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1 Introduction 
Most network interface cards (NICs) need load distribution to better manage the flow of 
data in the network and to ensure that all cores are evenly distributed to queues. Receive 
side scaling (RSS) is a network driver technology that enables the efficient distribution of 
network receive processing across multiple CPUs in multiprocessor systems. 

In most cases, modern NICs use Toeplitz hash function to distribute packets across the 
queues with receive side scaling. Due to the nature of that distribution it is not possible 
for the user to select desired queue. Such shortcoming becomes especially noticeable 
for the systems with dynamic assignment of flow attributes that is, parts of hashing tuple 
such as IP addresses, TCP/UDP ports, ESP SPI, and MPLS labels. 

In this technology guide, we present a mechanism for predictable binding of flows to 
arbitrary queues on the remote receiver or on the local NIC for response packets. The 
proposed mechanism for predictable load distribution can be applied to multiple use 
cases, especially at the edge of the network. 
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1.1 Terminology 

Table 1. Terminology 

ABBREVIATION DESCRIPTION 

BW Bandwidth 

CPU Central Processing Unit 

DPDK Data Plane Development Kit 

DST Destination 

ESP Encapsulating Security Payloads  

GF(2) Galois Field of two elements 

GFNI Galois Fields New Instructions 

IDX Index 

IP Internet Protocol 

LFSR Linear Feedback Shift Register 

LSB Least Significant Bit 

MPLS Multiprotocol Label Switching 

MPLS LSP MPLS Label Switch Path 

MPLS LSR MPLS Label Switching Router 

NAT Network Address Translation 

NIC Network Interface Cards 

RSS Receive Side Scaling 

RSS RETA Receive Side Scaling Redirection Table 

SPI Security Parameters Index 

SRC Source 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

1.2 Reference Documentation 

Table 2. Reference Documents 

REFERENCE SOURCE 

Intel® Intrinsic Guide https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html#text=vgf2p8affineqb 

Data Plane Development Kit https://www.dpdk.org/ 

Intel® Ethernet Controller 800 Series – Dynamic Device 
Personalization (DDP) for Telecommunications Workloads 
Technology Guide 

https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-
800-series-device-personalization-ddp-for-telecommunications-workloads-
technology-guide 

Intel® Ethernet Controller E810 - Feature Support Matrix https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wa
pkw=receivesidescaling  

Galois Fields New Instructions - Method for Calculating Toeplitz 
Hash Using GFNI Technology Guide 

https://cdrdv2.intel.com/v1/dl/getContent/730527 

2 Overview of Hardware Implementation of RSS 
Modern NICs support multiple queues to provide network processing scalability for multicore CPUs. Incoming network packets can 
be distributed across these queues by RSS technology with Toeplitz algorithm as the default hashing function. It works as follows: 
NIC parses ingress packets and generates an n-tuple, which in general is made of specific packet fields. Then, NIC computes 
Toeplitz hash signature using the above mentioned n-tuple and predefined Toeplitz hashing key (RSS key). To select a destination 
queue, NIC uses RSS Redirection Table (RSS RETA), which most commonly consists of 2^N entries. Each entry contains index of the 
queue where packet should be directed to. Depending on the RSS RETA size, NIC masks N least significant bits (LSB) of the RSS 
hash signature and uses result as an index in the RSS RETA to get the destination queue for the packet. 

 

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=vgf2p8affineqb
https://www.dpdk.org/
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-ethernet-controller-800-series-device-personalization-ddp-for-telecommunications-workloads-technology-guide
https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wapkw=receivesidescaling
https://cdrdv2.intel.com/v1/dl/getContent/630155?explicitVersion=true&wapkw=receivesidescaling
https://cdrdv2.intel.com/v1/dl/getContent/730527
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Figure 1.  Overview of RSS 

Figure 1 shows the RSS use case with one-to-one mapping of queue and CPU. 

3 Predictable RSS Algorithm 
Toeplitz hash function key, when computed in a specific way can be used to generate RSS hash signatures that meet the 
distribution requirements of the network packets. Usually, only particular value in LSBs of the hash value is needed because it is 
used as an index for selecting the queue number from RSS RETA. Thus, by controlling the input value for RSS hashing (by 
manipulating sub-tuple of the input n-tuple), we can control the queue assignment and enable the RSS distribution to work in a 
predictable manner. 

To compute a desired Toeplitz key, the following two steps are needed: 

1. Calculate the key with the given parameters.  
2. Calculate the complementary table of bits to be adjusted with the sub-tuple to produce the collision. 

The Method for Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide describes the Toeplitz hash 
function as a matrix multiplication with elements over Galois Field (2) (GF(2)): 

 

https://cdrdv2.intel.com/v1/dl/getContent/730527
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Figure 2.  Toeplitz hash representation using matrix multiplication 

Matrix K with elements {k0,…, km+n} over GF(2) represents hash key, vector T with elements {t0, …, tm} over GF(2) represents a 
tuple, and vector H with elements {h0, …, hn} over GF(2) represents a hash value. Here, the set of all tuples could be considered as 
an m-dimension vector space over GF(2), and the set of all hash values H as an n-dimension vector space over GF(2). In practice, 
resulting hash is a 32-bit value, so the vector space H has 32 dimensions (that is, n = 32). 

Thus, T and H form a group with respect to addition (in GF(2), that is modulo2 addition or just XOR) operation - <T, ^> and <H, ^>. 
Multiplication with matrix K can be treated as a linear map, that is a vector space homomorphism.  

So, 

    K ∗ (𝑡𝑡1 ⊕ 𝑡𝑡2) = K ∗ 𝑡𝑡1 ⊕ 𝐾𝐾 ∗ 𝑡𝑡2 = ℎ1 ⊕ ℎ2   (1) 

To produce the Toeplitz hash collision, we need to find a desired tuple tdesired producing a desired hash value hdesired. We can 
express: 

 ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = K  ∗  𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑             (2) 

 So, given original tuple torig and the corresponding hash value horig = K * torig we can express adjustment hash bits hadj like: 
 

ℎ𝑎𝑎𝑑𝑑𝑎𝑎 = ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⊕  ℎ𝑜𝑜rig          (3) 
 

and from (1) we can express the same for tuples using homomorphism:  
  
                                         𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 = 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⊕  𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜          (4) 

 

so, we need to adjust torig with tadj in order to produce hash required collision: 

           
            𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 ⊕  𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜                                            (5) 

 
 

From (1), (3), and (4): 
 
          K ∗  𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 = ℎ𝑜𝑜𝑑𝑑𝑑𝑑𝑜𝑜 ⊕  hdesired                             (6) 
 

In fact, matrix K usually is not a square matrix. It is not possible to find a K-1 in order to find tadj, so we cannot revert hash function. 
In other words, the hash function is a one-way function.  

We can find associations tadj <-> hadj for each possible value hadj. In general, this is unsolvable task because of the size of tadj, which is 
very big (for example, 96 bit for IPv4/TCP).  

But it becomes possible if the key was built in a specific way. 
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4 Calculation of the Toeplitz Hash Key 
From predictable RSS algorithm we need to calculate hash function for all input tadj that usually is impossible due to size of the 
tuple that is generally bigger than the size of the hash.   

There are several requirements for the key to calculate full association table of tadj <-> hadj.  

1. It must be possible to calculate all n-bit values to get proper n-bit hadj to find a required n-bit collision of the hash. That is, 
there should not be any non-computable hadj values. 

2. All variable bits of the tadj must be grouped together, that is, there must be single non splitted (continuous) n-bit sub-tuple 
to calculate the required hadj. 

3. All n-bit hadj values must be calculated from minimal set of tadj – in other words from the bits belonging to the minimal sub-
tuple. 

To satisfy this requirement, let us use the following approach: 

1. As shown in the Method for Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide, every n-bit 
substring of the hash key can be expressed as a vector in n-dimensional vector space as also is shown in the predictable 
RSS algorithm. Toeplitz hash function represents itself as a linear combination of the key’s n-bit substrings where every 
substring is multiplied by the corresponding bit of the tuple. Every input bit of the tuple has a corresponding n-bit 
substring of the hash key.  

2. To generate any arbitrary n-bit value n of n-bit substrings (that is, vectors) of the hash key must be linear independent 
from each other that is, be a basis of the vector space. This means that it requires exactly n variable bit of the tuple to 
generate all possible n-bit hadj . 

3. The grouping requirement needs that two nested basis vectors must share (n-1) bit and all n n-bit basis vectors must span 
in the hash key a bit sequence with length equal to 2*n – 1 bit. For example, for n = 4: 

 
0 1 0 1 1 0 0

0 1 0 1

1 0 1 1

0 1 1 0

1 1 0 0

Hash key

Vector 1

Vector 2

Vector 3

Vector 4
 

 
 
All vectors are linearly independent from each other, and the two nested vectors share n – 1 bit. That is, vectors can be 
calculated recursively: 

                     𝑉𝑉𝑛𝑛+1 = 𝑓𝑓(𝑉𝑉𝑛𝑛)                          (7) 

4. There exists a cyclic vector v in V=GF(2^n) for matrix A, meaning that {A0 v, Av, A2v, ..., An−1v} is a basis of V, where A is the 
Frobenius companion matrix of some polynomial1. This means we can express our f(x) as a multiplication of the companion 
matrix with some initial vector v to generate a basis of a vector space. Unfortunately, not every initial vector is applicable 
for an arbitrary companion matrix. 

5. If Frobenius companion matrix A is companion of the monic polynomial irreducible over GF(2), then every initial non-zero 
vector v can be multiplied by A recursively spanning a basis of V. If this polynomial is also prime over GF(2), then the bit 
sequence in this case is called an m-sequence. Refer to Appendix A for more information. 

5 Complementary Table Calculation 
Complementary table will be composed of 2^N entries, where N is a number of the resulting hash value’s least significant bits to 
calculate collision on. Each entry maps an adjustment hash bit, which are used as a key with a corresponding adjustment bits of the 

 
1 Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis 

https://cdrdv2.intel.com/v1/dl/getContent/730527
https://books.google.com/books?id=f6_r93Of544C&pg=PA147&dq=%22companion+matrix%22&cd=1#v=onepage&q=%22companion%20matrix%22&f=false
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tuple, which are used as a value. For every non-zero n-bit value we calculate n-bit Toeplitz hash signature using a corresponding 
part of the hash key containing pre-generated m-sequence (with degree n polynomial) and insert in the complementary table a pair 
<hash_signature -> n-bit_value> as shown on Figure 3. 

Key-Value store:
Key – XOR of substring combinations

Value – complimentary value 

000000b

000001b

…

110010b

...

111111b

key: 101101 ^ 011111 = 110010
value: 010001

Complimentary 
table:

1010111. .1111101

M-sequence generated with n-degree 
polynomial

n-bit substring, 
offset 0

n-bit substring, 
offset 4

Subtuple value 010001

…

010001

key value

 
 

Figure 3  Complete complementary table. 
 

Complementary table now can be used to find sub-tuples (variable part of the full tuple) that will lead to hash signature calculation 
in a way that LSB’s of calculated signature will have required value. Complementary table has 2^lsb key-val entries. 

6 Sub-tuple Value Selection Algorithm for Queue Assignment 
As shown in Figure 4, to control queue assignment thereby making RSS distribution to work in a predictable manner, we followed 
these steps:  

1. Generate a tuple with a random sub-tuple. 
2. Select a desired LSB value for the hash signature. 
3. Calculate hash value for the given tuple. 
4. Perform XOR with the desired LSB value and use the result to lookup in the complementary table. 
5. Find a set of bits using LSBs of XOR of two hashes as a key. 
6. XOR previously found bits with the sub-tuple bits to get the new value of the sub-tuple in a way that the hash signature of 

the full tuple will have the required least significant bits.  
7. If the new value of the sub-tuple is already in use, repeat this procedure from step 1 until unused value of the sub-tuple is 

found. 
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Complementary table:

00000b
00001b

…
...

11110b
11111b

...

1101          0111 ....1110

NIC configured RSS key Get random 
subtuple value

Calculate hash value 
for full tuple

LSB’s of Hash value 
needed

XOR calculated and needed hash 
values and mask LSB’s to get 

index in complementary table

Find a value using LSB’s of XOR of 
two hashes as a key 

XOR subtuple with found value to 
produce new subtuple

Produced LSB’s of hash for the 
new tuple is equal to the required 

LSB’s value

1
2

3

4

5

6

7

10010

01100

 

Figure 4  Sub-tuple value selection algorithm 
 

7 Data Plane Development Kit (DPDK) API 
To prove the concept, the following DPDK APIs were used: 

 
Control plane functions: 

/** 

Create a new thash context. 

**/ 

struct rte_thash_ctx * 
rte_thash_init_ctx(const char *name, uint32_t key_len, uint32_t 
reta_sz, uint8_t *key, uint32_t flags); 
 

/** 

Add a special property to the Toeplitz hash key inside a thash context. 
Creates an internal helper struct which has a complementary table to calculate 
Toeplitz hash collisions. 

**/ 

int 
rte_thash_add_helper(struct rte_thash_ctx *ctx, const char 
*name, uint32_t len, uint32_t offset); 
 

/** 

Get a pointer to the Toeplitz hash contained in the context. It changes after 
each addition of a helper. It should be installed to the NIC. 

**/ 

const uint8_t * 
rte_thash_get_key(struct rte_thash_ctx *ctx); 

 

Data plane functions: 

/** 
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Get a complementary value for the subtuple to produce a partial Toeplitz hash 
collision. It must be XOR’ed with the subtuple to produce the hash value with 
the desired hash LSB’s. 

**/ 

uint32_t 
rte_thash_get_complement(struct rte_thash_subtuple_helper *h, uint32_t hash, 
uint32_t desired_hash); 

 

/** 

Function prototype for the rte_thash_adjust_tuple to check if adjusted tuple 
could be used. Generally it is some kind of lookup function to check if 
adjusted tuple is already in use 

**/ 

typedef int (*rte_thash_check_tuple_t)(void *userdata, uint8_t *tuple); 

 

/** 

Adjusts tuple in the way to make Toeplitz hash has desired least significant 
bits 

**/ 

int 
rte_thash_adjust_tuple(struct rte_thash_ctx *ctx, 
 struct rte_thash_subtuple_helper *h, 
 uint8_t *tuple, unsigned int tuple_len, 
 uint32_t desired_value, unsigned int attempts, 
 rte_thash_check_tuple_t fn, void *userdata); 

 

• rte_thash_init_ctx() – Creates the context associated with a target NIC/set of NICs, which could share the same hash key 
and other RSS related configuration. Internally, the context has the set of all helpers associated with the context and the 
RSS hash key. To initialize the context, user must specify size of the hash key as well as logarithm of the size of RSS 
Redirection Table (RETA) that is, the number of least significant bits from hash value used as an index in RSS RETA. Key and 
flags are optional. 

• rte_thash_add_helper() – Creates the helper associated with the given context. User must specify the variable sub-tuple 
part passing length and offset of this sub-tuple. This function generates the m-sequence inside the hash key for a 
corresponding length and offset and creates complementary table with adjustment bits for the corresponding sub-tuple. 
This function changes the hash key, which is kept inside the context so it must be called before NIC initialization. 

• rte_thash_get_key() – Returns the hash key associated with the context, which must be installed into the NIC on init. 

• rte_thash_get_complement() – Finds the complementary bits for the sub-tuple defined for the corresponding helper. User 
must specify helper, the hash value of the tuple he wants to change, and the desired hash value. This is shown as step 5 in 
Figure 4. 

• rte_thash_adjust_tuple() – This function changes the tuple in a way to produce partial hash collision, i.e., LSBs of the 
Toeplitz hash vale for the new tuple will be equal to LSB’s of the desired value. User must provide existing tuple to be 
changed in the subtuple part and the desired hash value. Optionally user can specify callback function and the user data 
for it to make some additional checks over altered tuple. In essence, this is a user-friendly implementation of an algorithm 
described in Figure 4. 

8 Use Cases 
As mentioned previously in the document, this proposed mechanism for predictable load distribution can be applied to multiple 
use cases, especially at the edge of the network where, for example, network address translation (NAT) is must for many 
applications. In NAT, the port number is treated as sub-tuple.  

It is also applicable for tunnel environment where tunnel distinguisher needs to be mapped to particular queues to separate 
different tenants or sub-tunnels (Ipsec SPI, TEID in GTP-u, MPLS tag, and so on). In this case tunnel distinguisher would be treated 
as sub-tuple. 
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8.1 Multiprotocol Label Switching (MPLS) Label Allocation 
This technique can be used in MPLS traffic engineering for resource management to select a worker core with BW availability. 

In most cases it is not possible for Label Switch Router (LSR) to know what protocol is transmitted inside the MPLS Label Switch 
Path (LSP) without using different heuristic methods. So, MPLS packets could be distributed with RSS amongst the queues only by 
20-bit MPLS tag. If LSR assigns a MPLS label randomly without considering destination queue for packets belonging to the 
corresponding allocating label, then it can lead to uneven traffic distribution causing overload of some cores and underload for the 
others. 

With predictable RSS technique LSR can allocate an MPLS label in a controlled way that packets of a corresponding LSP will be 
handled by desired queue and thus by the desired core. 

 

8.2 IPSec Security Parameter Index (SPI) Allocation 
For IPSec, in case of presence of fat pipe tunnels receiving side can split the tunnel into multiple sub tunnels and assign SPI in a way 
that guarantees even distribution of a received IPSec packet among the queues. 

 

8.3 TCP Stack 
In the TCP (Transmission Control Protocol) client connection establishment process, user can select source port in a way that 
guarantee input packets for this connection will arrive on a particular queue. For example, this might be helpful feature for fast 
proxy implementations. It allows to avoid additional synchronizations and allows to maintain cache locality. 

8.4 Network Address Translation (NAT) 
In general, on network address translation (NAT), packets belonging to original and reverse directions of a single bidirectional 
connection will be distributed by RSS to different queues as shown in Figure 5.  

 

44310000192.0.2.10010.10.10.10 44312345192.0.2.100172.16.0.20

12345443172.16.0.20192.0.2.1001000044310.10.10.10192.0.2.100

RSS hash value 0xdeadbeef
Packet assigned to queue 15

RSS hash value 0xbadcab1e
Packet assigned to queue 14

 

Figure 5.  Packet processing in NAT with random port selection 

NAT usually requires maintaining a connection table. In this case it requires some sort of synchronization between cores and causes 
additional overhead in packet processing. On a translation it is possible to choose a source port in a way that guarantees that 
reverse packets will arrive to desired queue. It is shown in Figure 6. 

 

44310000192.0.2.10010.10.10.10 44323456192.0.2.100172.16.0.20

23456443172.16.0.20192.0.2.1001000044310.10.10.10192.0.2.100

RSS hash value 0xdeadbeef
Packet assigned to queue 15

RSS hash value 0xf00d1eaf
Packet assigned to queue 15

 

Figure 6.  Packet processing in NAT with port selection using predictable RSS 

That allows to split connection table among threads and eliminate synchronization overhead. This can significantly simplify NAT 
implementation and improve the overall performance. 
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9 Summary 
The described mechanism for predictable load distribution using Toeplitz hash collision can be implemented with any modern NIC 
or other network equipment, which supports Toeplitz hash function for RSS and does not require any specific offloads on the NIC. 
This can be useful in wide range of popular network processing functions. 

Further improvements can be achieved with GFNI implementation of the Toeplitz hash function described in the Method for 
Calculating Toeplitz Hash Using Galois Fields New Instructions Technology Guide. 

 Calculation of the Toeplitz Hash Key 
Theorem: In the sequence, generated by Linear Feedback Shift Register (LFSR) with n-degree polynomial, irreducible over GF(2), 
linear combination of n 1-bit shifted from each other n-bit subsequences produces all possible n-bit values. In other words, any n n-
bit subsequences, 1-bit shifted from each other, inside the sequence forms a basis on an n-dimension vector space over GF(2). 

Proof: The sequence could be represented as a recurrent sequence generated by Frobenius companion matrix multiplied with a 
current value. 

𝑣𝑣𝑚𝑚+1 = 𝐹𝐹 ∗ 𝑣𝑣𝑚𝑚      (8) 
 

Where F is a companion matrix of some polynomial defined for LFSR and vm is a m-th value of the sequence. 

So, we need to proove that set of n vectors v: {v0, v1, …, vn-1} forms a base of n-dimension vector space V, that is, linear 
combinations of {v0, v1, …, vn-1} spans a vector space V. 

Consider matrix F of the monic polynomial p irreducible over GF2. 

(8) could be represented as 
            𝑣𝑣𝑚𝑚+1 = 𝑣𝑣𝑚𝑚 ∗ 𝑥𝑥 mod p     (9) 

 

 

 

from (9) we have: 
        𝑣𝑣𝑚𝑚+𝑛𝑛 = 𝑣𝑣𝑚𝑚 ∗ 𝑥𝑥𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝                                                 (10) 

 

we can express vm mod p as a constant “c” and different combinations on n consequent v will be expressed as: 
    
                  c ∗ ∑ 𝑥𝑥𝑛𝑛−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑛𝑛  
 

so, since ∑ xn−1n  – is a polynomial of degree (n - 1) and p – is an irreducible polynomial of degree n, then every 𝑐𝑐 ∗ ∑ 𝑥𝑥𝑛𝑛−1 𝑚𝑚𝑚𝑚𝑚𝑚 p𝑛𝑛  is 
unique and all different linear combinations spans a vector space, i.e. {v0, v1, …, vn-1} are basis of V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://cdrdv2.intel.com/v1/dl/getContent/730527
https://cdrdv2.intel.com/v1/dl/getContent/730527


Technology Guide | Intel® Ethernet Controller - Predictable Load Distribution Using Partial Toeplitz Hash Collections 

  12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular 
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. 

Intel technologies may require enabled hardware, software or service activation. 

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request. 

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands may 
be claimed as the property of others.  

 0522/DN/WIPRO/PDF 723538-001US 

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview of Hardware Implementation of RSS
	3 Predictable RSS Algorithm
	4 Calculation of the Toeplitz Hash Key
	5 Complementary Table Calculation
	6 Sub-tuple Value Selection Algorithm for Queue Assignment
	7 Data Plane Development Kit (DPDK) API
	8 Use Cases
	8.1 Multiprotocol Label Switching (MPLS) Label Allocation
	8.2 IPSec Security Parameter Index (SPI) Allocation
	8.3 TCP Stack
	8.4 Network Address Translation (NAT)

	9 Summary
	Appendix A Calculation of the Toeplitz Hash Key

