
 1

TECHNOLOGY GUIDE
Intel Corporation

Intel® Ethernet Controller - Predictable Load Distribution
Using Partial Toeplitz Hash Collections

Authors
Vladimir Medvedkin

Andrey Chilikin

Konstantin Ananyev

1 Introduction
Most network interface cards (NICs) need load distribution to better manage the flow of
data in the network and to ensure that all cores are evenly distributed to queues. Receive
side scaling (RSS) is a network driver technology that enables the efficient distribution of
network receive processing across multiple CPUs in multiprocessor systems.

In most cases, modern NICs use Toeplitz hash function to distribute packets across the
queues with receive side scaling. Due to the nature of that distribution it is not possible
for the user to select desired queue. Such shortcoming becomes especially noticeable
for the systems with dynamic assignment of flow attributes that is, parts of hashing tuple
such as IP addresses, TCP/UDP ports, ESP SPI, and MPLS labels.

In this technology guide, we present a mechanism for predictable binding of flows to
arbitrary queues on the remote receiver or on the local NIC for response packets. The
proposed mechanism for predictable load distribution can be applied to multiple use
cases, especially at the edge of the network.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview of Hardware Implementation of RSS .. 3
3 Predictable RSS Algorithm .. 4
4 Calculation of the Toeplitz Hash Key .. 6
5 Complementary Table Calculation .. 6
6 Sub-tuple Value Selection Algorithm for Queue Assignment ... 7
7 Data Plane Development Kit (DPDK) API.. 8
8 Use Cases .. 9

8.1 Multiprotocol Label Switching (MPLS) Label Allocation .. 10
8.2 IPSec Security Parameter Index (SPI) Allocation ... 10
8.3 TCP Stack... 10
8.4 Network Address Translation (NAT) .. 10

9 Summary ... 11
 Calculation of the Toeplitz Hash Key .. 11

Figures
Figure 1. Overview of RSS .. 4
Figure 2. Toeplitz hash representation using matrix multiplication ... 5
Figure 3 Complete complementary table. .. 7
Figure 4 Sub-tuple value selection algorithm ... 8
Figure 5. Packet processing in NAT with random port selection... 10
Figure 6. Packet processing in NAT with port selection using predictable RSS... 10

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3

Document Revision History

REVISION DATE DESCRIPTION

001 May 2022 Initial release.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

BW Bandwidth

CPU Central Processing Unit

DPDK Data Plane Development Kit

DST Destination

ESP Encapsulating Security Payloads

GF(2) Galois Field of two elements

GFNI Galois Fields New Instructions

IDX Index

IP Internet Protocol

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

MPLS Multiprotocol Label Switching

MPLS LSP MPLS Label Switch Path

MPLS LSR MPLS Label Switching Router

NAT Network Address Translation

NIC Network Interface Cards

RSS Receive Side Scaling

RSS RETA Receive Side Scaling Redirection Table

SPI Security Parameters Index

SRC Source

TCP Transmission Control Protocol

UDP User Datagram Protocol

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

Intel® Intrinsic Guide https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html#text=vgf2p8affineqb

Data Plane Development Kit https://www.dpdk.org/

Intel® Ethernet Controller 800 Series – Dynamic Device
Personalization (DDP) for Telecommunications Workloads
Technology Guide

https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-
800-series-device-personalization-ddp-for-telecommunications-workloads-
technology-guide

Intel® Ethernet Controller E810 - Feature Support Matrix https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wa
pkw=receivesidescaling

Galois Fields New Instructions - Method for Calculating Toeplitz
Hash Using GFNI Technology Guide

https://cdrdv2.intel.com/v1/dl/getContent/730527

2 Overview of Hardware Implementation of RSS
Modern NICs support multiple queues to provide network processing scalability for multicore CPUs. Incoming network packets can
be distributed across these queues by RSS technology with Toeplitz algorithm as the default hashing function. It works as follows:
NIC parses ingress packets and generates an n-tuple, which in general is made of specific packet fields. Then, NIC computes
Toeplitz hash signature using the above mentioned n-tuple and predefined Toeplitz hashing key (RSS key). To select a destination
queue, NIC uses RSS Redirection Table (RSS RETA), which most commonly consists of 2^N entries. Each entry contains index of the
queue where packet should be directed to. Depending on the RSS RETA size, NIC masks N least significant bits (LSB) of the RSS
hash signature and uses result as an index in the RSS RETA to get the destination queue for the packet.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.dpdk.org/
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wapkw=receivesidescaling
https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wapkw=receivesidescaling
https://cdrdv2.intel.com/v1/dl/getContent/730527

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 4

Src/Dst portsDst_ipSrc_ip

Received Packet Data

Parser extracts
required fields

tuple

Toeplitz hash
function

LSB

32-bit hash value

Q_idx_0

Q_idx_1

Q_idx_2

Q_idx_3

...

...

Q_idx_n

RSS Redirection
Table

Hash LSB’s are
used as an

index in table

CPU 0

CPU 1

CPU 2

CPU 3

...

CPU M

Figure 1. Overview of RSS

Figure 1 shows the RSS use case with one-to-one mapping of queue and CPU.

3 Predictable RSS Algorithm
Toeplitz hash function key, when computed in a specific way can be used to generate RSS hash signatures that meet the
distribution requirements of the network packets. Usually, only particular value in LSBs of the hash value is needed because it is
used as an index for selecting the queue number from RSS RETA. Thus, by controlling the input value for RSS hashing (by
manipulating sub-tuple of the input n-tuple), we can control the queue assignment and enable the RSS distribution to work in a
predictable manner.

To compute a desired Toeplitz key, the following two steps are needed:

1. Calculate the key with the given parameters.
2. Calculate the complementary table of bits to be adjusted with the sub-tuple to produce the collision.

The Method for Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide describes the Toeplitz hash
function as a matrix multiplication with elements over Galois Field (2) (GF(2)):

https://cdrdv2.intel.com/v1/dl/getContent/730527

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 5

k0 k1 km

k1

...

kn

... km km+1

...

... km+n

t0

t1

...

...

...

...

tm

h0

h1

...

hn

Figure 2. Toeplitz hash representation using matrix multiplication

Matrix K with elements {k0,…, km+n} over GF(2) represents hash key, vector T with elements {t0, …, tm} over GF(2) represents a
tuple, and vector H with elements {h0, …, hn} over GF(2) represents a hash value. Here, the set of all tuples could be considered as
an m-dimension vector space over GF(2), and the set of all hash values H as an n-dimension vector space over GF(2). In practice,
resulting hash is a 32-bit value, so the vector space H has 32 dimensions (that is, n = 32).

Thus, T and H form a group with respect to addition (in GF(2), that is modulo2 addition or just XOR) operation - <T, ^> and <H, ^>.
Multiplication with matrix K can be treated as a linear map, that is a vector space homomorphism.

So,

 K ∗ (𝑡𝑡1 ⊕ 𝑡𝑡2) = K ∗ 𝑡𝑡1 ⊕ 𝐾𝐾 ∗ 𝑡𝑡2 = ℎ1 ⊕ ℎ2 (1)

To produce the Toeplitz hash collision, we need to find a desired tuple tdesired producing a desired hash value hdesired. We can
express:

 ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = K  ∗  𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2)

 So, given original tuple torig and the corresponding hash value horig = K * torig we can express adjustment hash bits hadj like:

ℎ𝑎𝑎𝑑𝑑𝑎𝑎 = ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⊕  ℎ𝑜𝑜rig (3)

and from (1) we can express the same for tuples using homomorphism:

 𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 = 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⊕ 𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜 (4)

so, we need to adjust torig with tadj in order to produce hash required collision:

 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 ⊕  𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜 (5)

From (1), (3), and (4):

 K ∗ 𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 = ℎ𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜 ⊕ hdesired (6)

In fact, matrix K usually is not a square matrix. It is not possible to find a K-1 in order to find tadj, so we cannot revert hash function.
In other words, the hash function is a one-way function.

We can find associations tadj <-> hadj for each possible value hadj. In general, this is unsolvable task because of the size of tadj, which is
very big (for example, 96 bit for IPv4/TCP).

But it becomes possible if the key was built in a specific way.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 6

4 Calculation of the Toeplitz Hash Key
From predictable RSS algorithm we need to calculate hash function for all input tadj that usually is impossible due to size of the
tuple that is generally bigger than the size of the hash.

There are several requirements for the key to calculate full association table of tadj <-> hadj.

1. It must be possible to calculate all n-bit values to get proper n-bit hadj to find a required n-bit collision of the hash. That is,
there should not be any non-computable hadj values.

2. All variable bits of the tadj must be grouped together, that is, there must be single non splitted (continuous) n-bit sub-tuple
to calculate the required hadj.

3. All n-bit hadj values must be calculated from minimal set of tadj – in other words from the bits belonging to the minimal sub-
tuple.

To satisfy this requirement, let us use the following approach:

1. As shown in the Method for Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide, every n-bit
substring of the hash key can be expressed as a vector in n-dimensional vector space as also is shown in the predictable
RSS algorithm. Toeplitz hash function represents itself as a linear combination of the key’s n-bit substrings where every
substring is multiplied by the corresponding bit of the tuple. Every input bit of the tuple has a corresponding n-bit
substring of the hash key.

2. To generate any arbitrary n-bit value n of n-bit substrings (that is, vectors) of the hash key must be linear independent
from each other that is, be a basis of the vector space. This means that it requires exactly n variable bit of the tuple to
generate all possible n-bit hadj .

3. The grouping requirement needs that two nested basis vectors must share (n-1) bit and all n n-bit basis vectors must span
in the hash key a bit sequence with length equal to 2*n – 1 bit. For example, for n = 4:

0 1 0 1 1 0 0

0 1 0 1

1 0 1 1

0 1 1 0

1 1 0 0

Hash key

Vector 1

Vector 2

Vector 3

Vector 4

All vectors are linearly independent from each other, and the two nested vectors share n – 1 bit. That is, vectors can be
calculated recursively:

 𝑉𝑉𝑛𝑛+1 = 𝑓𝑓(𝑉𝑉𝑛𝑛) (7)

4. There exists a cyclic vector v in V=GF(2^n) for matrix A, meaning that {A0 v, Av, A2v, ..., An−1v} is a basis of V, where A is the
Frobenius companion matrix of some polynomial1. This means we can express our f(x) as a multiplication of the companion
matrix with some initial vector v to generate a basis of a vector space. Unfortunately, not every initial vector is applicable
for an arbitrary companion matrix.

5. If Frobenius companion matrix A is companion of the monic polynomial irreducible over GF(2), then every initial non-zero
vector v can be multiplied by A recursively spanning a basis of V. If this polynomial is also prime over GF(2), then the bit
sequence in this case is called an m-sequence. Refer to Appendix A for more information.

5 Complementary Table Calculation
Complementary table will be composed of 2^N entries, where N is a number of the resulting hash value’s least significant bits to
calculate collision on. Each entry maps an adjustment hash bit, which are used as a key with a corresponding adjustment bits of the

1 Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis

https://cdrdv2.intel.com/v1/dl/getContent/730527
https://books.google.com/books?id=f6_r93Of544C&pg=PA147&dq=%22companion+matrix%22&cd=1#v=onepage&q=%22companion%20matrix%22&f=false

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 7

tuple, which are used as a value. For every non-zero n-bit value we calculate n-bit Toeplitz hash signature using a corresponding
part of the hash key containing pre-generated m-sequence (with degree n polynomial) and insert in the complementary table a pair
<hash_signature -> n-bit_value> as shown on Figure 3.

Key-Value store:
Key – XOR of substring combinations

Value – complimentary value

000000b

000001b

…

110010b

...

111111b

key: 101101 ^ 011111 = 110010
value: 010001

Complimentary
table:

1010111. .1111101

M-sequence generated with n-degree
polynomial

n-bit substring,
offset 0

n-bit substring,
offset 4

Subtuple value 010001

…

010001

key value

Figure 3 Complete complementary table.

Complementary table now can be used to find sub-tuples (variable part of the full tuple) that will lead to hash signature calculation
in a way that LSB’s of calculated signature will have required value. Complementary table has 2^lsb key-val entries.

6 Sub-tuple Value Selection Algorithm for Queue Assignment
As shown in Figure 4, to control queue assignment thereby making RSS distribution to work in a predictable manner, we followed
these steps:

1. Generate a tuple with a random sub-tuple.
2. Select a desired LSB value for the hash signature.
3. Calculate hash value for the given tuple.
4. Perform XOR with the desired LSB value and use the result to lookup in the complementary table.
5. Find a set of bits using LSBs of XOR of two hashes as a key.
6. XOR previously found bits with the sub-tuple bits to get the new value of the sub-tuple in a way that the hash signature of

the full tuple will have the required least significant bits.
7. If the new value of the sub-tuple is already in use, repeat this procedure from step 1 until unused value of the sub-tuple is

found.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 8

Complementary table:

00000b
00001b

…
...

11110b
11111b

...

1101 01111110

NIC configured RSS key Get random
subtuple value

Calculate hash value
for full tuple

LSB’s of Hash value
needed

XOR calculated and needed hash
values and mask LSB’s to get

index in complementary table

Find a value using LSB’s of XOR of
two hashes as a key

XOR subtuple with found value to
produce new subtuple

Produced LSB’s of hash for the
new tuple is equal to the required

LSB’s value

1
2

3

4

5

6

7

10010

01100

Figure 4 Sub-tuple value selection algorithm

7 Data Plane Development Kit (DPDK) API
To prove the concept, the following DPDK APIs were used:

Control plane functions:

/**

Create a new thash context.

**/

struct rte_thash_ctx *
rte_thash_init_ctx(const char *name, uint32_t key_len, uint32_t
reta_sz, uint8_t *key, uint32_t flags);

/**

Add a special property to the Toeplitz hash key inside a thash context.
Creates an internal helper struct which has a complementary table to calculate
Toeplitz hash collisions.

**/

int
rte_thash_add_helper(struct rte_thash_ctx *ctx, const char
*name, uint32_t len, uint32_t offset);

/**

Get a pointer to the Toeplitz hash contained in the context. It changes after
each addition of a helper. It should be installed to the NIC.

**/

const uint8_t *
rte_thash_get_key(struct rte_thash_ctx *ctx);

Data plane functions:

/**

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 9

Get a complementary value for the subtuple to produce a partial Toeplitz hash
collision. It must be XOR’ed with the subtuple to produce the hash value with
the desired hash LSB’s.

**/

uint32_t
rte_thash_get_complement(struct rte_thash_subtuple_helper *h, uint32_t hash,
uint32_t desired_hash);

/**

Function prototype for the rte_thash_adjust_tuple to check if adjusted tuple
could be used. Generally it is some kind of lookup function to check if
adjusted tuple is already in use

**/

typedef int (*rte_thash_check_tuple_t)(void *userdata, uint8_t *tuple);

/**

Adjusts tuple in the way to make Toeplitz hash has desired least significant
bits

**/

int
rte_thash_adjust_tuple(struct rte_thash_ctx *ctx,
 struct rte_thash_subtuple_helper *h,
 uint8_t *tuple, unsigned int tuple_len,
 uint32_t desired_value, unsigned int attempts,
 rte_thash_check_tuple_t fn, void *userdata);

• rte_thash_init_ctx() – Creates the context associated with a target NIC/set of NICs, which could share the same hash key
and other RSS related configuration. Internally, the context has the set of all helpers associated with the context and the
RSS hash key. To initialize the context, user must specify size of the hash key as well as logarithm of the size of RSS
Redirection Table (RETA) that is, the number of least significant bits from hash value used as an index in RSS RETA. Key and
flags are optional.

• rte_thash_add_helper() – Creates the helper associated with the given context. User must specify the variable sub-tuple
part passing length and offset of this sub-tuple. This function generates the m-sequence inside the hash key for a
corresponding length and offset and creates complementary table with adjustment bits for the corresponding sub-tuple.
This function changes the hash key, which is kept inside the context so it must be called before NIC initialization.

• rte_thash_get_key() – Returns the hash key associated with the context, which must be installed into the NIC on init.

• rte_thash_get_complement() – Finds the complementary bits for the sub-tuple defined for the corresponding helper. User
must specify helper, the hash value of the tuple he wants to change, and the desired hash value. This is shown as step 5 in
Figure 4.

• rte_thash_adjust_tuple() – This function changes the tuple in a way to produce partial hash collision, i.e., LSBs of the
Toeplitz hash vale for the new tuple will be equal to LSB’s of the desired value. User must provide existing tuple to be
changed in the subtuple part and the desired hash value. Optionally user can specify callback function and the user data
for it to make some additional checks over altered tuple. In essence, this is a user-friendly implementation of an algorithm
described in Figure 4.

8 Use Cases
As mentioned previously in the document, this proposed mechanism for predictable load distribution can be applied to multiple
use cases, especially at the edge of the network where, for example, network address translation (NAT) is must for many
applications. In NAT, the port number is treated as sub-tuple.

It is also applicable for tunnel environment where tunnel distinguisher needs to be mapped to particular queues to separate
different tenants or sub-tunnels (Ipsec SPI, TEID in GTP-u, MPLS tag, and so on). In this case tunnel distinguisher would be treated
as sub-tuple.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 10

8.1 Multiprotocol Label Switching (MPLS) Label Allocation
This technique can be used in MPLS traffic engineering for resource management to select a worker core with BW availability.

In most cases it is not possible for Label Switch Router (LSR) to know what protocol is transmitted inside the MPLS Label Switch
Path (LSP) without using different heuristic methods. So, MPLS packets could be distributed with RSS amongst the queues only by
20-bit MPLS tag. If LSR assigns a MPLS label randomly without considering destination queue for packets belonging to the
corresponding allocating label, then it can lead to uneven traffic distribution causing overload of some cores and underload for the
others.

With predictable RSS technique LSR can allocate an MPLS label in a controlled way that packets of a corresponding LSP will be
handled by desired queue and thus by the desired core.

8.2 IPSec Security Parameter Index (SPI) Allocation
For IPSec, in case of presence of fat pipe tunnels receiving side can split the tunnel into multiple sub tunnels and assign SPI in a way
that guarantees even distribution of a received IPSec packet among the queues.

8.3 TCP Stack
In the TCP (Transmission Control Protocol) client connection establishment process, user can select source port in a way that
guarantee input packets for this connection will arrive on a particular queue. For example, this might be helpful feature for fast
proxy implementations. It allows to avoid additional synchronizations and allows to maintain cache locality.

8.4 Network Address Translation (NAT)
In general, on network address translation (NAT), packets belonging to original and reverse directions of a single bidirectional
connection will be distributed by RSS to different queues as shown in Figure 5.

44310000192.0.2.10010.10.10.10 44312345192.0.2.100172.16.0.20

12345443172.16.0.20192.0.2.1001000044310.10.10.10192.0.2.100

RSS hash value 0xdeadbeef
Packet assigned to queue 15

RSS hash value 0xbadcab1e
Packet assigned to queue 14

Figure 5. Packet processing in NAT with random port selection

NAT usually requires maintaining a connection table. In this case it requires some sort of synchronization between cores and causes
additional overhead in packet processing. On a translation it is possible to choose a source port in a way that guarantees that
reverse packets will arrive to desired queue. It is shown in Figure 6.

44310000192.0.2.10010.10.10.10 44323456192.0.2.100172.16.0.20

23456443172.16.0.20192.0.2.1001000044310.10.10.10192.0.2.100

RSS hash value 0xdeadbeef
Packet assigned to queue 15

RSS hash value 0xf00d1eaf
Packet assigned to queue 15

Figure 6. Packet processing in NAT with port selection using predictable RSS

That allows to split connection table among threads and eliminate synchronization overhead. This can significantly simplify NAT
implementation and improve the overall performance.

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 11

9 Summary
The described mechanism for predictable load distribution using Toeplitz hash collision can be implemented with any modern NIC
or other network equipment, which supports Toeplitz hash function for RSS and does not require any specific offloads on the NIC.
This can be useful in wide range of popular network processing functions.

Further improvements can be achieved with GFNI implementation of the Toeplitz hash function described in the Method for
Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide.

 Calculation of the Toeplitz Hash Key
Theorem: In the sequence, generated by Linear Feedback Shift Register (LFSR) with n-degree polynomial, irreducible over GF(2),
linear combination of n 1-bit shifted from each other n-bit subsequences produces all possible n-bit values. In other words, any n n-
bit subsequences, 1-bit shifted from each other, inside the sequence forms a basis on an n-dimension vector space over GF(2).

Proof: The sequence could be represented as a recurrent sequence generated by Frobenius companion matrix multiplied with a
current value.

𝑣𝑣𝑚𝑚+1 = 𝐹𝐹 ∗ 𝑣𝑣𝑚𝑚 (8)

Where F is a companion matrix of some polynomial defined for LFSR and vm is a m-th value of the sequence.

So, we need to proove that set of n vectors v: {v0, v1, …, vn-1} forms a base of n-dimension vector space V, that is, linear
combinations of {v0, v1, …, vn-1} spans a vector space V.

Consider matrix F of the monic polynomial p irreducible over GF2.

(8) could be represented as
 𝑣𝑣𝑚𝑚+1 = 𝑣𝑣𝑚𝑚 ∗ 𝑥𝑥 mod p (9)

from (9) we have:
 𝑣𝑣𝑚𝑚+𝑛𝑛 = 𝑣𝑣𝑚𝑚 ∗ 𝑥𝑥𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (10)

we can express vm mod p as a constant “c” and different combinations on n consequent v will be expressed as:

 c ∗ ∑ 𝑥𝑥𝑛𝑛−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑛𝑛

so, since ∑ xn−1n – is a polynomial of degree (n - 1) and p – is an irreducible polynomial of degree n, then every 𝑐𝑐 ∗ ∑ 𝑥𝑥𝑛𝑛−1 𝑚𝑚𝑚𝑚𝑚𝑚 p𝑛𝑛 is
unique and all different linear combinations spans a vector space, i.e. {v0, v1, …, vn-1} are basis of V.

https://cdrdv2.intel.com/v1/dl/getContent/730527
https://cdrdv2.intel.com/v1/dl/getContent/730527

Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections

 12

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0522/DN/WIPRO/PDF 723538-001US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview of Hardware Implementation of RSS
	3 Predictable RSS Algorithm
	4 Calculation of the Toeplitz Hash Key
	5 Complementary Table Calculation
	6 Sub-tuple Value Selection Algorithm for Queue Assignment
	7 Data Plane Development Kit (DPDK) API
	8 Use Cases
	8.1 Multiprotocol Label Switching (MPLS) Label Allocation
	8.2 IPSec Security Parameter Index (SPI) Allocation
	8.3 TCP Stack
	8.4 Network Address Translation (NAT)

	9 Summary
	Appendix A Calculation of the Toeplitz Hash Key

