
  1 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Author 
Ismo Puustinen 

 

 

Executive Summary 
Envoy (https://www.envoyproxy.io/) is a popular L7 proxy. When Envoy is used as an edge 
proxy, it often must terminate lots of TLS (Transport Layer Security) connections. The RSA 
asymmetric cryptography operations needed for this can be accelerated using Intel® 
QuickAssist Technology (Intel® QAT). 

This document is part of the Network Transformation Experience Kits.  

Introduction 
Envoy uses BoringSSL as the default TLS library. By default, the handshakes in Envoy are 
synchronous, meaning that the handshake function blocks the Envoy worker thread 
execution until the handshake has been completed. This will not work in a scheme such as 
Intel® QAT acceleration, because the Intel® QAT performance benefit comes from the fact 
that Envoy is ready to do more processing while the Intel® QAT device handles the 
cryptographic operations in parallel. If the Intel® QAT calls were synchronous, the 
performance benefit would not be there.  

To facilitate asynchronous processing, Envoy has an extension type called “private key 
provider”, which performs the following two main functions:   

• Allows running custom code for private key signing and decrypting operations  

• Allows asynchronous handshakes  

The above are done using BoringSSL private key methods. BoringSSL private key methods 
are hooks in the TLS handshake processing, which allow external functions to be set for 
handling ECDSA sign operations and RSA sign and decrypt operations.   

When the private key provider is used in Envoy, the server-side handshake function call can 
be configured to return immediately, and a callback is evoked when the handshake is ready 
to be completed, meaning that the cryptographic operation is ready.  

 

Figure 1. BoringSSL/TLS handshake in synchronous mode 

 

Figure 2. BoringSSL/TLS handshake in asynchronous mode 

 

Handshake() Handshake() Handshake()
Thread

TLS Library

Cb() Cb() Cb()

 

Intel® QuickAssist Technology -  Envoy 
TLS Acceleration with Intel® QAT 

 
Solution Brief 

 

 

 
Intel® QuickAssist Technology -  Envoy 
TLS Acceleration with Intel® QAT 
 

https://www.envoyproxy.io/
https://networkbuilders.intel.com/intel-technologies/experience-kits


Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  2 

Private Key Providers 
Envoy extensions in the main code tree are either core extensions or contrib extensions. The core extensions are part of the 
Envoy main container images, while the contrib extensions (along with the core extensions) are part of Envoy contrib 
container images. Now, Envoy code base has two contrib extensions for accelerating TLS handshakes using Intel® 
technologies: Intel® QAT (for Intel® QAT acceleration) and CryptoMB (for Intel® Advanced Vector Extensions 512 (Intel® 
AVX-512) acceleration).  

 

 
 

Figure 3.  Envoy TLS private key provider handshake flow 

CryptoMb private key provider uses Intel® AVX-512 multi-buffer instructions for accelerating handshakes. The Intel® AVX-
512 instructions are present starting with the 3rd Gen Intel® Xeon® Scalable processors, and they do not require any special 
hardware enabling. Just running Envoy on a suitable platform and enabling the CryptoMb private key provider in the Envoy 
configuration is enough. The multi-buffer instructions gather several RSA operations into a shared buffer. When the 8-slot 
buffer is full or when a timer expires, the RSA operations are processed using SIMD (single instruction, multiple data) 
instructions, which provide greater throughput than processing the RSA operations separately. The downside of this 
approach is the potentially increased latency because operations may need to wait in the buffer before the processing can be 
done. 

Envoy Intel® QAT Acceleration 
Envoy TLS configuration can be done by two methods: either using direct configuration from a configuration file or using SDS 
(Secret Discovery Service) protocol for remotely configuring Envoy from an external control plane. Intel® QAT TLS 
acceleration can be enabled in both ways.  

When using the direct configuration file method, the regular way for setting the private key is by adding it as a private_key field 
to Envoy’s common_tls_context: 

 

 

 

 

 

 

However, when Intel® QAT acceleration is required, the private_key field should be replaced with a suitably configured 
private_key_provider field: 

 

common_tls_context:  
  tls_certificates:  
  - certificate_chain:  
      filename: ”/tmp/rsa-cert.pem”  
    private_key:  
      filename: ”/tmp/rsa-key.pem” 



Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  3 

 

 

 

 

 

 

 

 

 
The Intel® QAT private key provider configuration has two fields: poll_delay and private_key. The private_key field works as a 
regular Envoy DataSource type. The poll_delay field is a Duration type and specifies how often the Intel® QAT instance should 
be polled when waiting for an answer to Intel® QAT request. The right value depends on the tradeoff between CPU 
consumption and latency requirements and might require experimentation depending on the workload setup. A value of 
0.002s (2 milliseconds) is a good starting point.  

Kubernetes* Deployment of Intel® QAT-Accelerated Envoy 
If Envoy is used in a Kubernetes environment, the Intel® QAT device plugin needs to be installed to the cluster. The device 
plugin finds which nodes have Intel® QAT support enabled and schedules Intel® QAT workloads on them (based on the 
Kubernetes deployment extended resource request). When the Intel® QAT-enabled Envoy is then scheduled on the node, the 
device plugin exposes one or more Intel® QAT VF devices to the Envoy container.  

 

 
 

Figure 4. Envoy SW stack enablement for Kubernetes  

Note that if the number of Intel® QAT resources, which are allocated to the container is increased, there may be increased 
performance because Intel® QAT private key provider will automatically set up load balancing between the available Intel® 
QAT instances. If the Intel® QAT VF devices are pointing to different physical Intel® QAT endpoints, there is a speedup 
potential. However, if the Intel® QAT VF devices come from the same physical QAT endpoint, there will be no performance 
increase.  

 

 

 

common_tls_context:  
  tls_certificates:  
  - certificate_chain:  
      filename: ”/tmp/rsa-cert.pem”  
    private_key_provider:  
      provider_name: qat  
      typed_config:  
        "@type": 
"type.googleapis.com/envoy.extensions.private_k
ey_providers.qat.v3alpha.QatPrivateKeyMethodCon
fig"  
         poll_delay: 0.002s  
         private_key:  
           filename: ”/tmp/rsa-key.pem”  



Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  4 

Intel® QAT Performance  
The performance benefit from using Intel® QAT for TLS handshakes depends on many factors. Most important is simply the 
amount of asymmetric cryptography that needs to be done because that makes the cryptography acceleration have more 
effect in the overall performance. For example, if there are only a few new TLS connections per second or if the selected RSA 
key size is small, the acceleration possibilities are smaller. Conversely, if the RSA key size is large and there are many incoming 
RSA connections, the possibility for performance increase is bigger. Another thing to consider is the number of CPU threads 
Envoy is running on. On a smaller number of CPU cores, the performance benefit is easier to see since the acceleration leaves 
the CPU cores free to do other useful work needed for connection processing.  

The performance impact has several components: the change in maximum throughput (requests / second), the change in 
latency (time required to complete a single operation), the change in CPU utilization, and the change in server power 
requirements. 

Test Setup 
The following performance numbers were measured on a pre-production 4th Gen Intel® Xeon® Scalable processor. An 
HTTPs load generator (K6) running on another node was creating a specific number of new TLS connections per second to 
the Envoy proxy. Every connection was created with a new TLS handshake–session reuse was not happening in this setup. 
The Envoy proxy was running pinned on a limited number of CPU hyper threads. All CPU hyper threads selected where sibling 
threads. For example, 8 hyper threads would come from 4 physical cores.  

Envoy was configured to test three configurations: Intel® QAT private key provider with a single Intel® QAT VF device, 
CryptoMb private key provider utilizing Intel® AVX-512 multi-buffer TLS acceleration, and default configuration with no TLS 
acceleration. For each test, Envoy was using a 2048-bit RSA key with X25519 key exchange protocol. Envoy was configured 
to return an HTTP 200 response code with an empty body for each HTTPs response. The throughput numbers show that 
when processing only new TLS connections, Intel QAT can increase the number of connections that can be processed. For 
example, with Envoy pinned to four CPUs, the throughput is 3.6x better when using Intel® QAT than with using non-
accelerated Envoy.  

 

 
 

Figure 5. Requests-per-second performance on CPU threads  

The latency measurements and CPU usage charts are from the benchmark where Envoy is pinned to four CPU cores. The 
very last value of each latency graph (where latency rises sharply) is removed from the graph, because latency measurement 
is not meaningful on a system with maximum load.  

 



Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  5 

 
 

Figure 6. Latency on four CPU cores in milliseconds (P99 handshake + P99 HTTP request)  

However, when the values below the knee point are considered, Intel® QAT has in most cases the lowest latency, and the 
difference is improved when the number of incoming new TLS connections increases.  

 

 
 

Figure 7. CPU Utilization on four CPU threads  

The CPU utilization on Figure 7 shows that when Envoy is not accelerated, the CPU usage scales in a linear way until it reaches 
the saturation point at almost one hundred percent CPU load. However, when Intel® QAT acceleration is used, the CPU load 
stays much lower. For example, at 2,000 requests / second, the difference in CPU load on the four cores is 30 percentage 
points. The saved CPU cycles can be used for other Envoy processing, such as running HTTP filters or other traffic 
processing. 

  

0

10

20

30

40

50

60

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

La
te

nc
y 

(L
ow

er
 is

 b
et

te
r)

Requests-per-second (Higher is better)

Latency on four CPU cores in milliseconds -
(P99 handshake + P99 HTTP request)

Intel® QAT acceleration SW acceleration (CryptoMb) No acceleration (Default)



Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  6 

Test Deployment 

Table 1. Software and hardware used for benchmarking  

CPU  2S Pre-production Intel® Xeon® Scalable Processor/ Intel® Xeon® Platinum 8480+   
Platform  Pre-production Intel reference platform  
OS  Ubuntu* 20.04.4 LTS  
Kernel  5.19.1-051901-generic  
Microcode  0x89000060  
Base Frequency  2.0GHz  
Hyper-threading  On  
Cores per Socket  56  
Turbo  Enabled  

Ethernet Adapter Summary  Ethernet Controller XXV710 for 25GbE SFP28  

Drive Summary  INTEL® SSDPELKX020T8 (2TB), 2 * INTEL SSDPF21Q800GB (800 GB)   

Installed memory 1 Ti total, 32*32GB DIMM, 4800 MT/s configured as 4400 MT/s 

Intel QAT driver  Linux 5.19.1 upstream driver  

Envoy  
Envoy contrib binary built from upstream git, SHA 
3e2f1507851b511689cdc07fd3aecf714912ba8a,  
(main branch, Aug 31, 2022)  

Test by  Intel  

Test date  Sep 2022  

 

Summary 
Envoy supports Intel® QAT for accelerating TLS handshakes. The performance benefit varies depending on the use case, but 
Intel® QAT can help in reducing CPU usage, reducing individual request latency, and increasing throughput. The Intel® QAT 
to Envoy support needs to be enabled by a configuration file change or by a dynamic Envoy listener configuration over the 
xDS protocol. In addition to that, the Envoy container must have Intel® QAT resources added to it by configuring Kubernetes 
cluster accordingly. 

  



Solution Brief | Intel® QuickAssist Technology - Envoy TLS Acceleration with Intel® QAT  
 

  7 

Terminology 

Table 2. Terminology 

Abbreviation Description 
CPU Central processing unit 

ECDSA Elliptic Curve Digital Signature Algorithm 

Intel® AVX-512 Intel® Advanced Vector Extensions 512 

Intel® QAT Intel® QuickAssist Technology 

RSA Rivest–Shamir–Adleman – A public-key cryptosystem 

SDS Secret Discovery Service 

SIMD Single Instruction Multiple Data 

TCP/IP Transmission Control Protocol/Internet Protocol 

TLS Transport Layer Security 

 

References 

Table 3. References 

Reference Source 

Envoy Intel QAT API 
https://www.envoyproxy.io/docs/envoy/latest/api-
v3/extensions/private_key_providers/qat/v3alpha/qat.proto 

Intel QAT landing page 
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-
technology-overview.html 

Intel QAT installation guide https://github.com/intel/qatlib/blob/main/INSTALL 

Intel QAT device plugin https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/qat_plugin/README.html  

Envoy benchmarking guide https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy 

 

Document Revision History 

Revision Date Description 
001 January 2023 Initial release. 

 
 
 
 
 
 
 
 
 

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Intel technologies may require enabled hardware, software or service activation. 

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands 
may be claimed as the property of others. 

 0123/DN/WIT/PDF 767057-001US 

https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/private_key_providers/qat/v3alpha/qat.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/private_key_providers/qat/v3alpha/qat.proto
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://github.com/intel/qatlib/blob/main/INSTALL
https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/qat_plugin/README.html
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_to_benchmark_envoy
http://www.intel.com/PerformanceIndex

	Executive Summary
	Introduction
	Private Key Providers
	Envoy Intel® QAT Acceleration

	Kubernetes* Deployment of Intel® QAT-Accelerated Envoy
	Intel® QAT Performance
	Test Setup
	Test Deployment
	Summary
	Terminology
	References
	Document Revision History


