
 1

Application Note
Intel Corporation

Intel® Ethernet Controller 700 Series GTPv1 - Dynamic

Device Personalization

Authors

Robin Giller

Andrey Chilikin

Brian Johnson

1 Introduction

To address the ever changing requirements for both Cloud and Network Functions

Virtualization, the Intel® Ethernet Controller 700 Series was designed from the ground up

to provide increased flexibility and agility. One of the design goals was to take parts of

the fixed pipeline used in Intel® Ethernet Controller 500 Series, 82599 and X540, and

move to a programmable pipeline allowing the Intel® Ethernet Controller 700 Series to

be customized to meet a wide variety of customer requirements. This programmability

has enabled over 60 unique configurations all based on the same core silicon.

With so many configurations being delivered to the market, the expanding role of Intel®

Architecture in the Telecommunication market requires even more custom functionality.

A common functionality request is for new packet classification types that are not

currently supported, are customer-specific, or maybe not even fully defined yet. To

address this, a new capability has been enabled on the Intel® Ethernet Controller 700

Series of NICs, called Dynamic Device Personalization (DDP). This capability allows

dynamic reconfiguration of the packet processing pipeline to meet specific use case

needs. Reconfiguration is achieved dynamically via application of firmware patches,

herein labelled as profiles, which are specific to a use case.

The ability to classify new packet types inline, and distribute these packets to specified

queues on the device’s host interface, delivers the following performance and core

utilization optimizations:

 Removes requirement for CPU cores on the host to perform classification and load

balancing of packet types for the specified use case.

 Increases packet throughput, reduces packet latency for the use case.

In the case that multiple network controllers are present on the server, each controller

can have its own pipeline profile, which can be applied without affecting other

controllers and software applications using other controllers.

This application note describes the use of a GPRS tunneling protocol (GTPv1) profile to

enhance performance and optimize core utilization for virtualized enhanced packet core

(vEPC) and multi-access edge computing (MEC) use cases.

Section 2 describes the Dynamic Device Personalization capability, Section 3 describes

the application of the GTPv1 profile to meet vEPC and MEC requirements, and Section 4

describes the enablement of this capability through DPDK software.

This document is part of the Network Transformation Experience Kit, which is available

at: https://networkbuilders.intel.com/

https://networkbuilders.intel.com/

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 2

Table of Contents

1 Introduction ... 1
1.1 Terminology .. 3
1.2 Reference Documents .. 3

2 Dynamic Device Personalization .. 4
2.1 Overview ... 4
2.2 Demystifying dynamic device personalization ... 4

3 Utility / Use Case ... 6
3.1 Application of Technology – vEPC .. 6

3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane .. 7

3.2 Application of Technology – MEC.. 9

4 Enablement .. 10
4.1 DPDK APIs ... 11
4.2 Ethtool commands ... 12
4.3 Using DDP profiles with test-pmd .. 12
4.4 Using GTP Protocol with rte_flow API ... 16

5 Summary ... 17

Figures
Figure 1. Dynamic Device Personalization Firmware Profile Application ... 4
Figure 2. Packet Header Identification Before Application of GTPv1 Profile .. 5
Figure 3. Packet Header Identification After Application of GTPv1 Profile ... 5
Figure 4. Dynamic Reconfiguration of the Intel® Ethernet Controller 700 Series ... 6
Figure 5. Packet Encapsulations in the Wider Network .. 6
Figure 6. Typical vEPC server node packet pipeline .. 7
Figure 7. Worker Core Identification Inside the vEPC .. 8
Figure 8. Data Flow in the vEPC Configuration with RX Core .. 8
Figure 9. Data Flow in the vEPC Configuration with GTPv1 DDP Profile .. 8
Figure 10. Typical MEC Deployment on the S1 interface ... 9
Figure 11. Typical MEC Deployment on the SGi interface .. 10
Figure 12. DDP Offload on the OpenNESS for MEC S1 Interface .. 10
Figure 13. GTPv1 GTP-U Packets Configuration .. 12
Figure 14. testpmd Startup Configuration ... 13
Figure 15. Distribution of the GTP-U Packets without the GTPv1 Profile... 13
Figure 16. Applying the GTPv1 Profile to Device ... 13
Figure 17. Checking whether the Device has any Profiles Loaded .. 13
Figure 18. Getting Information about the DDP Profile ... 15
Figure 19. New PCTYPEs Defined by the GTPv1 Profile ... 15
Figure 20. Mapping new PCTYPEs to DPDK flow types ... 15
Figure 21. Distribution of the GTP-U Packets with GTPv1 Profiles Applied to the Device ... 16
Figure 22. Removing the GTPv1 Profile from the Device.. 16
Figure 23. rte_flow Pattern and Actions for Directing the GTP Packets to a VF ... 16
Figure 24. rte_flow Pattern and Actions to Direct the GTP Packets to a Queue ... 16

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3
Table 3. Example of core utilization for vEPC DP instance .. 9

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

API Application program interface

DPDK Data Plane Development Kit

eNB Evolved base station, also called eNodeB

FIN Finish

GTP GPRS Tunneling Protocol

IPSec Internet Protocol Security

MAC Media Access Control

MEC Multi-access Edge Computing

NFV Network Functions Virtualization

NIC Network Interface Controller

NVM Non Volatile Memory

PDN Packet Data Network

PF Physical Function

SCTP Stream Control Transmission Protocol

SYN Synchronized

TCP Transmission Control Protocol

UDP User Datagram Protocol

UE User Equipment

vBNG Virtualized Broadband Network Gateway

vEPC Virtualized Enhanced Packet Core

VF Virtual Function

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

1.2 Reference Documents

Table 2. Reference Documents

REFERENCE SOURCE

Intel® Ethernet Controller X710/XXV710/XL710 datasheet
https://www.intel.com/content/dam/www/public/us/en/documents/datashe

ets/xl710-10-40-controller-datasheet.pdf

Intel® Ethernet Controller 700 series dynamic device

personalization presentation at DPDK summit, video
https://www.youtube.com/watch?v=X8aMDdAnnBI

Intel® Ethernet Controller 700 series dynamic device

personalization presentation at DPDK summit, slides

https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-

support-for-new-protocol-processing-with-dpdk-using-dynamic-device-

personalization

Intel® Ethernet Controller 700 series firmware version 6.01 or

newer

https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-

XL710-Series

Dynamic Device Personalization for Intel® Ethernet 700 Series

user guide

https://software.intel.com/en-us/articles/dynamic-device-personalization-

for-intel-ethernet-700-series

Intel® Ethernet Controller X710/XXV710/XL710 Adapters

Dynamic Device Personalization GTPv1 Package
https://downloadcenter.intel.com/download/27587

Intel® Ethernet Controller X710/XXV710/XL710 Adapters

Dynamic Device Personalization PPPoE Package
https://downloadcenter.intel.com/download/28040

Intel® Network Adapter Driver for PCIe* 40 Gigabit Ethernet

Network Connections Under Linux*

https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-

Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.youtube.com/watch?v=X8aMDdAnnBI
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://downloadcenter.intel.com/download/27587
https://downloadcenter.intel.com/download/28040
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 4

2 Dynamic Device Personalization

2.1 Overview

Most existing network controllers do not provide flexible reconfiguration of packet processing engines. In the best case, processing

of new packet types or network protocols can be added to the controller by upgrading firmware. Normally, the firmware upgrade

process includes total reset of the network controller and could include cold restart of the server in which the controller is installed.

In this case, all Virtual Machines (VMs) running on the server must be detached from the Network Interface Controller (NIC) and

migrated to another server during firmware update.

The ability to reconfigure network controllers for different Network Functions on-demand, without the need for migrating all VMs

from the server, avoids unnecessary loss of compute for VMs during server cold restart. It also improves packet processing

performance for applications/VMs by adding the capability to process new protocols in the network controller at runtime.

This kind of on-demand reconfiguration is offered by Intel® Ethernet Controller 700 Series’ Dynamic Device Personalization

capability. This section describes the instantiation of this device reconfiguration capability. At time of publication, several profiles

are available from Intel download center:

 GTPv1 profile for vEPC: https://downloadcenter.intel.com/download/27587

 PPPoE profile for vBNG: https://downloadcenter.intel.com/download/28040

Additional profiles that target cable, 5G and switching/routing use cases are in development. For more information on accessing the

library of profiles or to request a new profile, contact your local Intel representative.

2.2 Demystifying dynamic device personalization

Dynamic Device Personalization describes the capability in the Intel® Ethernet Controller 700 Series devices to load an additional

firmware profile on top of the device’s default firmware image. This enables parsing and classification of additional specified packet

types so these packet types can be distributed to specific queues on the NIC’s host interface using standard filters. Software applies

these custom profiles in a non-permanent, transaction-like mode, so that the original network controller’s configuration is restored

after NIC reset or by rolling back profile changes by software. Using APIs provided by drivers, personality profiles can be applied by

the Linux* kernel and Data Plane Development Kit (DPDK). Integration with higher level management/orchestration tools is in

progress.

Dynamic Device Personalization can be used to optimize packet processing performance for different network functions, native or

running in a virtual environment. By applying a Dynamic Device Personalization profile to the network controller, the following use

cases could be addressed:

 New Packet Classification types (flow types) for offloading packet classification to network controller:

 New IP Protocols in addition to TCP/UDP/SCTP, for example, IP ESP, IP AH

 New UDP Protocols, for example, MPLSoUDP or QUIC

 New TCP subtypes, like TCP SYN-no-ACK

 New tunnelled protocols like PPPoE, GTP-C/GTP-U

 New Packet Types for packets identification, reported on packet's RX descriptor:

 IP6, GTP-U, IP4, UDP, PAY4

 IP4, GTP-U, IP6, UDP, PAY4

 IP4, GTP-U, PAY4

 IP6, GTP-C, PAY4

 MPLS, MPLS, IP6, TCP, PAY4

The profile application process is illustrated in Figure 1 below. In this case, the Intel® Ethernet Controller 700 Series device begins

with the default firmware configuration. In this configuration, the NIC supports classification of some default packet types (UDP,

TCP, VxLAN, GRE, etc), allowing these default packets to be identified and distributed to queues in the NIC. Classification of other

packet types, such as those listed above, is not supported by default. To enable classification of GTP packets, the firmware profile

enabling GTP packet classification is selected and loaded to the device via a DPDK API or ethtool. This profile is loaded in runtime.

With this additional firmware profile loaded, the NIC now supports classification of GTP packets inline.

Figure 1. Dynamic Device Personalization Firmware Profile Application

https://downloadcenter.intel.com/download/27587
https://downloadcenter.intel.com/download/28040

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 5

The NIC’s visibility of the packet header fields before and after the application of the GTPv1 profile is indicated in Figure 2 and

Figure 3 below. With the default firmware image, the GTP-encapsulated frame within the UDP outer header cannot be identified by

the device, and the GTP-encapsulated frame is effectively the payload in the outer UDP packet. GTP is an unknown flow type here

and so no receive side scaling (RSS) or flow director (FDIR) capabilities are possible on the encapsulated frame. In this case,

classification and distribution of GTP packets must be performed by one or more cores on the CPU.

Figure 2. Packet Header Identification Before Application of GTPv1 Profile

After the GTPv1 profile is loaded to the Intel® Ethernet Controller, the GTP flow type is defined and encapsulated frame fields

(including GTP TEID) can be used for RSS, Flow Director, or Cloud Filters. The NIC has full visibility of all header fields and can

perform load distribution to queues based on this improved classification capability.

Figure 3. Packet Header Identification After Application of GTPv1 Profile

With this firmware profile applied, the Intel® Ethernet Controller 700 Series is performing classification of GTP packets and carrying

out load distribution inline, removing the need for a load distribution core to perform the same function.

The profile is applied to the Intel® Ethernet Controller 700 Series device in a transaction-like mode, as illustrated in Figure 4,

showing application and removal of a profile.

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 6

Figure 4. Dynamic Reconfiguration of the Intel® Ethernet Controller 700 Series

The NIC does not need to be reset to restore the original configuration and the profile can be applied/removed while traffic is

present.

3 Utility / Use Case

The Dynamic Device Personalization capability can be used to optimize packet processing performance for different network

functions, native or running in a virtual environment. Figure 5 below indicates typical packet types used at various locations in the

network, separated by network segment. GTP encapsulation is primarily used in the wireless segment, with vEPC and MEC

representing the dominant use cases. This section describes these use cases and the application of the Dynamic

Figure 5. Packet Encapsulations in the Wider Network

3.1 Application of Technology – vEPC

Figure 6 illustrates a typical packet pipeline for the server node in a virtualized EPC. Packets are classified and distributed across

multiple parallel queues for further processing (QoS, GTP processing, egress scheduling) before transmission. In a virtualized

implementation, typically the load distribution and classification functions are performed by CPU cores. This is the case when an

Intel® Ethernet Controller 700 Series with default firmware configuration is used as the server’s NIC.

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 7

Classify

Classify

Ingress QoS

Ingress
WoS

GTP-U
Proc.

SGW/PGW
(GTP-U
proc.)

Accounting

Accounting

APN-AMBR,
MBR (QoS)

APN-AMBR,
MBR (QoS)

Sch

Sch

Rx Core +
Load

Distribution
Tx NIC

Mark

Mark

GTP-U

GTP-U

Accounting

Accounting

APN-AMBR,
MBR (QoS)

APN-AMBR,
MBR (QoS)

Classify

Classify

Tx NiC
Rx Core +

Load
Distribution

S1-U
(from
eNB)

S1-U
(to eNB)

SGi
(www)

SGi
(www)

– Uplink

– Downlink

GTP Profile Intercept

GTP Profile Intercept

Figure 6. Typical vEPC server node packet pipeline

3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane

vEPC implements the concept of control and user plane separation. The vEPC User Plane (also called the Data Plane) consists of

multiple instances with each instance running on several CPU cores inside the VM. CPU cores in vEPC may act in one of two main

roles: receive (RX) core or worker core.

 Receive cores are responsible for fetching packets from the NIC RX rings, packet classification and packet distribution to a

particular worker core, including workload balancing between worker cores.

 Worker cores implement LTE EPC user plane stack functionality and handle both uplink (UL, from UE/eNB to the PDN) and

downlink (DL, from the PDN to eNB/UE) traffic. Worker cores process packets in a run-to-completion mode.

The vEPC User Plane classifies each received packet to identify the worker core for processing. In order to get better cache

utilization and improve performance, vEPC binds all data traffic to and from the same UE IP to one of the worker cores, so control

structures related to a particular UE IP are updated from a single worker core.

To pin UE IP to a worker core, vEPC uses the UE IP address as a key for the core identification. UL traffic is received on S1-U

interface as GTP-U encapsulated IP packets, so the UE IP address is extracted as a source address from the encapsulated IP packet.

DL traffic is received on the SGi interface as regular IP packets, so the UE IP address is extracted as a destination IP address of the

packet. Figure 7 shows the flow diagram of a worker core identification process (a case where both UL and DL packets are received

from the same NIC RX port).

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 8

Parse packet IP/GTP/InnerIP headers

GTP-U PDU

key = hash (InnerIP.SRC_ADDR)

Yes

key = hash (IP.DST_ADDR)

No

worker_id = F(key)
enque_to_worker(worker_id)

Figure 7. Worker Core Identification Inside the vEPC

3.1.1.1 vEPC default configuration

In the default configuration of vEPC, RX cores:

 Fetch packets from S1U and SGi interfaces.

 Parse packets’ headers, classify packets, and calculate worker_id assignment.

 Dispatch packets to the identified worker cores over dedicated software queues.

Worker cores fetch packets from the software queues and process them up to the moment the packet goes into the TX queue of

the NIC.

NIC
port

RX Core

Worker
Core 1

Worker
Core 2

Worker
Core N

Figure 8. Data Flow in the vEPC Configuration with RX Core

3.1.1.2 vEPC configuration with GTPv1 DDP profile enabled

With the Dynamic Device Personalization GTPv1 profile applied to the Intel® Ethernet Controller 700 Series in the server, the

classification and load distribution functions can be performed inline in the NIC, thus preserving CPU core processing resources for

higher value tasks.

Using DDP GTPv1 and modifying RSS inset configuration for selected packet classification types (PCTYPEs), vEPC implements a

work mode where the functionality initially executed by the RX core is moved to the NIC. Here, worker cores fetch packets directly

from the NIC RX rings.

NIC
port

with loaded
GTPv1 DDP

Worker
Core 1

Worker
Core 2

Worker
Core N

Figure 9. Data Flow in the vEPC Configuration with GTPv1 DDP Profile

This implementation removes the processing overhead for one core (hyper-thread) for each instance of vEPC running. Taking into

consideration that multiple instances of vEPC User Plane are often running on one server, the DDP GTPv1 profile can create

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 9

significant efficiency for multiple cores. Table 3 shows profiling results for one instance of vEPC User Plane running two

configurations described above.

Table 3. Example of core utilization for vEPC DP instance

 Configuration

 Dedicated RX core GTPv1 DDP profile

Packet rate 3.9 MPPS

Bitrate 20.5 Gbps

RX cores (hyper-threads) 1 0

Worker cores (hyper-threads) 7 7

Total number cores used for packet

processing in vEPC User Plane
8 7

CPU utilization, receive core 40% -

CPU utilization, worker cores 71% 71%

Utilization of the DDP GTPv1 profile also reduces vEPC User Plane stack packet processing time (latency) by removing the extra

stage of packet processing in software (packet classification on RX core) and eliminating time packets spend in the software queue

between RX core and Worker core.

3.2 Application of Technology – MEC

Multi-access Edge Computing (MEC) brings IT and cloud-computing capabilities into the Access Network in close proximity to

mobile subscribers. MEC enables deployment of intelligent devices at the edge of the network.

MEC incorporates the benefits of virtualization and cloud-computing in order to place high-powered computing capabilities as

close as possible to subscribers. Edge computing offers a service environment with ultra-low latency and high-bandwidth. This

physical proximity could, as an example, reduce video stalling by storing video content closer to the edge (35% backhaul capacity

reduction), or reduce webpage download time by 20 percent.) (Source: ETSI Industry Specification Group for Mobile Edge

Computing presentation at SDN World Congress.)

Application developers and content providers can use direct access to real-time network information (such as subscriber location,

cell load, etc.) to offer context-related services that are capable of differentiating the mobile broadband experience. MEC allows

content, services and applications to be accelerated, increasing responsiveness from the edge. The mobile subscriber’s experience

can be enriched through efficient network and service operations, based on insight into the radio and network conditions.

MEC can be deployed on the S1 interface or the SGI interface. With S1 deployment, the MEC platform handles S1-U and S1-AP

traffic, which is GTP and SCTP traffic, as shown in Figure 10. With SGi deployment, the MEC platform handles IP traffic, as shown in

Figure 11.

Figure 10. Typical MEC Deployment on the S1 interface

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 10

Figure 11. Typical MEC Deployment on the SGi interface

The DDP GTPv1 profile is applicable for S1 deployment. With the GTP DDP profile configured on the MEC platform, the entire MEC

routing process can effectively be bypassed, as demonstrated in Figure 12.

The diagram shows the reference implementation on Open Network Edge Services Software (OpenNESS). For details, refer to:

https://www.open-ness.org/

Figure 12. DDP Offload on the OpenNESS for MEC S1 Interface

This approach of performing packet classification and load distribution in the NIC can lead to reduction in latency. It should be

noted that the DDP profile is also applicable for SGi deployment, which can be used to implement advanced filtering on the IP

address and ports.

4 Enablement

This section details how to install, configure, and use the Dynamic Device Personalization GTPv1 profile with Linux and DPDK.

Dynamic Device Personalization requires the Intel® Ethernet Controller XL710 based Ethernet NIC with the latest firmware 6.01,

available here:

https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series

Basic support for applying DDP profiles to Intel Ethernet 700 Series network adapters was added to DPDK 17.05. Later, DPDK 17.08

and 17.11 introduced more advanced DDP APIs, including the ability to report a profile's information without loading a profile to an

Intel Ethernet 700 Series network adapter first. These APIs can be used to try out new DDP profiles with DPDK without

implementing full support for the protocols in the DPDK rte_flow API.

The Intel® Network Adapter Driver for PCIe* 40 Gigabit Ethernet Network Connections under Linux supports loading and rolling

back DDP profiles using ethtool, in version 2.7.26 and later.

https://www.open-ness.org/
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 11

The GTPv1 profile for vEPC is available on Intel® download center: https://downloadcenter.intel.com/download/27587

The GTPv1 protocol is supported in DPDK rte_flow(). Linux and DPDK mechanisms to apply a profile are described in the

following sections.

4.1 DPDK APIs

The following three i40e private calls are part of DPDK 17.08.

rte_pmd_i40e_process_ddp_package(): This function is used to download a DDP profile and register it or rollback a DDP profile

and un-register it.

int rte_pmd_i40e_process_ddp_package(

 uint8_t port, /* DPDK port index to download DDP package to */

 uint8_t *buff, /* buffer with the package in the memory */

 uint32_t size, /* size of the buffer */

 rte_pmd_i40e_package_op op /* operation: add, remove, write profile */

);

rte_pmd_i40e_get_ddp_info(): This function is used to request information about a profile without downloading it to a network

adapter.

int rte_pmd_i40e_get_ddp_info():
 uint8_t *pkg_buff, /* buffer with the package in the memory */

 uint32_t pkg_size, /* size of the package buffer */

 uint8_t *info_buff, /* buffer to store information to */

 uint32_t info_size, /* size of the information buffer */

 enum rte_pmd_i40e_package_info type /* type of required information */

);

rte_pmd_i40e_get_ddp_list(): This function is used to get the list of registered profiles.

int rte_pmd_i40e_get_ddp_list (

 uint8_t port, /* DPDK port index to get list from */

 uint8_t *buff, /* buffer to store list of registered profiles */

 uint32_t size /* size of the buffer */

);

DPDK 17.11 adds some extra DDP-related functionality with the following function.

rte_pmd_i40e_get_ddp_info(): Updated to retrieve more information about the profile.

New APIs were added to handle flow type, created by DDP profiles:

rte_pmd_i40e_flow_type_mapping_update(): Used to map hardware-specific packet classification type to DPDK flow types.

int rte_pmd_i40e_flow_type_mapping_update(

 uint8_t port, /* DPDK port index to update map on */

 /* array of the mapping items */

 struct rte_pmd_i40e_flow_type_mapping *mapping_items,

 uint16_t count, /* number of PCTYPEs to map */

 uint8_t exclusive /* 0 to overwrite only referred PCTYPEs */

);

rte_pmd_i40e_flow_type_mapping_get(): Used to retrieve current mapping of hardware-specific packet classification types to

DPDK flow types.

int rte_pmd_i40e_flow_type_mapping_get(

 uint8_t port, /* DPDK port index to get mapping from */

 /* pointer to the array of RTE_PMD_I40E_FLOW_TYPE_MAX mapping items*/

 struct rte_pmd_i40e_flow_type_mapping *mapping_items

);

rte_pmd_i40e_flow_type_mapping_reset(): Resets flow type mapping table.

int rte_pmd_i40e_flow_type_mapping_reset(

uint8_t port /* DPDK port index to reset mapping on */

);

https://downloadcenter.intel.com/download/27587

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 12

4.2 Ethtool commands

Prerequisites:

 Red Hat* Enterprise Linux* (RHEL*) 7.5 or later

 Linux* Kernel 4.0.1 or newer

To apply a profile, first copy it to the intel/i40e/ddp directory relative to your firmware root (usually

/lib/firmware).

For example:

/lib/firmware/intel/i40e/ddp

Then use the ethtool -f|--flash flag with region 100 in this format:

ethtool -f <interface name> <profile name> 100

For example: ethtool -f eth0 gtp.pkgo 100

You can roll back to a previously loaded profile using - instead of the profile name in this format: ethtool -f <interface name>
- 100

For example:

ethtool -f eth0 - 100

For every rollback request, one profile will be removed, from last to first (LIFO) order.

For more details, see the driver readme.txt file.

Note: Using ethtool, DDP profiles can be loaded only on the interface corresponding to the first physical function of the device

(PF0), but the configuration is applied to all ports of the adapter.

4.3 Using DDP profiles with test-pmd

To demonstrate DDP functionality of Intel Ethernet 700 Series network adapters and explain DDP APIs, the GTPv1 profile is used

along with the testpmd application from DPDK. Using this example and API explanations, it is possible to integrate DDP with any

DPDK-based application.

Although DPDK 17.11 adds GTPv1 with IPv4 payload support at the rte_flow API level, lower-level APIs are used here to

demonstrate how to work with the Intel® Ethernet 700 Series network adapter directly for any new protocols added by DDP and not

yet enabled in rte_flow.

For demonstration, GTPv1-U packets with the following configuration are used.
Source IP 1.1.1.1

Destination IP 2.2.2.2

IP Protocol 17 (UDP)

GTP Source Port 45050

GTP Destination Port 2152

GTP Message type 0xFF

GTP Tunnel id 0x11111111-0xFFFFFFFF random

GTP Sequence number 0x000001

-- Inner IPv4 Configuration --------------

Source IP 3.3.3.1-255 random

Destination IP 4.4.4.1-255 random

IP Protocol 17 (UDP)

UDP Source Port 53244

UDP Destination Port 57069

Figure 13. GTPv1 GTP-U Packets Configuration

Clearly, the outer IPv4 header does not have any entropy for RSS because IP addresses and UDP ports defined statically. However,

the GTPv1 header has random tunnel endpoint identifier (TEID) values in the range of 0x11111111 to 0xFFFFFFFF, and the inner

IPv4 packet has IP addresses randomly host-generated in the range of 1 to 255.

The pcap file with synthetic GTPv1-U traffic using the configuration above can be downloaded here: https://software.intel.com/en-

us/articles/dynamic-device-personalization-for-intel-ethernet-700-series

First, testpmd is started in receive only mode with four queues, and verbose mode and RSS are enabled.

https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 13

testpmd -w 02:00.0 -- -i --rxq=4 --txq=4 --forward-mode=rxonly
testpmd> port config all rss all
testpmd> set verbose 1
testpmd> start

Figure 14. testpmd Startup Configuration

Using any GTP-U capable traffic generator, four GTP-U packets are sent. A provided pcap file with synthetic GTPv1-U traffic can be

used as well.

All packets have the same outer IP header, therefore they are received on queue 1 and reported as IPv4 UDP packets.
testpmd> port 0/queue 1: received 4 packets
src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0xd9a562 -
RSS queue=0x1 - hw ptype: L2_ETHER L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP -
l2_len=14 - l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0xd9a562 -
RSS queue=0x1 - hw ptype: L2_ETHER L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP -
l2_len=14 - l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0xd9a562 -
RSS queue=0x1 - hw ptype: L2_ETHER L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP -
l2_len=14 - l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0xd9a562 -
RSS queue=0x1 - hw ptype: L2_ETHER L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP -
l2_len=14 - l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

Figure 15. Distribution of the GTP-U Packets without the GTPv1 Profile

Here, hash values for all four packets are the same: 0xD9A562. This happens because IP source/destination addresses and UDP

source/destination ports in the outer (tunnel end point) IP header are statically defined and do not change from packet to packet.

Now the DDP GTPv1 profile is applied to the network adapter port. For the purpose of the demonstration, it is assumed that the

profile package file was downloaded and extracted to the /lib/firmware/intel/i40e/ddp folder. The profile will load from the

gtp.pkgo file and the original configuration will be stored to the gtp.bak file:
testpmd> stop
testpmd> port stop 0
testpmd> ddp add 0 /lib/firmware/intel/i40e/ddp/gtp.pkgo,/home/pkg/gtp.bak

Figure 16. Applying the GTPv1 Profile to Device

The ddp add 0 /lib/firmware/intel/i40e/ddp/gtp.pkgo,/home/pkg/gtp.bak command first loads the gtp.pkgo file to

the memory buffer, then passes it to rte_pmd_i40e_process_ddp_package() with the RTE_PMD_I40E_PKG_OP_WR_ADD

operation, and then saves the original configuration, returned in the same buffer, to the gtp.bak file.

For a scenario where the supported Linux driver is loaded on the device's physical function 0 (PF0) and testpmd uses any other

physical function of the device, the profile can be loaded with the following ethtool command:

ethtool -f eth0 gtp.pkgo 100

Confirm that the profile was loaded successfully.
testpmd> ddp get list 0
Profile number is: 1

Profile 0:
Track id: 0x80000008
Version: 1.0.2.0
Profile name: GTPv1-C/U IPv4/IPv6 payload

Figure 17. Checking whether the Device has any Profiles Loaded

The ddp get list 0 command calls rte_pmd_i40e_get_ddp_list() and prints the returned information.

Track ID is the unique identification number of the profile that distinguishes it from any other profiles.

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 14

Get information about new packet classification types and packet types created by profile.
testpmd> ddp get info /lib/firmware/intel/i40e/ddp/gtp.pkgo
Global Track id: 0x80000008
Global Version: 1.0.2.0
Global Package name: GTPv1-C/U IPv4/IPv6 payload

i40e Profile Track id: 0x80000008
i40e Profile Version: 1.0.2.0
i40e Profile name: GTPv1-C/U IPv4/IPv6 payload

Package Notes:
This profile enables GTPv1-C/GTPv1-U classification
with IPv4/IPV6 payload
Hash input set for GTPC is TEID
Hash input set for GTPU is TEID and inner IP addresses (no ports)
Flow director input set is TEID

List of supported devices:
 8086:1572 FFFF:FFFF
 8086:1574 FFFF:FFFF
 8086:1580 FFFF:FFFF
 8086:1581 FFFF:FFFF
 8086:1583 FFFF:FFFF
 8086:1584 FFFF:FFFF
 8086:1585 FFFF:FFFF
 8086:1586 FFFF:FFFF
 8086:1587 FFFF:FFFF
 8086:1588 FFFF:FFFF
 8086:1589 FFFF:FFFF
 8086:158A FFFF:FFFF
 8086:158B FFFF:FFFF

List of used protocols:
 12: IPV4
 13: IPV6
 17: TCP
 18: UDP
 19: SCTP
 20: ICMP
 21: GTPU
 22: GTPC
 23: ICMPV6
 34: PAY3
 35: PAY4
 44: IPV4FRAG
 48: IPV6FRAG

List of defined packet classification types:
 22: GTPU IPV4
 23: GTPU IPV6
 24: GTPU
 25: GTPC

List of defined packet types:
 167: IPV4 GTPC PAY4
 168: IPV6 GTPC PAY4
 169: IPV4 GTPU IPV4 PAY3
 170: IPV4 GTPU IPV4FRAG PAY3
 171: IPV4 GTPU IPV4 UDP PAY4
 172: IPV4 GTPU IPV4 TCP PAY4
 173: IPV4 GTPU IPV4 SCTP PAY4
 174: IPV4 GTPU IPV4 ICMP PAY4
 175: IPV6 GTPU IPV4 PAY3
 176: IPV6 GTPU IPV4FRAG PAY3
 177: IPV6 GTPU IPV4 UDP PAY4
 178: IPV6 GTPU IPV4 TCP PAY4
 179: IPV6 GTPU IPV4 SCTP PAY4

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 15

 180: IPV6 GTPU IPV4 ICMP PAY4
 181: IPV4 GTPU PAY4
 182: IPV6 GTPU PAY4
 183: IPV4 GTPU IPV6FRAG PAY3
 184: IPV4 GTPU IPV6 PAY3
 185: IPV4 GTPU IPV6 UDP PAY4
 186: IPV4 GTPU IPV6 TCP PAY4
 187: IPV4 GTPU IPV6 SCTP PAY4
 188: IPV4 GTPU IPV6 ICMPV6 PAY4
 189: IPV6 GTPU IPV6 PAY3
 190: IPV6 GTPU IPV6FRAG PAY3
 191: IPV6 GTPU IPV6 UDP PAY4
 113: IPV6 GTPU IPV6 TCP PAY4
 120: IPV6 GTPU IPV6 SCTP PAY4
 128: IPV6 GTPU IPV6 ICMPV6 PAY4

Figure 18. Getting Information about the DDP Profile

The ddp get info gtp.pkgo command makes multiple calls of rte_pmd_i40e_get_ddp_info() to get different information about the

profile, and prints it.

There is a lot of information, including the new packet classifier types.
List of defined packet classification types:
 22: GTPU IPV4
 23: GTPU IPV6
 24: GTPU
 25: GTPC

Figure 19. New PCTYPEs Defined by the GTPv1 Profile

There are four new packet classification types created in addition to all default PCTYPEs available. (For details, refer to Table 7-5.

Packet classifier types and its input sets in the Intel® Ethernet Controller X710/XXV710/XL710 datasheet:

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf)

To enable RSS for GTPv1-U with the IPv4 payload, packet classifier type 22 is mapped to the DPDK flow type. Flow types are

defined in rte_eth_ctrl.h; the first 21 are in use in DPDK 17.11 and so can map to flows 22 and up. After mapping to a flow type, the

port is restarted and RSS enabled for flow type 22.
testpmd> port config 0 pctype mapping update 22 22
testpmd> port start 0
testpmd> start
testpmd> port config all rss 22

Figure 20. Mapping new PCTYPEs to DPDK flow types

The port config 0 pctype mapping update 22 22 command calls rte_pmd_i40e_flow_type_mapping_update() to map new

packet classifier type 22 to DPDK flow type 22 so that the port config all rss 22 command can enable RSS for this flow type.

When GTP traffic is resent, the packets are classified as GTP in the NIC device and distributed to multiple queues.
port 0/queue 1: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0x342ff376
- RSS queue=0x1 - hw ptype: L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN packet: packet type =32912,
Destination UDP port =2152, VNI = 3272871 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

port 0/queue 2: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0xe3402ba5
- RSS queue=0x2 - hw ptype: L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN packet: packet type =32912,
Destination UDP port =2152, VNI = 9072104 - Receive queue=0x2
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

port 0/queue 0: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0x6a97ed3
- RSS queue=0x0 - hw ptype: L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN packet: packet type =32912,
Destination UDP port =2152, VNI = 5877304 - Receive queue=0x0
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 16

port 0/queue 3: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 - nb_segs=1 - RSS hash=0x7d729284
- RSS queue=0x3 - hw ptype: L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN packet: packet type =32912,
Destination UDP port =2152, VNI = 1459946 - Receive queue=0x3
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

Figure 21. Distribution of the GTP-U Packets with GTPv1 Profiles Applied to the Device

Now, the parser knows that packets with UDP destination port 2152 should be parsed as GTP-U tunnel, and extra fields should be

extracted from GTP and inner IP headers.

If the profile is no longer needed, it can be removed from the network adapter and the original configuration is restored.
testpmd> port stop 0
testpmd> ddp del 0 /home/pkg/gtp.bak
testpmd> ddp get list 0
Profile number is: 0

testpmd>

Figure 22. Removing the GTPv1 Profile from the Device

The ddp del 0 gtp.bak command first loads the gtp.bak file to the memory buffer, then passes it to

rte_pmd_i40e_process_ddp_package() but with the RTE_PMD_I40E_PKG_OP_WR_DEL operation, restoring the original

configuration.

4.4 Using GTP Protocol with rte_flow API

Generic rte_flow API can be used to steer GTP traffic to different Virtual Functions or queues.

For example, to direct GTP packets with TEID 4 to VF 1, queue 2, an application should use the following rte_flow pattern and

action.
const struct rte_flow_item pattern [] = {

 {RTE_FLOW_ITEM_TYPE_ETH, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_IPV4, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_UDP, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_GTP, {.teid = 4}, NULL, {. teid = UINT32_MAX}},

};

const struct rte_flow_action actions [] = {

 {RTE_FLOW_ACTION_TYPE_VF, {.id = 1}},

 {RTE_FLOW_ACTION_TYPE_QUEUE, {.id = 2}},

 {RTE_FLOW_ACTION_TYPE_END, NULL},

};

Figure 23. rte_flow Pattern and Actions for Directing the GTP Packets to a VF

Pattern and actions will be parsed by i40e PMD and corresponding tunnel filter entry will be added to direct GTP packets to the VF.

For a case where only queue action is defined, the Flow Director rule will be added.
const struct rte_flow_item pattern [] = {

 {RTE_FLOW_ITEM_TYPE_ETH, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_IPV4, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_UDP, NULL, NULL, NULL},

 {RTE_FLOW_ITEM_TYPE_GTP, {.teid = 4}, NULL, {. teid = UINT32_MAX}},

};

const struct rte_flow_action actions [] = {

 {RTE_FLOW_ACTION_TYPE_QUEUE, {.id = 2}},

 {RTE_FLOW_ACTION_TYPE_END, NULL},

};

Figure 24. rte_flow Pattern and Actions to Direct the GTP Packets to a Queue

Application Note | Intel® Ethernet Controller 700 Series GTPv1 - Dynamic Device Personalization

 17

5 Summary

This new capability provides the means to accelerate packet processing for different network segments providing needed

functionality of the network controller

on-demand by applying Pipeline Personalization Profiles. The same underlying infrastructure (servers with already installed

standard NICs) can be used for optimized processing of traffic of different network segments (wireline, wireless, enterprise) without

the need of resetting NICs/restarting the server.

This capability delivers the following performance and core utilization optimizations:

 Removes requirement for CPU cores on the host to perform classification and load balancing of packet types for the specified

use case

 Increases packet throughput, reduces packet latency for the use case

This application note described the use of a GPRS tunneling protocol (GTPv1) profile to enhance performance and optimize core

utilization for virtualized enhanced packet core (vEPC) and multi-access edge computing (MEC) use cases.

The application of the GTPv1 Dynamic Device Personalization (DDP) profile in EPC and MEC use cases has been shown to reduce

the processing overhead by at least 1 core per application instance, and also to reduce packet latency.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree

to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact

your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized

errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at

http://www.intel.com/ or from the OEM or retailer.

Intel, the Intel logo, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 0819/DN/PTI/PDF 338930-002US

http://www.intel.com/design/literature.htm
http://www.intel.com/

	1 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2 Dynamic Device Personalization
	2.1 Overview
	2.2 Demystifying dynamic device personalization

	3 Utility / Use Case
	3.1 Application of Technology – vEPC
	3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane
	3.1.1.1 vEPC default configuration
	3.1.1.2 vEPC configuration with GTPv1 DDP profile enabled

	3.2 Application of Technology – MEC

	4 Enablement
	4.1 DPDK APIs
	4.2 Ethtool commands
	4.3 Using DDP profiles with test-pmd
	4.4 Using GTP Protocol with rte_flow API

	5 Summary

