 4 intervals 
clients = 4 # use 4 client thread 
poolsize = 2 # each client has 2 connection per 
endpoint 
tcp_nodelay = false # do not enable tcp_nodelay 
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request_timeout = 1_000_000 # microseconds 
connect_timeout = 1_000_000 # microseconds 
 
[[keyspace]] 
length = 8 # 8 byte keys 
count = 500_000 # limit to 100K keys 
weight = 1 # this keyspace has a weight of 1 
commands = [ # get:set ratio is 1:1 
    {action = "get", weight = 4}, 
    {action = "set", weight = 1}, 
] 
values = [ # value length will always be 64 bytes 
    {length = 64, weight = 1}, 
] 

 
 

Document Revision History 

Revision Date Description 
001 April 2022 Initial release. 

002 
June 2022 Updated charts and diagrams for clarity. Corrected links in references. Title changed to follow naming 

convention. 

003 
Sept. 2022 Text updated to reflect new ADQ version 2.0 functionality for containerized applications. Test 

configuration, results, conclusion updated to reflect new round of testing done with ADQ version 2.0 using 
ice driver 1.9.11.   
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