
1 Introduction
Intel® Accelerated Solutions are configurations of hardware and software that have
been optimized for and accelerated by Intel technologies to minimize the challenges
of evaluation and deployment. This document describes an Intel Accelerated
Solution reference architecture that utilizes the 4th Gen Intel® Xeon® Scalable
processor family.

When network operators, service providers, cloud service providers, or enterprise
infrastructure companies choose a Network Functions Virtualization Infrastructure
(NFVI) Forwarding Platform Reference Architecture from Intel, they should be able
to deploy various virtualized forwarding plane applications more quickly, securely,
and effortlessly.

The solution leverages the hardened hardware, firmware, and software which allows
customers to integrate on top of this known platform configuration.

1.1 NFVI Forwarding Platform
This NFVI Forwarding Platform reference architecture is defined in collaboration
with Communication Service Providers and ecosystem partners to expose the
value of an I/O Balanced Architecture to maximize network I/O throughput with
NUMA nodes. It is an enhanced NFVI solution for 4G or 5G core User Plane
Functions (UPF), broadband use cases such as virtual Broadband Network Gateway
(vBNG), virtual Access Gateway Function (vAGF), Network Services such as virtual
Evolved Packet Core (vEPC), IPSEC Gateway application, and cable use cases
such as virtual Cable Modem Termination System (vCMTS) that have a great
demand for high performance and throughput.

This workload-optimized solution is designed to minimize the challenges of
infrastructure deployment and optimization for the best performance with balanced
IO across sockets for core-bound as well as IO-bound workloads. It defines the
software and hardware stacks and has step-by-step instructions on virtualized
Access Gateway Function (vAGF) deployment and optimization as well as the
throughput that can be achieved with this solution.

Intel Accelerated Solution

Authors
Sarita Maini

Padraig Connolly

Key Contributors
Ai Bee Lim

Andrew Duignan

Intel® Reference Architecture for NFVI
Forwarding Platform on 4th Gen Intel®
Xeon® Scalable Processors on Red Hat*
Enterprise Linux* with vAGF Workload

1

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Table 1. Terminology

TERM DESCRIPTION

AIC Add-In Card

API Application Program interface

AGF Access Gateway Function

BIOS Basic Input/Output System

BOM Bill of Materials

BtG Boot Guard Technology

CUPS Control Plane and User Plane Separation

DC Data Center

DIMM Dual Inline Memory Module

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

DUT Device Under Test

FN-RG Fixed Network – Residential Gateway

GbE Gigabit Ethernet

HQoS Hierarchical Quality of Service

Intel® QAT Intel® QuickAssist Technology

Intel® TXT Intel® Trusted Execution Technology

Intel® UPI Intel® Ultra Path Interconnect

Intel® VT Intel® Virtualization Technology

NFVI Network Function Virtualization Infrastructure

NIC Network Interface Controller

NUMA Non-Uniform Memory Access

NVMe* Non-Volatile Memory Express*

OAM Operation, Administration and Management

OCP Open Compute Project

OEM Original Equipment Manufacturer

PCIe* Peripheral Component Interconnect express*

QinQ A standard that allows multiple VLAN headers in an Ethernet frame

RAS Reliability, Availability, and Serviceability

SR-IOV Single Root Input/Output Virtualization

SSD Solid State Drive

TPM Trusted Platform Module

vAGF virtualized Access Gateway Function

vBNG virtual Broadband Network Gateway

vCMTS virtual Cable Modem Termination System

VIM Virtualization Infrastructure Management

VMX Virtual Machine Extension

VNFM Virtual Network Function Management

1.2 Terminology

2

Table 2. Reference Documents and Resources

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

1.3 Reference Documents and Resources

DOCUMENT DOCUMENT NUMBER/LOCATION

Intel® Select Solutions for Network Verification Scripts 639557

VBNG-VAGF.L.22.03.0-00072.tar.gz 764478

Red Hat's Certified Guest Operating System policy https://access.redhat.com/articles/973163

Wireline Access Evolution and 5G Fixed-Mobile Convergence https://builders.intel.com/docs/networkbuilders/wireline-access-
evolution-and-5g-fixed-mobile-convergence-1639769220.pdf

Intel® Ethernet Controller E810 Dynamic Device Personalization
(DDP) Technology Guide 617015

Intel® Ethernet Controller E810 Dynamic Device Personalization
Package (DDP) for Telecommunications Technology Guide 618651

System Check for Speculative Execution Side Channel 614140

RFC 2544, Benchmarking Methodology for Network Interconnect
Devices https://tools.ietf.org/html/rfc2544

RFC 1242, Benchmarking Terminology for Network
Interconnection Devices https://tools.ietf.org/html/rfc1242

RFC 6201, Device Reset Characterization https://tools.ietf.org/html/rfc6201

Intel® Select Solution for Network Function Virtualization
Infrastructure (NFVI) v3 on Red Hat* Reference Design 639782

2 Solution Components
This solution consists of select hardware and various Intel® Xeon® processor technologies along with optimized software and
firmware configurations.

2.1 Intel® Xeon® Processor Scalable Performance Family
Intel® Xeon® Scalable processors are designed to accelerate performance across the fastest-growing workloads. These
processors have the most built-in accelerators of any CPU on the market to help maximize performance efficiency for emerging
workloads, especially those powered by AI.

In addition to delivering outstanding general-purpose performance, Intel® Xeon® drives efficiency with built-in accelerators.
Data center operators can leverage built-in AI, telemetry, and power management tools to intelligently control electricity
usage.

Intel’s innovative workload accelerators enable end users to do more with less reducing TCO by delivering performance,
power, resource, and cost efficiency as well as providing advanced security technologies.

The 4th Gen Intel® Xeon® Scalable Processors (formerly code-named Sapphire Rapids) are the latest processors for
Datacenter workloads that offer:

• Enhanced Per Core Performance with up to 60 cores in a standard socket

• Enhanced Memory Performance with support for up to 4800MT/s DIMMs (2 DPC)

• Increased Memory Capacity with up to 8 channels

• Breakthrough System Memory & Storage with Intel® Optane™ persistent memory 200 series

• Built-in AI Acceleration with enhanced performance of Intel® Deep Learning Boost

• Faster UPI with 3 Intel® Ultra Path Interconnect (Intel® UPI) at 11.2 GT/s

• More, Faster I/O with PCI Express 4 and up to 64 lanes (per socket) at 16 GT/s

• New Hardware-Enhanced Security delivering security technologies leadership with Intel® Software Guard Extensions
(Intel® SGX), Intel® Total Memory Encryption (Intel® TME), Intel® Platform Firmware Resilience (Intel® PFR) etc.

• Enhanced Intel® Speed Select Technology (Intel® SST) with three capabilities supported on the majority of Gold CPUs

3

https://cdrdv2.intel.com/v1/dl/getContent/639557?explicitVersion=true&wapkw=639557%20
https://cdrdv2.intel.com/v1/dl/getContent/764478
https://access.redhat.com/articles/973163
https://builders.intel.com/docs/networkbuilders/wireline-access-evolution-and-5g-fixed-mobile-convergence-1639769220.pdf
https://builders.intel.com/docs/networkbuilders/wireline-access-evolution-and-5g-fixed-mobile-convergence-1639769220.pdf
https://cdrdv2.intel.com/v1/dl/getContent/617015
https://cdrdv2.intel.com/v1/dl/getContent/618651
https://cdrdv2.intel.com/v1/dl/getContent/614140?wapkw=614140
https://tools.ietf.org/html/rfc2544
https://tools.ietf.org/html/rfc1242
https://tools.ietf.org/html/rfc6201
https://cdrdv2.intel.com/v1/dl/getContent/639782

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

2.2 Intel® Ethernet 800 Series
Intel® Ethernet 800 Series offers:

• Higher Bandwidth as Intel’s first NIC with PCIe* 4.0 and 50Gb PAM4 SerDes

• Improved Application Efficiency with Application Device Queues (ADQ), Dynamic Device Personalization (DDP)

• Versatility with Flexible speeds: 2x100/50/25/10GbE, 4x25/10GbE, or 8x10GbE

• RDMA support for both iWARP and RoCEv2 providing a choice in hyper-converged networks

2.2.1 Intel® Ethernet Network Adapter E810 Drivers: In-tree vs. Out-of-tree
Generally, the NFVI Forwarding Platform reference architecture recommends in-tree Intel® Ethernet Adapter E810 ice/
iavf drivers and DDP components. However, the Ethernet Out-of-Tree (OOT) drivers often contain support for new features
and fixes to known issues. For example, the features such as Rate limiting, ADQ and eDDP (enhanced Dynamic Device
Personalization) are not presently supported in the in-tree driver for the E810 NICs.

The virtual Broadband Network Gateway being used as a workload in this reference architecture requires the OOT driver
due to limitations in in-tree driver support. Intel continues to work with Red Hat* to add support for these types of functions
in the Red Hat* Open Stack. Refer to https://access.redhat.com/articles/1067 which explains Red Hat* Support policy for
Out of Tree (OOT) drivers.

The E810 Drivers can be found at the following locations:

DRIVER OOT VERSION LOCATION

ice 1.9.11 https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-
e810-series-devices-under-linux.html

NVM 3.0
CVL3.0 Sampling/NVMUpdatePackage

https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-
utility-for-intel-ethernet-network-adapters-e810-series-linux.html

2.2.2 Intel® Network Adapters with Data Plane Development Kit (DPDK)
Intel® Network Products deliver continuous innovation for high throughput and performance for networking infrastructure.
The Intel® Network Adapter with Data Plane Development Kit (DPDK) provides highly optimized Network Virtualization
and fast data path packet processing. DPDK offers many use cases that are hardened on this NFVI Forwarding Platform.

2.2.3 Intel® Ethernet 800 Series Dynamic Device Personalization (DDP)
Dynamic Device Personalization (DDP) usage to reconfigure network controllers for different network functions on-demand,
without the need for migrating all VMs from the server, avoids unnecessary loss of compute for VMs during server cold
restart. It also improves packet processing performance for applications/VMs by adding the capability to process new
protocols in the network controller at run-time.

This kind of on-demand reconfiguration is offered in the Intel® Ethernet 800 Series NICs.

DDP describes the capability of Intel® Ethernet 800 Series devices to load an additional firmware profile on top of the
device’s default firmware image, enabling parsing and classification of additional specified packet types that can be distributed
to specific queues on the NIC’s host interface using standard filters. Software applies these custom profiles in a non-
permanent, transaction-like mode so that the original network controller’s configuration is restored after NIC reset or by
rolling back profile changes by software. Using APIs provided by drivers, personality profiles can be applied by the DPDK.
Support for kernel drivers and integration with higher level management/orchestration tools is in progress.

DDP can be used to optimize packet processing performance for different network functions, native or running in virtual
environment. By applying a DDP profile to the network controller, the following use cases could be addressed.

A general purpose, OS-default DDP package is automatically installed with all supported Intel® Ethernet Controller 800
Series drivers on Microsoft* Windows*, ESX*, FreeBSD*, and Linux* operating systems. Additional DDP packages are
available to address needs for specific market segments. For example, a telecommunications (Comms) DDP package is
available to support certain market-specific protocols in addition to the protocols in the OS-default package.

4

https://access.redhat.com/articles/1067
https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-e810-series-devices-under-linux.html
https://www.intel.com/content/www/us/en/download/19630/intel-network-adapter-driver-for-e810-series-devices-under-linux.html
https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-utility-for-intel-ethernet-network-adapters-e810-series-linux.html
https://www.intel.com/content/www/us/en/download/19626/non-volatile-memory-nvm-update-utility-for-intel-ethernet-network-adapters-e810-series-linux.html

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

• The OS-default DDP package supports the following:

 - MAC, EtherType, VLAN

 - IPv4, IPv6, TCP, ARP, UDP

 - SCTP, ICMP, ICMPv6, CTRL

 - LLDP, VXLAN-GPE, VXLAN (non-GPE), Geneve, GRE, NVGRE, RoCEv2

 - MPLS (up to 5 consecutive MPLS labels in the outermost Layer 2 header group)

• In addition to the previous list, the Comms DDP package also supports the following protocols:

 - GTP

 - PPPOE

 - L2TPv3

 - IPSec

 - PFCP

3 NFVI Forwarding Platform Reference Architecture Requirements
The primary focus of this reference architecture is to provide details of the customized NFVI Forwarding Platform configuration
along with supporting the performance data for a high performance/throughput workload such as vAGF.

This chapter also focuses on the design requirements for this NFVI Forwarding Platform solution.

3.1 Reference Architecture Hardware Requirements
The checklist in the table below is a guide for assessing the conformance to the NFVI Forwarding Platform hardware platform
requirement for the vAGF Configuration.

For the platform to conform, all requirements listed in the checklist below must be satisfied.

INGREDIENT REQUIREMENT
REQUIRED/

RECOMMENDED
QUANTITY

PER SERVER

Processor

Option 1: 4th Gen Intel® Xeon® Platinum 8470N Processor
at 1.7 GHz, 52C/104T, 300W

Option 2: 4th Gen Intel® Xeon® Gold 6428N at 1.8 GHz,
32C/64T, 185WOption 3: 4th Gen Intel® Xeon® Gold 6438N
at 2.0 GHz, 32C/64T, 205W

Required 2

Memory

Option 1: DRAM only configuration: 512 GB (16 x 32 GB
DDR5, 4800 MHz)

Required

16

Option 2: DRAM only configuration: 256 GB (16 x 16 GB
DDR5, 4800 MHz) 16

Network Intel® Ethernet Network Adapter E810-2CQDA2 Required 4

Storage (Boot
Drive)

Intel® SATA Solid State Drive D3 S4510 or higher at 480 GB
or larger boot drive Required 1

LAN on
Motherboard
(LOM) or NIC

1/10 Gbps port for Internet access Required 1

Table 3. NFVI Forwarding Platform - vAGF HW Configuration

5

Note: The software versions listed in the previous table are minimum requirements. It is recommended to use the latest
version if available. This is a hardened software stack that has gone through verification.

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

3.2 Reference Architecture Software Requirements
The table below is a guide for assessing the conformance to the NFVI Forwarding Platform software requirements.

For the platform to conform, all requirements listed in the checklist below must be satisfied.

INGREDIENT SW VERSION DETAILS

Firmware

BIOS

MCU

EGSDCRB1.86B.8901.P01.2209200239

0xab0000c0

Intel® Ethernet Network Adapter E810-2CQDA2

ice driver: 4.18.0-372.16.1.el8_6.x86_64

firmware-version: 2.40

ice driver: 1.9.11

firmware-version: 3.00

System
Under Test

OS Red Hat* Enterprise Linux*
release 8.6 (Ootpa) 4.18.0-372.16.1.el8_6.x86_64

APPs/Libraries

vAGF 22.03

DPDK 20.11.5

ICE COMMS Package version DDP ICE COMMS 1.3.31.0

3.3 BIOS Settings
To meet the performance requirements for the NFVI Forwarding Platform solution, the following BIOS settings in Table 5
provide guidance for optimized settings with 4th Gen Intel® Xeon® Scalable processors.

MENU
(ADVANCED) PATH TO BIOS SETTINGS BIOS SETTINGS

REQUIRED SETTING FOR
DETERMINISTIC PERFORMANCE

Socket
Configuration

IIO Configuration -> Socket 0 Configuration ->IIO
Pcie Ports 1 thru 7 IOU0 to IOU7 <x_x8x_x8>

Socket
Configuration

IIO Configuration -> Socket 1 Configuration ->IIO
Pcie Ports 1 thru 7 IOU0 to IOU7 <x_x8x_x8>

Socket
Configuration

Advanced Power Management Configuration ->
CPU P State Control SpeedStep (Pstates) Disable

Socket
Configuration

Advanced Power Management Configuration ->
CPU P State Control Activate SST-BF Disable

Socket
Configuration

Advanced Power Management Configuration ->
CPU P State Control Energy Efficient Turbo Disable

Socket
Configuration

Advanced Power Management Configuration ->
Hardware PM State Control Hardware P-States Native Mode

Socket
Configuration

Advanced Power Management Configuration ->
CPU C State Control Enable Monitor MWait Auto

Socket
Configuration

Advanced Power Management Configuration ->
CPU C State Control CPU C1 auto demotion Disable

Socket
Configuration

Advanced Power Management Configuration ->
CPU C State Control CPU C1 auto undemotion Disable

Socket
Configuration

Advanced Power Management Configuration ->
Package C State Control Package C State C0/C1 state

Socket
Configuration

Advanced Power Management Configuration ->
CPU - Advanced PM Tuning

Uncore Freq Scaling Enable

Table 4. NFVI Forwarding Platform – vAGF SW Configuration

6

Note: Some servers may not provide the BIOS options as documented in the table above.

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Socket
Configuration

Advanced Power Management Configuration ->
CPU - Advanced PM Tuning Uncore Freq RAPL Disable

Socket
Configuration

Advanced Power Management Configuration ->
CPU - Advanced PM Tuning -> Energy Perf BIAS Power Performance Tuning BIOS Controls EPB

Socket
Configuration

Advanced Power Management Configuration ->
CPU - Advanced PM Tuning -> Energy Perf BIAS

ENERGY_PERF_BIAS_
CFG Mode Performance

Socket
Configuration

Advanced Power Management Configuration ->
CPU - Advanced PM Tuning -> Energy Perf BIAS Workload Configuration I/O Sensitive

3.4 Platform Technology Requirements
This section lists the requirements for Intel’s advanced platform technologies.

NFVI requires Intel® VT and Intel® Scalable I/O Virtualization (Intel® Scalable IOV) to be enabled to reap the benefits of
hardware virtualization. Either Intel® Boot Guard or Intel® Trusted Execution Technology establishes the firmware verification,
allowing for platform static root of trust.

PLATFORM TECHNOLOGIES ENABLE/DISABLE REQUIRED/RECOMMENDED

Intel® VT

Intel® CPU VMX Support Enable Required

Intel® Virtualization Technology (Intel® VT) for
Directed I/O (Intel® VT-d) Enable Required

Single Root I/O Virtualization (SR-IOV) Enable Required

Intel® Boot
Guard Intel® Boot Guard Enable Recommended

Intel® TXT Intel® Trusted Execution Technology Enable Recommended

Table 6. Platform Technology Requirements

3.5 Platform Security
This NFVI solution must implement and enable Intel® Boot Guard Technology to ensure that the platform firmware is verified
to be suitable in the boot phase.

In addition to protecting against the known attacks, Intel recommends installing the Trusted Platform Module (TPM). The
TPM enables administrators to secure platforms for a trusted (measured) boot with known trustworthy (measured) firmware
and OS, as well as enabling local and remote verification by third parties to advertise such known safe conditions for these
platforms with the implementation of Intel® Trusted Execution Technology (Intel® TXT).

Table 5. Platform BIOS Settings

7

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

4 Virtual Access Gateway Function (vAGF)

4.1 vAGF Overview
The Access Gateway Function (AGF) is a function that provides connectivity from a wireline Access Network to the 5G Core
Network. Access Gateway Function (AGF) is the access point for subscribers, through which they connect to the Internet
and private networks. It provides critical subscriber management functions, such as authentication, IP address assignment,
bandwidth allocation and accounting.

When a connection is established between the Customer Premises Equipment (CPE) and the AGF network function, the
subscriber can access the broadband services provided by the telecom operator or Internet Service Provider (ISP). The role
of the AGF is to aggregate traffic from various subscriber sessions from an access network and route it to the network of the
service provider.

Since the subscriber directly connects to the edge router, vAGF effectively manages subscriber access and subscriber
management functions such as:

• Authentication, authorization, and accounting (AAA) of subscriber sessions

• IP Address assignment

• Security

• Policy management

• Quality of Service (QoS) and Traffic Management

Access
Gateway
Function

AGF-CP

AGF-UP

5G Core
(Control Plane,

User Plane) Data
Network

5G-RG

Radio
Access
Network
(3GPP)

FN-RG
(legacy)

Wireline
Access
Network

The vAGF is a virtualized software instantiation of what is typically a large ASIC-based fixed-function appliance usually
located in a central office or metro Point of Presence (PoP). The vAGF is implemented as a set of Virtual Network Function
(VNF) instances with each instance supporting a single Subscriber Service-Group, which typically contains hundreds of
home routers/subscribers.

4.2 vAGF Pipeline
The vAGF Data Plane (DP), or User Plane (UP), is built around two packet processing pipelines - uplink (UL) and downlink
(DL) - described below. The uplink data plane manages the flow of traffic from the end user’s Customer Premises Equipment
(CPE) to the core network. The downlink data plane handles the flow of traffic and data from the core network network to the
end user. It manages and schedules traffic to users attached to the AGF.

The vAGF DP has been implemented using the FD.io VPP framework and run as a containerized application using Kubernetes
as an orchestrator.

This reference architecture focuses on the data plane functions since the main goal is to show maximization of I/O for intense
workloads like vAGF.

Figure 1. vAGF Overview

8

Figure 2. AGF Data Plane

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Packet
Rx

ACL

Eth QinQ PPPoE IP Data

Access Network Packet

GTPU
Encap

Packet
Routing

Packet
Tx

Packet
Rx

HQoS Traffic
Mgmt

QinQ/PPPoE
Encap

Packet
Routing

Flow
Classification ACL

Packet
Tx

Eth Outer IP UDP

5G Core Network Packet

GTPU IP Data

AGF Data Plane

AGF Uplink Pipeline

AGF Downlink Pipeline

Flow
Classification

Metering and
Policy

4.2.1 Uplink Pipeline Overview
The reference implementation of the AGF uplink packet processing pipeline consists of the following functions:

Packet Rx (Receive): Packets from the wireline subscriber access network are received from the Network Interface Controller
(NIC) ports using DPDK PMD drivers and sent to the next stage to begin packet processing.

Firewall/Access Control List (ACL): This stage employs an Access Control List (ACL) table to implement firewall policies
(i.e., block rules) on the incoming traffic. This blocklist firewall has 150 block (random) rules. Table lookup operation is
performed on each received packet, and in the case of rule match, the packet is dropped.

Flow Classification: This stage classifies each subscriber flow based on the source MAC address and double VLAN tags
and strips the Q-in-Q header (and PPPoE header if PPPoE subscriber traffic is enabled).

Flow Metering and Policing: This function meters the subscriber traffic flows to determine the compliance with a service
contract and applies traffic policing to enforce the contract. As a result, packets that conform to a specified rate are sent to
the next stage of the pipeline while packets that violate the rate are dropped.

GTPu Encapsulation: At this stage, a GTP-U header is added to the IP packet

Routing: At this stage, an Ethernet header is added based on the route

Packet Tx (Transmit): Finally, the packets are sent out to the core network. With the help of DPDK poll mode drivers, packets
are transmitted out of the system through the NIC ports connected to wireline core network.

4.2.2 Downlink Pipeline Overview
The reference implementation of the vAGF Downlink packet processing pipeline consists of the following functions. The
incoming downlink packet typically consists of an Ethernet frame with IP/UDP header. The outbound traffic will be an
Ethernet frame with encapsulated QinQ VLAN and IP/UDP headers.

Packet Rx (Receive): Packets from the core network are received from the Network Interface Controller (NIC) ports using
DPDK PMD drivers and sent to the next stage to begin packet processing.

Firewall/Access Control List (ACL): This stage employs an access control list (ACL) table to implement firewall policies
(i.e., allow rules) on the incoming traffic. Table lookup operation is performed on each received packet, and in the case of
rule match, the packet is permitted to the next stage. The Allow list firewall has 4K allow (subscriber flow) rules.

Flow Classification: This stage performs exact-match classification on the 5-tuple header fields (inner IPv4 source and
destination IP address, UDP source and destination ports and IP transport layer protocol ID) of the input packets to identify
the session and stores the session info as packet metadata to be used later in the pipeline. In addition to this, access network
encapsulations are stripped off the packets at this stage. It first strips the GTP-U header and then classifies each subscriber
flow based on the 5-tuple header.

9

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

QinQ/Q-in-Q+PPPoE Encapsulation and Routing: At this stage, packets are encapsulated with a QinQ header added to
the inner IPv4 packet based on the flow ID and (and PPPoE header if enabled) and routed to the access network via the
correct network interface port.

Hierarchical QoS Traffic Management: Each packet runs through a hierarchical QoS (HQoS) scheduler to ensure that
thousands of subscribers can get the desired broadband capacity as per the service contract. It implements a 4-level HQoS
with one pipe per subscriber (configured to allow all traffic to pass)

Packet Tx (Transmit): With the help of DPDK poll mode drivers, packets are transmitted out of the system through the NIC
ports connected to access network. Downlink Traffic Profile

4.3 vAGF Test Setup
The Intel® AGF Data Plane Package can be used to install multiple instances of a vAGF data plane reference application in a
Linux Container environment on an Intel® Xeon® server.

The application and environment can be used to evaluate the performance of a vAGF data plane on Intel® Xeon® based
platforms. This is a POC evaluation application only and is neither intended nor is fully featured, hardened, or secured. Deploy
in an isolated evaluation environment only.

Source code and build instructions are provided for the vAGF data plane application, and to set up an environment for traffic-
generation and performance analysis of the application.

Figure 3 shows the test setup with multiple Physical Functions (PFs) split into Virtual Functions (VFs) that connect to each
vAGF instances on both the sockets. The System Under Test (SUT) is connected to the Traffic generator. Ixia IxNetwork is
used to generate the L2-3 traffic required to benchmark the vAGF. Each 100GbE port on Ixia is connected directly to a 100GbE
port on the SUT. The vAGF container instances are NUMA-optimized, ensuring that the cores and VFs used in a specific
vAGF instance are in a processor and a NIC in the same socket.

Ixia IxNetwork is configured for both Uplink and Downlink Traffic Flows in a single port.

System Under Test

Ixia Traffic Generator
4 x 100G IXIA ports

4 x 100G E810-2CQDA2 ports

Socket 0

PF0
1 U

L V
F, 1 D

L V
F

A
gf-0

1 U
L V

F, 1 D
L V

F
A

gf-1

1 U
L V

F, 1 D
L V

F
A

gf-2

1 U
L V

F, 1 D
L V

F
A

gf-3

PF1

1 U
L V

F, 1 D
L V

F
A

gf-4

1 U
L V

F, 1 D
L V

F
A

gf-5

1 U
L V

F, 1 D
L V

F
A

gf-6

1 U
L V

F, 1 D
L V

F
A

gf-7

PF2

1 U
L V

F, 1 D
L V

F
A

gf-8

1 U
L V

F, 1 D
L V

F
A

gf-9

1 U
L V

F, 1 D
L V

F
A

gf-10

1 U
L V

F, 1 D
L V

F
A

gf-11

PF3

1 U
L V

F, 1 D
L V

F
A

gf-12

1 U
L V

F, 1 D
L V

F
A

gf-13

1 U
L V

F, 1 D
L V

F
A

gf-14

1 U
L V

F, 1 D
L V

F
A

gf-15

4 x 100G IXIA ports

4 x 100G E810-2CQDA2 ports

Socket 1

PF4

1 U
L V

F, 1 D
L V

F
A

gf-16

1 U
L V

F, 1 D
L V

F
A

gf-17

1 U
L V

F, 1 D
L V

F
A

gf-18

1 U
L V

F, 1 D
L V

F
A

gf-19

PF5

1 U
L V

F, 1 D
L V

F
A

gf-20

1 U
L V

F, 1 D
L V

F
A

gf-21

1 U
L V

F, 1 D
L V

F
A

gf-22

1 U
L V

F, 1 D
L V

F
A

gf-23

PF6

1 U
L V

F, 1 D
L V

F
A

gf-24

1 U
L V

F, 1 D
L V

F
A

gf-25

1 U
L V

F, 1 D
L V

F
A

gf-26

1 U
L V

F, 1 D
L V

F
A

gf-27

PF7

1 U
L V

F, 1 D
L V

F
A

gf-28

1 U
L V

F, 1 D
L V

F
A

gf-29

1 U
L V

F, 1 D
L V

F
A

gf-30

1 U
L V

F, 1 D
L V

F
A

gf-31

Figure 3. vAGF Test Setup

Detailed steps on configuring the Ixia traffic generator for benchmarking vAGF is described in Section 6 – Traffic Generator
Configuration Guide.

The Intel® reference AGF application is benchmarked to understand how the architecture works in a real context. To get a
more comprehensive view, two different configurations have been benchmarked - a symmetric traffic workload and an
asymmetric traffic workload.

The following table provides more key information points about the benchmarking setup for these two test configurations.

10

https://cdrdv2.intel.com/v1/dl/getContent/764478

Table 7. Symmetric vs Asymmetric Traffic Workloads

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Test Parameters Configuration 1 Settings
Symmetric Traffic Workload

Configuration 2 Settings
Asymmetric Traffic Workload

Maximum number of vAGF instances 32 32

Maximum number of Instances per socket 16 16

Number of vCPUs per instance 4 4

Max number of active vCPUs per socket 64 64

Number of VFs per instance 2 2

Number of Flows per vAGF instance 2 2

Max number of instances per E810-2CQDA2
100G NIC port 4 4

Traffic Line Rate per instance
25 Gbps
- 12.5 Gbps downlink max
- 12.5 Gbps uplink max

25 Gbps
- 22.25 Gbps downlink max
- 2.75 Gbps uplink (constant)

Traffic Ratio (Downlink : Uplink) 1:1 89:11

Frame Sizes
DL: 650 bytes
UL: 650 bytes

DL: 504 bytes
UL: 128 bytes

Acceptable Frame Loss 0.001% of Line Rate 0.001% of Line Rate

Each vAGF container instance has both a downlink and uplink pipeline. Each 100 Gbps Intel® Ethernet E810-2CQDA2 Port
has 4 vAGF instances running on it, each served with 25 Gbps.

5 vAGF Installation Guide

5.1 vAGF Application Server Preparation
On the vAGF server, perform the following steps to prepare the server for the installation of vAGF.

5.2 System BIOS Settings
Configure the following within the system BIOS settings:

1. Enable Intel® Hyper-Threading Technology (Intel® HT Technology).
2. Enable Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d) (SR-IOV).
3. Set CPU Power and Performance profile to “Performance”.
4. Disable Intel® Turbo Boost Technology.
5. Disable Energy Efficient Turbo.
6. Disable Enhanced Intel SpeedStep® Technology.

Refer to Table 5 for optimized BIOS settings for this workload

5.3 RHEL* 8.6 Installation
1. Download the RHEL 8.6 Binary DVD from the Red Hat* Enterprise Linux* website.
2. Use the *.iso file to create bootable USB installation media and install the USB drive onto a USB port on the server.
3. Boot into the RHEL 8.6 installer. Select “Install Red Hat* Enterprise Linux*”.
4. Select the appropriate options for Language, Keyboard layout, time zone and Network settings, SSD, partitioning, root

password, create a user etc.

Note: Turbo-boost, P-States, and C-States can be controlled on a per core basis using the Intel® power-management tools
available from https://github.com/intel/CommsPowerManagement.

11

https://github.com/intel/CommsPowerManagement

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

5.4 Install vAGF Dependencies
1. Install the following package dependencies:

subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms --enable=rhel-8-for-
x86_64-baseos-rpms

yum groupinstall “Development Tools”

yum install -y kernel-tools numactl numactl-devel libvirt-devel socat python38 kernel-
devel-$(uname -r)

yum install -y podman-docker

pip3 install fabric -U --force-reinstall

pip3 install paramiko -U --force-reinstall

pip3 install cryptography -U --force-reinstall

yum install elfutils-libelf-devel

2. Install the Intel® ice network adapter driver for PCIe:
Download ice driver out-of-tree version 1.9.11

tar -xvf ice-1.9.11.tar.gz

cd ice-1.9.11/src/

make

make install

modprobe -r ice; modprobe ice

3. Download the Comms DDP package that enables the NIC to parse extra header fields such as PPPoE and GTPu, from this
link

unzip '800 Series DDP Comms Package 1.3.31.0.zip'

unzip ice_comms-1.3.31.0.zip -d ice-ddp-comms

cd ice-ddp-comms/

cp ice_comms-1.3.31.0.pkg /lib/firmware/updates/intel/ice/ddp/

cp ice.pkg /lib/firmware/updates/intel/ice/ddp/

modprobe -r ice

modprobe ice

To confirm that the DDP ICE COMMS Package version 1.3.31.0 is successfully loaded:
dmesg | grep COMMS

4. Configure the Linux* Kernel settings.
The following should be configured in Linux* Kernel Grub settings:

Set huge-page memory size and number of pages for DPDK app:

(default_hugepagesz=2M hugepagesz=2M hugepages=30024)

Enable SR-IOV (intel_iommu=on iommu=pt).

Disable hardware control of P-states (intel_pstate=disable)

Isolate vAGF dataplane cores from the Linux* kernel task scheduler.

For example: isolcpu = isolcpus=3-31,35-63,67-95,99-127).

5. Run the DPDK utility to verify logical core layout for CPU socket 0 and socket 1
$DPDK_ROOT_RELEASE/usertools/cpu_layout.py

6. Compile the GRUB configuration and reboot the server for these settings to take effect:
grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

reboot

5.5 vAGF Dataplane Application Environment Set-up
7. Copy Intel’s vBNG-vAGF Reference Architecture package to the root directory of the target vAGF server and extract

files as root user:

Note: For pip3, ensure that all_proxy and/or socks_proxy environment variables are not set. If either of these environment
variables are set, pip will generate an error related to missing dependencies for SOCKS support.

Note: The isolcpus settings will need to be adapted to the specific core layout of the CPU.

12

https://www.intel.com/content/www/us/en/download/19660/intel-ethernet-800-series-telecommunication-comms-dynamic-device-personalization-ddp-package.html

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

cp VBNG-VAGF.L.22.03.0-00072.tar.gz /root

cd /root

tar -zxvf VBNG-VAGF.L.22.03.0-00072.tar.gz

The vAGF application and environment files are extracted to the /root/AGF directory

8. Start podman (Linux* container engine).
systemctl disable firewalld

systemctl stop firewalld

systemctl start podman

9. Build the vf-init podman image:

a. Move to the VF-Init directory:
cd AGF/vf-init

b. Build the VF-Init podman image
podman build --tag vf-init:22.03 . --build-arg http_proxy=$http_proxy --build-arg https_
proxy=$https_proxy

10. Build the vAGF container:
a. Move to the AGF/vAGF directory (From VF-Init directory):

cd ../vAGF

b. In AGF/vAGF/Dockerfile, add this line after line 41, to increase the number of logical cores supported to 512:
RUN sed -i '/-Db _ pie=true*/a \ \ \ \ \ \ \ \ -Dmax _ lcores=512 \\' /opt/vagf _ vpp/build/
external/packages/dpdk.mk

c. Using podman build the vAGF image:
podman build --tag vagf:22.03 . --build-arg http_proxy=$http_proxy --build-arg https_
proxy=$https_proxy

11. Create VFs:
a. Check what available Intel® Ethernet Network Adapter E810-2CQDA2 resources you have on your vAGF server:

lshw -c network -businfo | grep E810

For example, suppose your output was as follows:
pci@0000:86:00.0 ens13f0 network Ethernet Controller E810-C for QSFP

pci@0000:86:00.1 ens13f1 network Ethernet Controller E810-C for QSFP

pci@0000:d8:00.0 ens21f0 network Ethernet Controller E810-C for QSFP

pci@0000:d8:00.1 ens21f1 network Ethernet Controller E810-C for QSFP

You should use a PF from each Bus Pool (For E810-2CQDA2) thus to create your VFs it should be:
echo 10 > /sys/class/net/ens13f0/device/sriov_numvfs

echo 10 > /sys/class/net/ens21f0/device/sriov_numvfs

12. Bind VFs to DPDK:
a. Download igb_uio kmod:

git clone http://dpdk.org/git/dpdk-kmods && cd dpdk-kmods/linux/igb_uio/

make

modprobe uio && insmod igb_uio.ko

b. Download and un-tar DPDK:
cd

wget https://fast.dpdk.org/rel/dpdk-20.11.5.tar.xz && tar -xvf dpdk-20.11.5.tar.xz

c. Bind the required VFs to DPDK:
./dpdk-stable-20.11.5/usertools/dpdk-devbind.py -b igb_uio $(lshw -c network -businfo | grep
-v "v1 " | grep "Virtual Function" | awk '{print $2}')

Note: VF-Init is used to program the E810 eSwitch using the new DCF PMD technology

13

http://dpdk.org/git/dpdk-kmods
https://fast.dpdk.org/rel/dpdk-20.11.5.tar.xz

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

d. Enable trust mode on the VF 0 of each PF that you will be using
ip link set ens13f0 vf 0 trust on

ip link set ens21f0 vf 0 trust on

13. Make a note of the cpus to assign to your workloads later on:
Use cpu_layout.py to determine core enumeration and their hyper-threaded pair.

./dpdk-stable-20.11.5/usertools/cpu_layout.py

cores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31]

sockets = [0, 1]

Example for a 32-core processor:

Core and Socket Information (as reported by '/sys/devices/system/cpu')

Socket 0 Socket 1

Core 0 [0, 64] [32, 96]

Core 1 [1, 65] [33, 97]

Core 2 [2, 66] [34, 98]

Core 3 [3, 67] [35, 99]

Core 4 [4, 68] [36, 100]

Core 5 [5, 69] [37, 101]

Core 6 [6, 70] [38, 102]

Core 7 [7, 71] [39, 103]

Core 8 [8, 72] [40, 104]

Core 9 [9, 73] [41, 105]

Core 10 [10, 74] [42, 106]

Core 11 [11, 75] [43, 107]

Core 12 [12, 76] [44, 108]

Core 13 [13, 77] [45, 109]

Core 14 [14, 78] [46, 110]

Core 15 [15, 79] [47, 111]

Core 16 [16, 80] [48, 112]

Core 17 [17, 81] [49, 113]

Core 18 [18, 82] [50, 114]

Core 19 [19, 83] [51, 115]

Core 20 [20, 84] [52, 116]

Core 21 [21, 85] [53, 117]

Core 22 [22, 86] [54, 118]

Core 23 [23, 87] [55, 119]

Core 24 [24, 88] [56, 120]

Core 25 [25, 89] [57, 121]

Core 26 [26, 90] [58, 122]

Core 27 [27, 91] [59, 123]

Core 28 [28, 92] [60, 124]

Core 29 [29, 93] [61, 125]

Core 30 [30, 94] [62, 126]

Core 31 [31, 95] [63, 127]

--

14

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

14. Run VF-Init Instance:
podman run -d --network="host" --privileged=true -v /dev/hugepages:/dev/hugepages -v /lib/firmware/
updates/intel/ice/ddp/:/lib/firmware/updates/intel/ice/ddp/ --cpuset-cpus=0,1 –env PCIDEVICE _ INTEL _
COM _ INFRA _ DCF=0000:16:01.0,0000:19:01.0,0000:27:01.0,0000:2a:01.0,0000:a8:01.0,0000:ab:01.0,0000:b8:01.
0,0000:bb:01.0 --env MY _ POD _ IP=localhost --name=vf-init-0 -h vf-init-0 -it vf-init:22.03

a. Once the VF-Init instance is running, we now need to program the rules, this can be done using telnet by running
the following:

telnet localhost 8152

vf-init>

vf-init> set mac 00:00:00:01:WW:XX Y Z

Where:
• WW is replaced by instance ID
• XX is replaced by VF type (00 for Uplink and 01 for Downlink)
• Y is replaced by VF ID
• Z is replaced by Port ID

Examples:
Uplink 0000:86:01.0:
vf-init> set mac 00:00:00:01:00:00 2 0

vf-init> set mac 00:00:00:01:01:00 3 0

vf-init> set mac 00:00:00:01:02:00 4 0

vf-init> set mac 00:00:00:01:03:00 5 0

Downlink 0000:86:01.0:
vf-init> set mac 00:00:00:01:00:01 6 0

vf-init> set mac 00:00:00:01:01:01 7 0

vf-init> set mac 00:00:00:01:02:01 8 0

vf-init> set mac 00:00:00:01:03:01 9 0

Uplink 0000:d8:01.0:
vf-init> set mac 00:00:00:01:04:00 2 1

vf-init> set mac 00:00:00:01:05:00 3 1

vf-init> set mac 00:00:00:01:06:00 4 1

vf-init> set mac 00:00:00:01:07:00 5 1

Downlink 0000:d8:01.0
vf-init> set mac 00:00:00:01:04:01 6 1

vf-init> set mac 00:00:00:01:05:01 7 1

vf-init> set mac 00:00:00:01:06:01 8 1

vf-init> set mac 00:00:00:01:07:01 9 1

15. Run vAGF docker instances (Uplink and Downlink are in same container).
podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--cpuset-cpus=<CLI-MGMT-CPU-ID>,<DL-CPU2-ID>,<UL-CPU-ID>,<DL-CPU-ID> \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:<UL-VF-PCI-ADDRESS> \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:<DL-VF-PCI-ADDRESS> \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=<SYSTEM-HOSTNAME> \

--env ETCD _ ENABLED=false --name=agf-<INST-ID> -h agf-<INST-ID> \

-it vagf:22.03

15

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Where:
• <CLI-MGMT-CPU-ID> is replaced by an isolated core (Use step 7 above to figure this out)
• <DL-CPU2-ID> is replaced by an isolated vCPU (Use step 7 above to figure this out)
• <UL-CPU-ID> is replaced by an isolated vCPU (Use step 7 above to figure this out)
• <DL-CPU-ID> is replaced by an isolated vCPU (Use step 7 above to figure this out) (Make sure this is on the

same Physical core as <DL-CPU2-ID> or else performance will degrade significantly)
• <UL-VF-PCI-ADDRESS> is replaced by a data plane VF (Make sure this aligns with the rules set in step 8)
• <DL-VF-PCI-ADDRESS> is replaced by a data plane VF (Make sure this aligns with the rules set in step 8)
• <SYSTEM-HOSTNAME> is replaced by the hostname of your vAGF server
• <INST-ID> is replaced by the instance ID of the container

• Y is replaced by VF ID
• Z is replaced by Port ID

cat /sys/bus/pci/devices/0000\:86\:01.2/numa _ node

Examples for a 52-core processor:
podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=2,3,106,107 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:16:01.2 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:16:01.6 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-0 -h agf-0 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=4,5,108,109 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:16:01.3 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:16:01.7 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-1 -h agf-1 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=6,7,110,111 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:16:01.4 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:16:02.0 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-2 -h agf-2 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=8,9,112,113 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:16:01.5 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:16:02.1 \

Note: Make sure all VFs and CPU-IDs are on the same NUMA node or else performance will significantly degrade, you
can check the NUMA Node of a VF using this command:

16

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-3 -h agf-3 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=10,11,114,115 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:19:01.2 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:19:01.6 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-4 -h agf-4 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=12,13,116,117 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:19:01.3 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:19:01.7 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-5 -h agf-5 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=14,15,118,119 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:19:01.4 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:19:02.0 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-6 -h agf-6 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=16,17,120,121 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:19:01.5 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:19:02.1 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-7 -h agf-7 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=18,19,122,123 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:27:01.2 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:27:01.6 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-8 -h agf-8 \

17

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=20,21,124,125 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:27:01.3 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:27:01.7 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-9 -h agf-9 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=22,23,126,127 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:27:01.4 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:27:02.0 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-10 -h agf-10 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=24,25,128,129 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:27:01.5 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:27:02.1 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-11 -h agf-11 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=26,27,130,131 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:2a:01.2 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:2a:01.6 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-12 -h agf-12 \

-it localhost/:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=28,29,132,133 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:2a:01.3 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:2a:01.7 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-13 -h agf-13 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

18

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=30,31,134,135 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:2a:01.4 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:2a:02.0 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-14 -h agf-14 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=32,33,136,137 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:2a:01.5 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:2a:02.1 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-15 -h agf-15 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=54,55,158,159 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:a8:01.2 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:a8:01.6 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-16 -h agf-16 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=56,57,160,161 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:a8:01.3 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:a8:01.7 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-17 -h agf-17 \

-it localhost/vagf:22.03

sleep 10

podman ps -a

podman run -d --privileged=true -v /dev/hugepages:/dev/hugepages \

--env CPUSET=58,59,162,163 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ UL=0000:a8:01.4 \

--env PCIDEVICE _ INTEL _ COM _ APP _ AGF _ UP _ DL=0000:a8:02.0 \

--env MY _ POD _ IP=localhost --env MY _ NODE _ NAME=arch5-hddc301 \

--env ETCD _ ENABLED=false --name=agf-18 -h agf-18 \

-it localhost/vagf:22.03

19

Figure 4. Add Traffic Items

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

6 Traffic Generator Configuration Guide

6.1 Ixia as Traffic Generator
1. Select Traffic and Add L2-3 Traffic Items.

2. Create each endpoint with one port as source and same port as destination. Repeat the same for all the required Traffic
Items.

Figure 5. Create Required Endpoints

20

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

6.2 Configure Traffic Items Based on the Uplink or Downlink Configuration

6.2.1 Uplink Flow Groups
Configure the following settings that are common for all the Flow Groups. Add the VLAN followed by another VLAN to
simulate QinQ followed by IPv4 and then UDP protocols to the frame.

• Destination MAC Address: Described below
• Source MAC Address:

 - Mode: Increment
 - Start: 6e:00:00:00:00:01
 - Step: 00:00:00:00:00:01
 - Count: 4096

• Ethernet Type: 0x88a8
• VLAN-ID: 0
• Ethernet Type: 0x8100
• VLAN-ID:

 - Mode: Increment
 - Start: 0
 - Step: 1
 - Count: 4096

• Ethernet Type: 0x8864
• PPPoE Session-ID:

 - Mode: Increment
 - Start: 0
 - Step: 1
 - Count: 4096

• Source IP Address:
 - Mode: Increment
 - Start: 110.0.0.1
 - Step: 0.0.0.1
 - Count: 4096

• Destination IP Address: 210.0.0.1
• UDP Source Port:

 - Mode: Increment
 - Start: 50176
 - Step: 1
 - Count: 4096

• UDP Destination Port: 443
• Payload: Increment Byte

Figure 6. Add Protocols to the Frame in the Packet/QoS Editor

21

Table 8. Uplink Flow Traffic Item Variable Values

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Table 8 shows example Destination MAC Address for the traffic items starting from 0 to 7, for a total of 8 uplink instances,
in the order shown here. It can be extended to 32 instances by incrementing the 5th octet of the MAC address.

IXIA* 8x25GbE Traffic Profile - vAGF Uplink Traffic Item

TRAFFIC ITEM TX PORT RX PORT DESTINATION MAC ADDRESS

Flow Group 1 Uplink Port 0 Uplink Port 0 00:00:00:01:00:00

Flow Group 2 Uplink Port 0 Uplink Port 0 00:00:00:01:01:00

Flow Group 3 Uplink Port 0 Uplink Port 0 00:00:00:01:02:00

Flow Group 4 Uplink Port 0 Uplink Port 0 00:00:00:01:03:00

Flow Group 5 Uplink Port 1 Uplink Port 1 00:00:00:01:04:00

Flow Group 6 Uplink Port 1 Uplink Port 1 00:00:00:01:05:00

Flow Group 7 Uplink Port 1 Uplink Port 1 00:00:00:01:06:00

Flow Group 8 Uplink Port 1 Uplink Port 1 00:00:00:01:07:00

Figure 7. Add Protocols to the Frame in the Packet/QoS Editor

6.2.2 Downlink Flow Groups
Configure the following settings that are common for all the Flow Groups.

• Destination MAC Address: Described below
• Source MAC Address: 00:00:01:01:00:01
• Source IP Address: 210.0.0.1
• Destination IP Address:

 - Mode: Increment
 - Start: 110.0.0.1
 - Step: 0.0.0.1
 - Count: 4096

22

Table 9. Downlink Flow Traffic Item Variable Values

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

• UDP Source Port: 443
• UDP Destination Port:

 - Mode: Increment
 - Start: 50176
 - Step: 1
 - Count: 4096

Table 9 shows the Destination MAC Address for the instances starting from 0 to 7 for a total of 8 downlink instances in the
order given next. It can be extended to 32 instances by incrementing the 5th octet of the MAC address.

IXIA* 8x25GbE Traffic Profile - vAGF Downlink Traffic Item

TRAFFIC ITEM TX PORT RX PORT DESTINATION MAC ADDRESS

Flow Group 1 Downlink Port 0 Downlink Port 0 00:00:00:01:00:01

Flow Group 2 Downlink Port 0 Downlink Port 0 00:00:00:01:01:01

Flow Group 3 Downlink Port 0 Downlink Port 0 00:00:00:01:02:01

Flow Group 4 Downlink Port 0 Downlink Port 0 00:00:00:01:03:01

Flow Group 5 Downlink Port 1 Downlink Port 1 00:00:00:01:04:01

Flow Group 6 Downlink Port 1 Downlink Port 1 00:00:00:01:05:01

Flow Group 7 Downlink Port 1 Downlink Port 1 00:00:00:01:06:01

Flow Group 8 Downlink Port 1 Downlink Port 1 00:00:00:01:07:01

23

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Figure 8. Example Downlink Packet /QoS for one Endpoint Set

24

Figure 10. Frame Setup with Packet Size of 128B for Uplink and 504B for Downlink

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Figure 11. Rate Setup of 11% Line Rate for Upstream and 89% Line Rate for Downstream

Figure 9. Flow Group Setup for one Endpoint Set

25

Figure 13. Validate Flow Group

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

7 vAGF Benchmarks

7.1 vAGF Symmetric Traffic Benchmarks
The results of the vAGF Symmetric benchmarks on 4th Gen Intel® Xeon® 8470N processors with 800 Gbps Line Rate (8 x
100G Intel® Ethernet Network Adapter E810-2CQDA2), 650B UL/DL Packet Size and a traffic ratio of DL/UL 1:1 and a Packet
Loss of less than 0.001% with turbo disabled show a Maximum Receive Rate (MRR) of up to 773 Gbps Rx L2/L3 throughput
which is 96.62% of the line rate and up to 795 Gbps Rx L1 throughput which is 99.37% of the line rate

Figure 12. Flow Tracking Set to ‘Traffic Item’

The last step is to validate the flow.

26

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

7.2 vAGF Asymmetric Traffic Benchmarks
The results of the vAGF Asymmetric benchmarks on 4th Gen Intel® Xeon® 8470N processors with 800 Gbps Line Rate (8
x 100G Intel® Ethernet Network Adapter E810-2CQDA2), 504B DL and 128B UL Packet Size and a traffic ratio of DL/UL
89:11 and a Packet Loss of less than 0.001% with turbo disabled show a Maximum Receive Rate (MRR) of up to 629 Gbps Rx
L2/L3 throughput which is 78.62% of the line rate and up to 663 Gbps Rx L1 throughput which is 82.87% of the line rate

1.00 2.00 4.00 8.00 15.00 16.00 19.00 23.00 30.00 32.00
Downlink (Gbps) 11.46 22.91 45.80 91.60 171.24 182.62 216.86 262.63 342.42 365.10
Uplink (Gbps) 12.80 25.60 51.17 102.35 191.32 204.03 242.30 293.42 382.57 407.91
Aggregated (Gbps) 24.25 48.51 96.98 193.95 362.55 386.66 459.16 556.05 724.99 773.01

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Th
ro

ug
hp

ut
 (G

bp
s)

Hi
gh

er
 is

 b
et

te
r

Number of vAGF Instances

Figure 14. vAGF Symmetric Traffic Benchmarks1,2

Figure 15. vAGF Asymmetric Traffic Benchmarks1,2

1 2 4 8 15 16 19 23 30 32
Downlink (Gbps) 18.27 36.55 71.45 142.90 254.54 271.14 320.72 388.24 509.12 531.60
Uplink (Gbps) 3.05 6.09 12.19 24.38 45.71 48.76 57.90 70.09 91.42 97.51
Aggregated (Gbps) 21.32 42.64 83.64 167.28 300.25 319.89 378.62 458.33 600.54 629.11

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Th
ro

ug
hp

ut
 (G

bp
s)

H
ig

he
r i

s
be

tt
er

Number of vAGF Instances

27

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

8 Summary
The Intel virtualized Access Gateway Function benchmarks on 4th Gen Intel® Xeon® Platinum 8470N processors showed an
impressive I/O throughput of up to 773 Gbps Maximum Receive Rate for L2/L3, which was 96.62% of the maximum line rate
of 800 Gbps and up to 795 Gbps Maximum Receive Rate for L1, which was 99.37% of the maximum line rate. Only 32 cores
out of a total 52 available cores were used per NUMA node, with both sockets populated. The use of the Dynamic Device
Personalization (DDP feature in the Intel® Ethernet Adapter E810-2CQDA2 with the Intel COMMS DDP package contributed
to the high performance.
The high core count of the 4th Gen Intel® Xeon® Scalable processors, combined with architectural improvements, feature
enhancements, and high memory bandwidth, is a tremendous performance and scalability advantage over previous Intel®
Xeon® processor generations, especially in today’s NFVI environments. These processors are optimized for network, cloud
native, wireline, and wireless core-intensive workloads, with up to 60 powerful cores and a wide range of frequency, features
and power levels. The Intel® Xeon® Platinum 8470N processors with 52 cores at 1.7 GHz core frequency, 2.4 GHz uncore
frequency, high DDR5 memory bandwidth and PCIe Gen 4 IO throughput has outstanding performance based on a balanced,
efficient architecture that increases performance memory and I/O bandwidth to accelerate diverse workloads from the data
center to the intelligent edge.

28

Intel® Reference Architecture for NFVI Forwarding Platform on 4th Gen Intel® Xeon® Scalable Processors on Red Hat* Enterprise Linux* with vAGF Workload

Table of Contents

1 Introduction ... 1

1.1 NFVI Forwarding Platform .. 1

1.2 Terminology .. 1

1.3 Reference Documents and Resources ..3

2 Solution Components ..3

2.1 Intel® Xeon® Processor Scalable Performance Family ...3

2.2 Intel® Ethernet 800 Series ...4

3 NFVI Forwarding Platform Reference Architecture Requirements ...5

3.1 Reference Architecture Hardware Requirements ..5

3.2 Reference Architecture Software Requirements ..6

3.3 BIOS Settings ..6

3.4 Platform Technology Requirements ...7

3.5 Platform Security ...7

4 Virtual Access Gateway Function (vAGF) ..8

4.1 vAGF Overview ..8

4.2 vAGF Pipeline ..8

4.3 vAGF Test Setup .. 10

5 vAGF Installation Guide ... 11

5.1 vAGF Application Server Preparation ... 11

5.2 System BIOS Settings.. 11

5.3 RHEL* 8.6 Installation ... 11

5.4 Install vAGF Dependencies .. 12

5.5 vAGF Dataplane Application Environment Set-up .. 12

6 Traffic Generator Configuration Guide ..20

6.1 Ixia as Traffic Generator ..20

6.2 Configure Traffic Items Based on the Uplink or Downlink Configuration ..21

7 vAGF Benchmarks ...26

7.1 vAGF Symmetric Traffic Benchmarks ...26

7.2 vAGF Asymmetric Traffic Benchmarks ...27

8 Summary ...28

29

 ¹ Notices & Disclaimers
 Performance varies by use, configuration and other factors. Learn more on the Performance Index site. Performance results are based on testing as of dates shown in configurations and

may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies
may require enabled hardware, software or service activation.

 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others.

 ² Configuration
 Test by Intel as of 11/05/2022. 1-node, 2x Intel® Xeon® Platinum 8470N, 52 cores, HT On, Turbo Off, Total Memory 512 GB (16 x 32GB DDR5-48000), BIOS EGSDCRB1.86B.8901.

P01.2209200239, ucode 0xab0000c0, Red Hat Enterprise Linux 8.6 (Ootpa), kernel 4.18.0-348.el8.x86_64, gcc compiler 8.5.0, vAGF 22.03, DPDK 20.11.5, ice driver: 1.9.11, DDP ICE
COMMS package version 1.3.31.0

 0123/SM/H09/PDF  Please Recycle 763626-001US

