
 1

application note
Intel Corporation

Intel® Speed Select Technology – Base Frequency
Configuration Automation on OpenStack* Compute Host

Authors
Martin Kennelly

Ivens Zambrano

Collaborators/Inputs
Sohaib Iqbal

Mathana Nair Sreedaran

David Hunt

Chris MacNamara

Adrian Hoban

Stephen Finucane (Red Hat*)

1 Introduction
Select SKUs of 2nd generation Intel® Xeon® Scalable processor (5218N, 6230N, and
6252N) offer a capability called Intel® Speed Select Technology - Base Frequency
(Intel® SST-BF). This document describes an implementation solution that automates the
configuration of the Intel® SST-BF feature.

This document describes the Intel® SST-BF configuration and provisioning process using
Ansible scripts, including the rationale for the approach. It provides a step-by-step
description of the actions taken to automate and ease the configuration of an OpenStack
managed node with Intel® SST-BF.

Intel® SST-BF is a CPU feature designed to unlock software bottlenecks. In the same
Thermal Design Power (TDP), a subset of cores are selected for higher guaranteed
frequency and the remaining cores operated at a reduced frequency. These higher
frequency cores can be used to address many use cases, including:
• Network Function Virtualization (NFV) Data Plane, Control Plane and Open vSwitch*

(OVS*) use cases
• Pipeline software architectures
• Frequency bound workloads such as software based crypto
• Priority threads for run to completed such as unbalanced downlink or uplink threads
• Packet distribution and workload distribution in software
• Scenarios where polling user space drivers can be consolidated

Automating this feature in orchestrated cloud platforms allows workloads to be placed
on optimized nodes to ensure performance and deterministic frequency requirements.
Automating the configuration for Intel® SST-BF gains relevance in the data center, where
the System Administrator needs to support the configuration of a number of identical
nodes on a heterogeneous cloud.

This document covers the following aspects of Intel® SST-BF provisioning, configuration,
and usage on an OpenStack environment by using Ansible* to handle the automation
process:
• Configuring platform nodes by setting the CPU to the right frequency boundaries via

direct CPU interaction using the Kernel file system (sysfs).
• Configuring OpenStack to provide tenants with the option to request and provision

workloads on cores configured with different frequency levels.
• Presenting an automation process usage example of a particular OVS-DPDK use

case: Pinning OVS-DPDK to a set of cores on a node running OpenStack compute
process and sharing the CPU with virtualized workloads.

The resource orchestration layer described in this document is focused on OpenStack,
however, the flow can be ported to other resource orchestrators, such as Kubernetes*.

This document is part of the Network Transformation Experience Kit, which is available
at: https://networkbuilders.intel.com/

https://networkbuilders.intel.com/

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 2

Table of Contents

Figures
Figure 1. High Level View of Intel® SST-BF Deployment Automation Flow with OpenStack* .. 4
Figure 2. Logical Deployment View .. 5
Figure 3. Configuration Options for CPU Resource Tracking .. 8
Figure 4. Intel® SST-BF enabled CPU frequencies per core .. 9
Figure 5. Visual Reference for Nova Node Custom Traits Combinations when using Intel® SST-BF ... 10
Figure 6. General Deployment Flow for Intel® SST-BF and OpenStack* .. 11
Figure 7. OVS* Core Pinning Model on top of an Intel® SST-BF enabled CPU ... 13
Figure 8. Configuration Flow Tasks for OVS*-DPDK Provisioning .. 13

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3
Table 3. Configuration Activities .. 5
Table 4. Custom Traits for Intel® SST-BF Configurations ... 10
Table 5. Set up Intel® SST-BF Core Frequencies Parameters .. 12
Table 6. Configure OpenStack* to Support Intel® SST-BF Parameters ... 12
Table 7. Playbook Extra Configuration Parameters for OVS*.. 14
Table 8. OVS* Configuration Parameters .. 15

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 3

1.1 Intended Audience
This white paper is intended for System Administrators looking for a mechanism to facilitate the deployment and configuration of
Intel® SST-BF in OpenStack cloud environments.

1.2 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

BIOS Basic Input / Output System

CPU Resource class representing an amount of dedicated CPUs for a single guest

NFV Network Function Virtualization

Nova Compute project for OpenStack [https://docs.openstack.org/nova/latest/]

OpenStack Placement REST API stack and data model used to track resource provider inventories and usages, along with different classes of
resources.

OVS* Open vSwitch*

PCPU Resource class representing an amount of dedicated CPUs for a single guest.

PIP Python* package installer

PMD Poll Mode Driver

SST-BF Intel® Speed Select Technology – Base Frequency [https://www.intel.com/content/www/us/en/architecture-and-
technology/speed-select-technology-article.html]

Sys-Admin System Administrator

TDP Thermal Design Power

Under-cloud Term describing a group of physical nodes forming a cluster, including hardware platform, network, operating system,
and set of configurations.

VCPU Resource class representing a unit of CPU resources for a single guest approximating the processing power of a single
physical processor.

1.3 Reference Documents

Table 2. Reference Documents

NO. REFERENCE SOURCE

[1] Intel® Speed Select Technology – Base Frequency
Enhancing PerformanceApplication Note

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-
base-frequency-enhancing-performance.pdf

[2] Intel® Speed Select Technology - Base Frequency with
Kubernetes* Application Note

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-
base-frequency-with-kubernetes-application-note.pdf

[3] Intel® Speed Select Technology - Base Frequency
Priority CPU Management for Open vSwitch* (OVS*)
Application Note

https://networkbuilders.intel.com/network-technologies/network-
transformation-exp-kits#intel-technology-enablement

[4] Standardize CPU resource tracking https://blueprints.launchpad.net/nova/+spec/cpu-resources

[5] OpenStack Traits https://github.com/openstack/os-traits

[6] Python* script to configure Intel® SST-BF on the host
(sst_bf.py)

https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.py

[7] Intel® SST-BF Provisioning Artifacts
(available on both Ansible and GitHub*)

Ansible: https://galaxy.ansible.com/intel/sst_bf_openstack_setup_automation
GitHub: https://github.com/intel/sst-bf-openstack-setup-automation

[8] OpenStack Placement API https://docs.openstack.org/placement/latest/

2 Document Overview
Automating configuration processes is fundamental for data center deployment flow. The under-cloud automation described in this
document (for configuring Intel® SST-BF) allows the System Administrator (Sys-Admin) to perform a predictable and repeatable
group of tasks and to enhance adoption of silicon technologies at scale.

https://docs.openstack.org/nova/latest/
https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits#intel-technology-enablement
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits#intel-technology-enablement
https://blueprints.launchpad.net/nova/+spec/cpu-resources
https://github.com/openstack/os-traits
https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.py
https://galaxy.ansible.com/intel/sst_bf_openstack_setup_automation
https://github.com/intel/sst-bf-openstack-setup-automation
https://docs.openstack.org/placement/latest/

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 4

For Intel® SST-BF, there is a series of steps that require full understanding of the system file structure, the distribution of CPU cores,
the relationship between the core thread handlers and then, how this information can be presented to the orchestrators.

3 Intel® SST-BF Provisioning Automation
3.1 Prerequisites
To use the Intel® SST-BF functionality, you need:
• Intel® Speed Select - Base Frequency technology is available on select SKUs of 2nd generation Intel® Xeon® Scalable processor

(formerly codenamed Cascade Lake).
• Linux* Kernel version 5.1 or above.
• Enable the Intel® SST-BF feature in the BIOS. Follow the steps described in the Intel® SST-BF Enhancing Performance

Application Note.
• Access to Python* script to configure Intel® SST-BF on the host [sst_bf.py]
• Python 3.6 or above

To use Ansible automation artifacts, you need:
• Python 3.6 or above
• Ansible 2.5 or above

Required OpenStack and OpenStack project API versions include:
• OpenStack Train
• Placement API 1.6 or above

3.2 Provisioning Automation Flow
The automation of under-cloud provisioning typically takes a series of steps to perform: configure host hardware, set up
networking, start node support processes, monitor tools, and set up the cloud process. The flow presented in this document
describes how to take an existing Playbook for a resource orchestrator (OpenStack) and insert a group of extra Roles to perform
automation.

The Ansible Playbook and Roles steps described in this document can be inserted in the sequence of Ansible Roles used to deploy
the resource orchestrator. Figure 1 shows where these automation steps are inserted in the under-cloud provisioning flow.

Figure 1. High Level View of Intel® SST-BF Deployment Automation Flow with OpenStack*

The activities in Figure 1 are summarized in Table 3 and are described in detail in upcoming sections of this document, with
particular focus on the activities colored in blue.

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.md

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 5

Table 3. Configuration Activities

ACTIVITY DESCRIPTION

Enable Intel® SST-BF in BIOS Initial step required from the System Administrator to change the BIOS configuration as specified in
section 3.2 of document [1] in Table 2.

Set up Intel® SST-BF Core Frequencies Initial automated step to set up the core configuration to high and normal priority frequencies
identified by the kernel driver in sysfs. Frequency setting is done through software using the
sst_bf.py script, [6] in Table 2.

Configure OVS-DPDK Core Reservation Before proceeding to the OVS-DPDK installation, it is required to reserve either high or normal
priority cores and pin them to an OVS-DPDK Poll Mode Driver (PMD) process. The lcore process will
be pinned to a user-defined number of normal priority frequency cores. (Optional step)

Install OVS-DPDK OVS-DPDK setup and interface assignment is completed during this step.
Note: OVS-DPDK is not installed by default during an OpenStack installation process. This step is

provided to ease the OVS-DPDK installation process as part of this flow. (Optional step)

Install OpenStack OpenStack is installed by the System Administrator using either an automation set or manual steps.

Configure OpenStack to support
Intel® SST-BF

The Intel® SST-BF configuration with the identification of high and normal priority tiers will be
appended to the OpenStack Nova configuration file provisioned by the OpenStack installation
mechanism on the compute node.
The Custom-Traits configuration to the node and the creation of the flavors related to the specific
cloud configuration is done as part of this activity.

Figure 2 shows the execution of Ansible Roles from a deployment perspective, which is done from an Ansible Controller that can
access a set of compute hosts on an OpenStack cloud. Each of these nodes are called an OpenStack Nova Target.

The Ansible execution engine uses a set of artifacts (Playbook, Roles, and Scripts) to complete the activities “Set up Intel® SST-BF
Core Frequencies” and “Configure OpenStack to Support Intel® SST-BF” (listed in Table 3) and produce a Nova node configured to
provide CPU pinning for the High and Normal Frequency tiers on the CPU and represented in the Nova Configuration file.

The OVS-DPDK artifacts are optional to this flow; they are used only if OVS-DPDK is required on the node and a specific Core
Frequency tier is required for it to run. The steps in the flow covered by this group of artifacts are: “Configure OVS-DPDK Core
Reservation” and “Install OVS-DPDK” in Table 3.

Figure 2. Logical Deployment View

4 OpenStack*: Exposing and Using the Intel® SST-BF Feature
It is important to understand what changes will applied to the system and OpenStack, before getting into the details of the
automation steps and the Ansible automation artifacts. To achieve the final goal, the automation scripts:
• Provision OpenStack with a set of Node Traits.
• Provide a characterization of the CPU cores distribution to the OpenStack compute agent (Nova) based on the CPU sysfs

structure.

https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.py

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 6

The following two sections describe how OpenStack Node Traits are used and how the CPU core configuration is related to the CPU
standard resource tracking in OpenStack.

4.1 Node Traits
In an OpenStack cloud deployment, the different capabilities of a node included in the compute cluster are identified as “Node
Traits” in the placement database. The traits are then used to match required workload characteristics to a specific node in the
cluster. The standard traits library can be found at https://github.com/openstack/os-traits. The library can be installed through pip
and then directly report to OpenStack Placement by Nova.

The traits required to use Intel® SST-BF are added to the placement database using Custom Traits. To use custom traits, each trait
must be added to the database through the placement API directly or using the OpenStack CLI as shown in the examples below.
Note: A custom trait is not part of the standard traits library upstreamed to OpenStack.

The solution described in this document sets the Custom Trait “CUSTOM_CPU_X86_INTEL_SST_BF” to clearly identify a node with
an Intel® SST-BF capable CPU.

Example using the API:

#create the trait
PUT /traits/CUSTOM_{name}
#Read the current traits assigned to resource provider identified by UUID
GET /resource_providers/{uuid}/traits
#Response body:
{
 "resource_provider_generation": 0,
 "traits": [
 "CUSTOM_<NAME_A>",
 "CUSTOM_<NAME_B>"
]
}
#assign the trait to a resource provider identified by UUID
PUT /resource_providers/{uuid}/traits
#Request body appending the new trait:
{
 "resource_provider_generation": 0,
 "traits": [
 "CUSTOM_<NAME_A>",
 "CUSTOM_<NAME_B>",
 "CUSTOM_<NAME_C>”
]
}

Note: To use the API, the request header must include the authentication token obtained in an authentication request with the
user name, password and project as specified in https://docs.openstack.org/api-quick-start/api-quick-start.html

Example using the CLI:

#create the trait
openstack trait create <name>
#read the current traits assigned to the resource provider
openstack resource provider trait list [--sort-column SORT_COLUMN] <uuid>
#assign the trait to the resource provider explicitly appending to the current list obtained in
the previous step
openstack resource provider trait set [--sort-column SORT_COLUMN] [--trait CUSTOM_<trait>]
<uuid>

Note: To use the CLI, the System Administrator is required to authenticate with the OpenStack platform using the user name,
password and project.

When querying the placement API for trait identification, the information from the providers will be consistent:

GET /allocation_candidates?resources=VCPU:8,MEMORY_MB:1024,DISK_GB:4096&required=
CUSTOM_CPU_X86_INTEL_SST_BF

https://github.com/openstack/os-traits
https://docs.openstack.org/api-quick-start/api-quick-start.html

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 7

It will return a group of nodes matching the request:

"provider_summaries": {
 "88a5187d-e0a4-426d-bed4-54e7e89b2adb": {
 "resources": {
 "PCPU": {
 "capacity": 24,
 "used": 4
 },
 "VCPU": {
 "capacity": 56,
 "used": 2
 },
 "MEMORY_MB": {
 "capacity": 10240,
 "used": 0
 }
 },
 "traits": [
 "HW_CPU_X86_SSE",
 "HW_CPU_X86_SSE2",
 "HW_CPU_X86_AVX",
 "HW_CPU_X86_AVX2",
 "HW_CPU_X86_AVX512",
 "CUSTOM_CPU_X86_INTEL_SST_BF",
 "CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED", ...
]
 },
 "0d684632-eca3-40a9-ab6b-b7457227143c": {
 "resources": {
 "PCPU": {
 "capacity": 24,
 "used": 10
 },
 "VCPU": {
 "capacity": 56,
 "used": 20
 },
 "MEMORY_MB": {
 "capacity": 32768,
 "used": 0
 }
 },
 "traits": [
 "HW_CPU_X86_SSE",
 "HW_CPU_X86_SSE2",
 "HW_CPU_X86_AVX",
 "HW_CPU_X86_AVX2",
 "HW_CPU_X86_AVX512",
 "CUSTOM_CPU_X86_INTEL_SST_BF",
 "CUSTOM_CPU_FREQUENCY_VAR_HIGH_SHARED", ...
]
 }
}

Similarly, on the CLI:
openstack resource provider list --required HW_CPU_X86_AVX --required
CUSTOM_CPU_X86_INTEL_SST_BF

4.2 Standardize CPU resource tracking
A mechanism to split the pool of cores in OpenStack is defined in the cpu-resources spec “Standardize CPU resource tracking" and
introduced in the OpenStack Train release (for details, see [4] in Table 2).

Previously, the VCPU resource class was used to represent “shared” or “dedicated” CPU cores on a node, meaning it was not
possible to mix instance types on one host. With this change, Nova uses two different resource classes in the Placement API for host
CPUs:
• VCPU to represent CPU cores that can be shared by multiple workloads
• PCPU to represent dedicated CPU cores

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 8

This resource tracking mechanism introduced in OpenStack Train allows the Cloud Admin to define:
• which host cores should be used for dedicated workloads (exclusive core pinning for critical execution)
• which host cores should be used for shared workloads (time sharing core cycles between independent workloads)

On the CPU side of things, the Intel® SST-BF functionality allows you to set up the frequencies of the CPU cores to operate on
different tiers and optimize the overall power consumption and critical workload throughput, and also create deterministic
frequency boundaries on the CPU cores. The two features (Intel® SST-BF and CPU resources tracking) can be combined to allow the
Cloud Admin to set up the OpenStack core classification and match the dedicated list of cores to either high frequency or normal
frequency tiers and match the shared list of cores to either high frequency or normal frequency tiers.

Figure 3 illustrates these configuration options.

Figure 3. Configuration Options for CPU Resource Tracking

The core distribution ratio for the shared cores (VCPU) is provided under the [DEFAULT] section of the Nova configuration file.

[default]
 cpu_allocation_ratio={float}

To provide the information to the placement API, the Cloud Administrator must provide the information to the System
Administrator in order to define the core distribution. The automation process triggered by the System Administrator takes care of
injecting the resource class definition into the Nova configuration file in the [compute] section.

[compute]
...
 cpu_dedicated_set={#, #-#, ^#}
 cpu_shared_set={#, #-#, ^#}
...

The resource provider will have the following information in the DB:

COMPUTE NODE provider
 PCPU:
 total: {integer}
 reserved: 0
 min_unit: {integer > 0 }
 max_unit: {integer <= $total }
 step_size: {integer > 0 && integer <= $total }
 allocation_ratio: 1.0
 VCPU:
 total: {integer}
 reserved: {integer}
 min_unit: {integer > 0 }
 max_unit: {integer <= $total }
 step_size: {integer > 0 && integer <= $total }
 allocation_ratio: {float}

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 9

 |------sysfs-------|
Core	base max min
 0 | 2100 2100 2100 |
 1 | 2700 2700 2700 |
 2 | 2100 2100 2100 |
 3 | 2100 2100 2100 |
 4 | 2100 2100 2100 |
 5 | 2100 2100 2100 |
 6 | 2700 2700 2700 |
 7 | 2700 2700 2700 |
 8 | 2700 2700 2700 |
 9 | 2100 2100 2100 |
 10 | 2100 2100 2100 |
 11 | 2100 2100 2100 |
 12 | 2100 2100 2100 |
 13 | 2100 2100 2100 |
 14 | 2700 2700 2700 |
 15 | 2100 2100 2100 |
 16 | 2700 2700 2700 |
 17 | 2100 2100 2100 |
 18 | 2100 2100 2100 |
 19 | 2100 2100 2100 |
 20 | 2100 2100 2100 |
 21 | 2100 2100 2100 |
 22 | 2100 2100 2100 |
 23 | 2100 2100 2100 |
 24 | 2100 2100 2100 |
 25 | 2100 2100 2100 |
 26 | 2700 2700 2700 |
 27 | 2700 2700 2700 |
 28 | 2100 2100 2100 |
 29 | 2100 2100 2100 |
 30 | 2100 2100 2100 |
 31 | 2700 2700 2700 |
 32 | 2100 2100 2100 |
 33 | 2700 2700 2700 |
 34 | 2700 2700 2700 |
 35 | 2700 2700 2700 |
 36 | 2100 2100 2100 |
 37 | 2100 2100 2100 |
 38 | 2100 2100 2100 |
 39 | 2100 2100 2100 |
 40 | 2100 2100 2100 |
 41 | 2700 2700 2700 |
 42 | 2100 2100 2100 |
 43 | 2100 2100 2100 |
 44 | 2100 2100 2100 |
 45 | 2100 2100 2100 |
 46 | 2700 2700 2700 |
 47 | 2700 2700 2700 |
 48 | 2700 2700 2700 |
 49 | 2100 2100 2100 |
 50 | 2100 2100 2100 |
 51 | 2100 2100 2100 |
 52 | 2100 2100 2100 |
 53 | 2100 2100 2100 |
 54 | 2700 2700 2700 |
 55 | 2100 2100 2100 |
 56 | 2700 2700 2700 |
 57 | 2100 2100 2100 |
 58 | 2100 2100 2100 |
 59 | 2100 2100 2100 |
 60 | 2100 2100 2100 |
 61 | 2100 2100 2100 |
 62 | 2100 2100 2100 |
 63 | 2100 2100 2100 |
 64 | 2100 2100 2100 |
 65 | 2100 2100 2100 |
 66 | 2700 2700 2700 |
 67 | 2700 2700 2700 |
 68 | 2100 2100 2100 |
 69 | 2100 2100 2100 |
 70 | 2100 2100 2100 |
 71 | 2700 2700 2700 |
 72 | 2100 2100 2100 |
 73 | 2700 2700 2700 |
 74 | 2700 2700 2700 |
 75 | 2700 2700 2700 |
 76 | 2100 2100 2100 |
 77 | 2100 2100 2100 |
 78 | 2100 2100 2100 |
 79 | 2100 2100 2100 |
-----|------------------|

Figure 4. Intel® SST-BF enabled CPU
frequencies per core

Using this approach, the System Administrator could set up the cores
as they were characterized by the kernel driver matching the Base
Frequency of the cores. On an Intel® SST-BF capable CPU with the
frequencies split as shown in Figure 4, the Nova configuration file
entry could look like:

In this case, the “cpu_dedicated_set” holds the high priority tier (2.7
GHz) cores from the Intel® SST-BF enabled CPU, and “cpu_shared_set”
holds the list of normal priority tier cores (2.1 GHz). However, the
selection of sets depends on the configuration option and is reflected
as an OpenStack Node Trait.

In order to use Intel® SST-BF properly, a combination of custom traits
is always needed. The trait “CUSTOM_CPU_X86_INTEL_SST_BF”
identifies the presence of an Intel® SST-BF capable CPU on the node
and the extra 4 traits will expose the distribution of the cores between
the shared and dedicated lists.

Table 4 describes the set of required custom traits and Figure 5
provides a visual reference.

[compute]
cpu_dedicated_set=1,6-8,14,16,26-
27,31,33-35,41,46-48,54,56,66-67,71,73-75
cpu_shared_set=0,2-5,9-13,15,17-25,28-
30,32,36-40,42-45,49-53,55,57-65,68-
70,72,76-79

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 10

Table 4. Custom Traits for Intel® SST-BF Configurations

ACTIVITY DESCRIPTION

CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED The cpu_dedicated_set holds the list of cores set to high priority frequency.
• Min and Max boundary are set to the high BF tier.

The cpu_shared_set holds the list of cores set to normal priority frequency.
• Min and Max boundary are set to the normal BF tier.

CUSTOM_CPU_FREQUENCY_FIXED_HIGH_SHARED The cpu_dedicated_set holds the list of cores set to normal priority frequency.
• Min and Max boundary are set to the normal BF tier.

The cpu_shared_set holds the list of cores set to high priority frequency.
• Min and Max boundary are set to the high BF tier.

CUSTOM_CPU_FREQUENCY_VAR_HIGH_DEDICATED The cpu_dedicated_set holds the list of cores set to high priority frequency.
• Min boundary is set to a given minimum CPU frequency. (Depends on SKU

reference and recommended configuration.)
• Max boundary is set to the high BF tier.

The cpu_shared_set holds the list of cores set to normal priority frequency.
• Min boundary is set to a given minimum CPU frequency. (Depends on SKU

reference and recommended configuration.)
• Max boundary is set to the normal BF tier.

CUSTOM_CPU_FREQUENCY_VAR_HIGH_SHARED The cpu_dedicated_set holds the list of cores set to normal priority frequency.
• Min boundary is set to a given minimum CPU frequency. (Depends on SKU

reference and recommended configuration.)
• Max boundary is set to the normal BF tier.

The cpu_shared_set holds the list of cores set to high priority frequency.
• Min boundary is to a given minimum CPU frequency. (Depends on SKU reference

and recommended configuration.)
• Max boundary is set to the high BF tier.

Figure 5 provides a visual reference to select the appropriate Intel® SST-BF configuration and its corresponding representation as
Custom Traits depending on the level of frequency determinism required and the Nova core distribution. Any of the four options
described in Table 4 should be always accompanied by the Custom Trait: "CUSTOM_CPU_X86_INTEL_SST_BF".

Figure 5. Visual Reference for Nova Node Custom Traits Combinations when using Intel® SST-BF

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 11

5 Intel® SST-BF Provisioning Automation for OpenStack* using Ansible*
The configuration of the node characteristics and provisioning of entries for the OpenStack artifacts are done using Ansible by
providing the configuration requirements in the form of Ansible Roles. To get the artifacts, refer to link [7] in Table 2 or through
Galaxy [https://galaxy.ansible.com/intel/sst_bf_openstack_setup_automation].

The flow shown in color in Figure 6 represents the steps described in this section. The blue boxes are covered by the Ansible Roles
to be described. The Ansible Role to deploy OpenStack (orange box) could be integrated as part of the overall flow through the
main Ansible Playbook.

Figure 6. General Deployment Flow for Intel® SST-BF and OpenStack*

Using the Galaxy application in a Linux environment, the Roles can be pulled directly by issuing the command:

ansible-galaxy install intel.sst_bf_openstack_setup_automation

The Ansible Role utilizes a Python script to configure Intel® SST-BF on the host (see the sst_bf.py documention).
Note: For air-gapped deployments, this repository must be present in /tmp on the target host under the folder name

CommsPowerManagement.

The sst_bf.py script will be automatically pulled when triggering the Ansible flow. In the example solution shown below, the high
priority cores are set to 2700 minimum/maximum and normal priority cores are set to 2100 minimum/maximum on the target host.

A Playbook example to trigger the configuration of Intel® SST-BF on a host ready for OpenStack would look like this:

- name: Configure SST-BF for OpenStack
 hosts: nova_compute
 gather_facts: yes
 user: root
 tasks:
 - name: Set up SST-BF Core Frequencies
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

[Insert Role to install OpenStack Nova Compute here]
OpenStack Nova compute must be installed before running the next task

 - name: Configure OpenStack to Support Intel SST-BF
 vars:
 configure_os_only: true
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

https://galaxy.ansible.com/intel/sst_bf_openstack_setup_automation
https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.md

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 12

The task “Set up Intel® SST-BF Core Frequencies” configures the BF boundaries using the default configuration described in Table 4
for CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED.

As shown in Table 5, a set of parameters could be added to this task to override the default values:

Table 5. Set up Intel® SST-BF Core Frequencies Parameters

ACTIVITY DEFAULT DESCRIPTION

configure_os_only false When true, we write high/normal priority cores lists into the Nova
Configuration file, trait info to Placement and set up sst-bf flavors with
Intel® SST-BF specific configuration options for future VM requests.

skip_ovs_dpdk_config true Skip Open vSwitch*-DPDK.

offline false Air-gap deployment. Clone/copy CommsPowerManagement to /tmp of
target if true.

sst_bf_profile FREQUENCY_FIXED_HIGH_DEDICATED Contains a set of values that control which Intel® SST-BF profile we apply
to the target host. The possible values are:

FREQUENCY_FIXED_HIGH_DEDICATED
FREQUENCY_FIXED_HIGH_SHARED
FREQUENCY_VAR_HIGH_DEDICATED
FREQUENCY_VAR_HIGH_SHARED

This will be translated to the corresponding traits:
CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED
CUSTOM_CPU_FREQUENCY_FIXED_HIGH_SHARED
CUSTOM_CPU_FREQUENCY_VAR_HIGH_DEDICATED
CUSTOM_CPU_FREQUENCY_VAR_HIGH_SHARED

Note: The Cloud Administrator will inject the username, password, and project into the environment variables to interact with
OpenStack as part of the initial flow steps.

The task “Configure OpenStack to Support Intel® SST-BF” will provision the Nova configuration file with the core split details and
add the required traits to Placement.

As shown in Table 6, a set of parameters could be added to this task to override the default values:

Table 6. Configure OpenStack* to Support Intel® SST-BF Parameters

ACTIVITY DEFAULT DESCRIPTION

configure_os_only false When true, we write high/normal priority cores lists into the Nova
Configuration file, trait info to Placement and set up sst-bf flavors with
Intel® SST-BF specific configuration options for future VM requests.

nova_conf_path /etc/nova/nova-cpu.conf Nova Configuration file location.

restart_nova true Option to restart nova after configuration changes.

nova_service_name devstack@nova-cpu.conf Systemctl nova service name for restart after configuration file changes.

Finally, to trigger the configuration, the System Administrator will execute the command:

ansible-playbook playbook.yaml

6 Intel® SST-BF Use Case Automation: OVS-DPDK Core Separation
In a cloud environment where OVS-DPDK is part of the components that support the networking layout, the Sys-Admin can choose
to set up the OVS-DPDK PMD on either high or normal tier after setting up the core configuration as shown in Figure 7.

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 13

Figure 7. OVS* Core Pinning Model on top of an Intel® SST-BF enabled CPU

Figure 8 shows how this flow is inserted after the “Set up Intel® SST-BF Core Frequencies” task.

Figure 8. Configuration Flow Tasks for OVS*-DPDK Provisioning

To make this configuration possible, the automation process uses the “Configure OVS-DPDK Core Reservation” (for details, see [3]
in Table 2) and through the automation artifacts we get a simplified process to produce the right set up.

The initial steps are the same as specified in Section 5.

Using the Galaxy application in a Linux environment, the Roles can be pulled directly issuing the command:

ansible-galaxy install intel.sst_bf_openstack_setup_automation

The Ansible Role utilizes a Python script to configure Intel® SST-BF on the host (see the sst_bf.py documention).
Note: For air-gapped deployments, this repository must be present in /tmp on the target host under the folder name

CommsPowerManagement.

A Playbook example to trigger the configuration of Intel® SST-BF and to include the tasks to configure an existing OVS-DPDK
installation would look like this:

- name: Set up SST-BF Core Frequencies
 hosts: nova_compute

https://github.com/intel/CommsPowerManagement/blob/master/sst_bf.md

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 14

 user: root
 gather_facts: yes
 tasks:
 - name: Set and get SST-BF
 vars:
 skip_ovs_dpdk_config: false
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

[Insert Role to install OpenStack Nova Compute here]
Openstack Nova compute must be installed before running the next task

 - name: Configure OpenStack to Support Intel SST-BF
 vars:
 configure_os_only: true
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

Note: The parameter highlighted in yellow will trigger the tasks related to OVS-DPDK configuration.

A full installation of OVS-DPDK can be triggered with the provided automation tasks. Using this set of parameters in the Playbook
will set up the OpenStack Compute host with Intel® SST-BF, install OVS-DPDK from the distribution’s supported repository, pin
physical cores to DPDK's PMD, and write the remaining cores to Nova. You must define “host_description” dictionary to suit your
target node.

- name: Configure SST-BF for OpenStack
 hosts: nova_compute
 user: root
 gather_facts: yes
 tasks:
 - name: Set and get SST-BF
 vars:
 skip_ovs_dpdk_config: false
 ovs_dpdk_installed: false
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

[Insert Role to install OpenStack Nova Compute here]
Openstack Nova compute must be installed before running the next task

 - name: Configure OpenStack to Support Intel SST-BF
 vars:
 configure_os_only: true
 include_role:
 name: "intel.sst_bf_openstack_setup_automation"

For either option, an extra set of parameters (see Table 7) are available to be overridden at the Playbook level:

Table 7. Playbook Extra Configuration Parameters for OVS*

PARAMETER DEFAULT DESCRIPTION

skip_ovs_dpdk_config true Skip Open vSwitch*-DPDK

ovs_dpdk_installed true If an existing installation of Open vSwitch*-DPDK exists or not

ovs_core_high_priority true If true then pin high priority cores to PMD otherwise choose normal priority cores

ovs_dpdk_nr_1g_pages 16 Number of 1 GB hugepages to reserve for DPDK

ovs_dpdk_nr_2m_pages 2048 Number of 2 MB hugepages to reserve for DPDK

ovs_dpdk_driver vfio-pci Driver to bind to NIC

ovs_service_name openvswitch-switch Systemctl service name for Open vSwitch*

dpdk_service_name dpdk Systemctl service name for DPDK

ovs_datapath natdev Userspace datapath type for Open vSwitch* bridge creation

ovs_dpdk_interface_type dpdk Interface type for DPDK

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 15

When configuring OVS-DPDK, a description of the host will be a required variable to be defined, because there are host specific
parameters. A default template file is located at “defaults/main/main.yml” and the information will be added in the section
“host_description”.

host_description:
 numa_nodes:
 0:
 interfaces:
 eno1:
 pci_address: "0000:3d:00.0"
 eno2:
 pci_address: "0000:3d:00.1"
 dpdk_socket_mem: 1024
 no_physical_cores_pinned: 4
 1:
 dpdk_socket_mem: 0
 no_physical_cores_pinned: 2
 bridge_mappings:
 ovs-brnew: 'eno1'

The configuration of these entries is described in Table 8.

Table 8. OVS* Configuration Parameters

ACTIVITY REQUIRED DESCRIPTION

host_description yes Description of target node's assets needed to configure Open vSwitch*-DPDK.

numa_nodes yes Description of target NUMA nodes describing interfaces, socket memory and number of
cores to pin to PMD. numa_nodes dictionary must contain one or more NUMA nodes.

interfaces no One or more interfaces need to be defined if interfaces is defined. This information will be
leveraged to build bridges. This dict will contain key value pairs. The key is the interface
name.

pci_address no A PCI address for a given interface needs to be defined if the interface is attached to a bridge
in bridge_mappings.

dpdk_socket_mem yes DPDK allocated socket memory.

no_physical_cores_pinned yes Number of physical cores to pin to associated NUMA node.

Bridge_mappings yes Bridge for DPDK including one or more bridge - interface definitions. An interface defined
here must have an associated definition in numa_nodes.

Once the OVS-DPDK configuration and installation flow are finished, the cores assigned to the OVS-DPDK PMD process will be
excluded from the core sets (cpu_shared_set and cpu_dedicated_set) in OpenStack. This mechanism will avoid any possibility of the
OVS-DPDK processes clashing with either the OpenStack processes or with any visualized workload managed by OpenStack. The
physical cores exclusively pinned to the OVS-DPDK PMD are also isolated from kernel processes, which requires a restart of the
Nova Compute host.

7 Deploying a Workload using OpenStack* APIs on an Intel® SST-BF Ready Node
After the Ansible automated configuration flow is done (with or without OVS-DPDK) and the Nova Compute agent is running, the
placement database is ready, and the Cloud-Admin has been given access to spin up new workloads, there are two required steps:
flavor definition and request the compute API for the creation of a VM.

The flavor definition considering the core split is done using the following parameters:

For PCPU:
$ openstack flavor create --vcpus <number> <flavor_name_pcpu>
$ openstack flavor set --property hw:cpu_policy=dedicated --property
trait:CUSTOM_CPU_X86_INTEL_SST_BF=required --property trait:
CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED=required <flavor_name_pcpu>

For VCPU:
$ openstack flavor create --vcpus <number> <flavor_name_vcpu>
$ openstack flavor set --property hw:cpu_policy=shared --property
trait:CUSTOM_CPU_X86_INTEL_SST_BF=required --property trait:
CUSTOM_CPU_FREQUENCY_FIXED_HIGH_DEDICATED=required <flavor_name_vcpu>

Application Note | Intel® SST-BF Configuration Automation on OpenStack* Compute Host

 16

Note: At the time this document is written, it is not possible to create a single flavor with both VCPU and PCPU.

After the flavor is defined, the Cloud Admin can create a new server by issuing a server create command:

$ openstack server create --flavor=<flavor_name_*> <server_name>

A subset of <number> CPU Cores will be assigned to the virtual server. If using a VCPU flavor, the cores to fulfill the request will be
mapped to the pool of cores listed on the cpu_shared_set described in the Nova configuration file. Otherwise when using a PCPU
flavor, the cores will come from the ones listed in the cpu_dedicated_set entry.

8 Summary
The automation process described in this document opens the door for scale adoption of Intel® CPU features by enabling the
configuration of Intel® SST-BF on select SKUs of 2nd generation Intel® Xeon® Scalable processor (5218N, 6230N, and 6252N). This
document also explains how to use Intel® SST-BF in concert with new features in OpenStack for tracking CPU resources.

Our main goal is to help Sys-Admins and Cloud-Admins perform complex configuration tasks that can be error-prone and time-
consuming by creating a set of artifacts and Automation recipes. Simplifying these tasks at the Admin level enables the final user of
an OpenStack cloud environment (that is, the Tenant) to benefit from running workloads on top of Intel® Architecture without
having to break the abstraction layers provided by the Cloud.

The Ansible Roles, Playbook examples, and Scripts referenced in this document are available at the links presented in Table 2. We
invite you to experiment with them to achieve a fully functional configuration of Intel® SST-BF and OpenStack. In addition, you can
include OVS-DPDK as an option to optimize networking traffic and data flow processing.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.
Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 1019/DN/PTI/PDF 341449-001US

http://www.intel.com/design/literature.htm

	1 Introduction
	1.1 Intended Audience
	1.2 Terminology
	1.3 Reference Documents

	2 Document Overview
	3 Intel® SST-BF Provisioning Automation
	3.1 Prerequisites
	3.2 Provisioning Automation Flow

	4 OpenStack*: Exposing and Using the Intel® SST-BF Feature
	4.1 Node Traits
	4.2 Standardize CPU resource tracking

	5 Intel® SST-BF Provisioning Automation for OpenStack* using Ansible*
	6 Intel® SST-BF Use Case Automation: OVS-DPDK Core Separation
	7 Deploying a Workload using OpenStack* APIs on an Intel® SST-BF Ready Node
	8 Summary

