

Jumbo frames Performance Analysis Over Red
Hat OpenStack 16.1 Infrastructure
July, 2021

Abstract

This whitepaper describes how to manage Jumbo frames throughput for Zero Packet
Loss (ZPL) using Intel® Ethernet Network Adapters XXV710 over Dell EMC Ready
Architecture Red Hat OpenStack infrastructure.

Dell Technologies Solutions

Whitepaper

Copyright

2 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.
Copyright © 2021 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners.
Published in the USA 04/21 Whitepaper.
Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

Red Hat is the world’s leading provider of open source software solutions, using a community powered approach to reliable
and high-performing cloud, Linux, middleware, storage, and virtualization technologies. Red Hat also offers award-winning
support, training, and consulting services. As a connective hub in a global network of enterprises, partners, and open source
communities, Red Hat helps create relevant, innovative technologies that liberate resources for growth and prepare
customers for the future of IT.
Copyright (C) Red Hat, the Red Hat logo and other Red Hat marks are trademarks of Red Hat, Inc. or its affiliates, registered
in the United States and other countries

 Contents

3 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Contents

List of Figures ... 4

List of Tables ... 5

List of Acronyms/Abbreviations .. 6

Introduction ... 8

Problem statement .. 8

Troubleshooting .. 9

Learnings and Best-Known Practices ... 11
Red Hat OpenStack template recommendation for jumbo packets .. 12

Summary and conclusion... 12

Appendix A .. 14
Compute Node specification ... 14
Software specifications ... 14
Other configurations ... 15

Appendix B .. 16

Appendix C .. 18
Implementation of best practices .. 18

Relation between NIC and NUMA socket .. 18
Isolated CPU allocation for PMD and guest VMs .. 19
DPDK socket memory .. 19
Multiple RX queues on DPDK physical ports ... 21
Hugepages backing for VM profile ... 23
DPDK memory channels .. 23
DPDK Tx and Rx descriptor size ... 23
Emulator thread policy, multiple Rx queues on VirtIO ... 24
IsolCPUs .. 24

Contents

4 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

List of Figures
Figure 1. Test environment highlighted with the packet drop area 9
Figure 2. Scaled RX queues on Dell Technologies OpenStack Solution 10
Figure 3. Line rate % vs PPS comparison results for jumbo frames 11
Figure 4. Isolated test setup replicating OpenStack environment 17
Figure 5. Distribution of cores across NUMA sockets .. 18
Figure 6. List of interfaces with PCIe Addresses .. 19
Figure 7. Socket memory function .. 21
Figure 8. Rx Queue parameter in compute template ... 22
Figure 9. DPDK port statistics .. 24
Figure 10. VM flavor properties .. 24

 Contents

5 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

List of Tables
Table 1. Line rate % and PPS performance comparison for jumbo frames 11
Table 2. Compute Node specification ... 14
Table 3. Software specifications .. 14
Table 4. Other configurations .. 15
Table 5. RFC2544 ZPL benchmark results ... 16

Contents

6 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

List of Acronyms/Abbreviations
Acronym Definition

CSP Communication Service
Provider

NFV Network Function
Virtualization

OVS Open virtual Switch

PMD Poll Mode Driver

RA Ready Architecture

RSS Receive Side Scaling

RHOSP Red Hat OpenStack Platform

SDN Software Defined Networking

SUT System Under Test

ZPL Zero Packet Loss

 Contents

7 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

8 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Introduction
Software-Defined Network (SDN) and network function virtualization (NFV) have been
driving the network transformation for many years, resulting in the majority of networking
solutions virtualized. There are still challenges in getting optimum performance for
services running on underlying virtual infrastructures.

Communications Service Providers (CSPs) support many services, for example,
broadband access services, Voice over IP (VoIP) services, call center, IPTV and cable
services. One of the most important measurements is the network capability to support
Zero Packet Loss (ZPL). Any packet loss means disruption to services, especially for
emergency call centers. For example, a 911 call drop is unacceptable. Traditionally, fixed
network appliances can deliver the performance needed, and they do so with assurance.
With SDN and NFV transformation, the Zero-Packet Loss capability to show expected
performance over the infrastructure becomes extremely important.

Various laboratory measurement observations are not all published. Part of the problem is
knowing whether the measured performance is, in fact, the expected performance.
Typically, the DPDK open-source community published performance data for Physical
Function and VirtIO for the Network Interface1. This is a great reference point to baseline
expected performance. However, the DPDK open-source community doesn’t cover the
test cases for jumbo packet size2.

This collaborative whitepaper between Dell and Intel aims to provide guidance on jumbo
packet size for Zero Packet Loss (ZPL) test cases over Dell EMC Ready Architecture (RA)
Red Hat OpenStack Infrastructure. In addition, Red Hat engineering team also helped in
finalizing result section and verified the best practices applied in this activity. The key
learnings and best-known practices documented in this paper can help your testing and
analysis.

Problem statement
The network throughput testing measured in Red Hat OpenStack Platform (RHOSP) 16.1
revealed consistent packet drop for jumbo frames across DPDK physical NICs. Packet
drops were observed ranging 5K - 38K for different jumbo frames sizes that is, 4096, 8192
and 9000 bytes3. The occurrence of packet drops limited the ZPL to converge at 99.2%
line rate. The network performance testing was carried out on RHOSP 16.1 with OVS-
DPDK4 feature enabled, providing fast packet processing capability for network intensive
workloads. Synthetic network load was generated using Spirent’s proprietary network
testing tool, Spirent MethodologyCenter. Unidirectional traffic was sent from the

1 https://core.dpdk.org/perf-reports/

2 Jumbo frame(s)/Jumbo packet size(s): Ethernet frames with more than 1500 bytes payload are
called jumbo frames. They are to be enabled on both hardware (switches, routers) and software
levels to ensure network devices can process larger packet sizes without fragmentation.

3 The network performance is evaluated using RFC2544 benchmarking methodology. It measures
the throughput for SUT. MethodologyCenter calculates the difference between transmitted and
received packets to measure how much packets have dropped.

4 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configurat
ion_guide/assembly_OVSdpdk_parameters

https://core.dpdk.org/perf-reports/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters

9 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

provisioned VM on one compute node as traffic generator to the traffic receiver VM on
another node. Refer to Appendix A for hardware and software details. The Figure 1
depicts the scenario mentioned above and the marked red cross indicates packet drop
observed during testing.

Figure 1. Test environment highlighted with the packet drop area

Various methods were employed to eliminate the packet drops. Different parameters were
incrementally tweaked to help eliminate the packet drop with enhanced network
throughput. This guide highlights the best practices to consider for better throughput
targeting for jumbo frames use-cases.

Troubleshooting
To troubleshoot and analyze the reasons for packet loss in Dell EMC RA based RHOSP
16.1, standalone KVM based environment was setup with intent to replicate the Problem
statement. In isolated setup, we replicated similar software versions and configurations
supported by Red Hat OpenStack 16.1.

The debug analysis was done in collaboration with Intel covering multiple test cases that
were run incrementally in a standalone server setup to reproduce the issue for packet
loss.

Refer to Appendix B for the test results of the aforementioned test cases.

The variations implemented in test cases include use of single and dual OVS bridges,
modifying TX and RX queues, bonding on NICs and VLAN transitions. Isolated and
combinations of these parameters were incrementally applied. Each parameter played a
vital role in minimizing the packet drops but scaling the RX queues was the major
optimization that eliminated the packet drops for jumbo frames.

10 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

The following section highlights the test results obtained on Dell EMC PowerEdge R740xd
in RHOSP 16.1 before and after scaling the RX queues. Implementing the findings
obtained from debug analysis, RX queues were scaled in the OpenStack environment and
100% line rate was achieved. The RX queues were scaled on both physical and virtual
ports of traffic sender and receiver nodes. Details for the scaling of RX queues and their
impact on network throughput are given below.

Figure 2 highlights the virtual and physical ports where multiple RX queues are enabled in
an OpenStack environment.

Figure 2. Scaled RX queues on Dell Technologies OpenStack Solution

The detailed implementation of scaling the RX queues has been discussed in Appendix C.

Table 1 shows the benchmarked throughput results for jumbo frames with single and
multiple RXQs in RHOSP 16.1. In addition to scaled RX queues, other optimization
considerations are mentioned in Learnings and Best-Known Practices.

11 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Table 1. Line rate % and PPS performance comparison for jumbo frames

Packet
Size (B)

1 RXQ 2 RXQs

Line Rate
(%)

Packet Per
Second

Line Rate (%) Packet Per
Second

4096

99.23

758570

100

759828

8129 99.22 380206 100 380845

9000 99.23 346724 100 346953

The following figure is a graphical representation of the results in Table 1.

Figure 3. Line rate % vs PPS comparison results for jumbo frames

Note: The recommended configurations are suggested based on 25 GbE Intel® Ethernet Network
Adapter XXV710-DA2 results. Higher speed NICs would require additional parameters to consider
for best performance numbers for jumbo frames.

Learnings and Best-Known Practices
This section highlights a set of key observations in addition to multiple RX queues
regarding best-known practices when handling jumbo packets for a Red Hat OpenStack
16.1 environment.

12 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

The Red Hat OpenStack (RHOSP) deployment for an OVS-DPDK network environment
should address the following factors for efficient network throughput:

• Hypervisor level NUMA alignment: The relationship between the NIC and
NUMA socket.

• NUMA balanced architecture: The compute node should have an equal,
symmetrical set of resources (CPUs, memory, NICs) allocated to each socket.
For the discussed scenario in the paper, setup was dual socket.

• Guest level NUMA alignment: The VM profile should align memory
(hugepages), vCPUs, and vNICs locally to the appropriate NUMA node to avoid
cross UPI traffic.

• DPDK socket memory: Should be allocated, ideally, symmetrically across
sockets, and calculated based on both the number of DPDK ports and the MTU
size handling the data traffic.

• DPDK memory channels: To align with the number of physical memory
channels available for each socket.

• Multiple RX queues on DPDK physical ports: To avoid potential packet drops
when scaling up to handle multiple simultaneous flows.

• Hugepage support: The VM profile should include hugepages for backing
DPDK packet processing.

• DPDK TX and RX descriptor size: Increases the TX/RX buffer of the NIC
reducing packet loss.

• Emulator thread policy: Emulator threads should run on a set of vCPUs
independent from the threads dedicated to the guest VM.

• Multiple RX queues on VirtIO ports: The VM profile should include multi-
queue support and align with the number of RX/TX queues assigned to the
DPDK physical ports.

• Isolcpus5: PMD threads and vCPUs for the guest VM should reside within the
isolcpus, rcu_nocbs, and nohz_full lists to avoid potential context switches due
to kernel thread interrupts.

Refer to Appendix C for further implementation details.

Summary and conclusion
A good understanding of the underlying infrastructure for any cloud deployment is critical
to learning how its network(s) work to identify and eliminate possible bottlenecks for reliant
and optimal performance. The objective of this paper was to identify and eliminate the
causes of packet drops for jumbo frames. A set of key considerations that enhances
performance for jumbo frame are highlighted as best practices. The tunings applied
through various parameters resulted in ZPL throughput to reach 100% line rate. The
optimizations are recommended to be accounted for to get maximum network
performance.

5 The IsolCPUs are list of CPUs which are isolated from host processes.

Red Hat
OpenStack
template
recommendation
for jumbo packets

13 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Generally, standard Ethernet frames are used for network traffic over the cloud
environments. However, in performance specific use-cases jumbo frames are required to
enhance payload capacity by reducing the overheads and CPU cycles for packet
processing, thus efficiently utilizing the given bandwidth channel.

The occurrence of packet drops for jumbo frames in the RHOSP 16.1 couldn’t achieve
ZPL at 100% line rate. The issue was reproduced in a standalone KVM based
environment with different variations in test environment. The variations such as Tx and
Rx queues, single OVS bridge, dual OVS bridges, VLAN transitions and bonding were
implemented both in isolation and combinations with other parameters. Every variation
improved performance but scaling the Rx queues was major optimization that eliminated
packet drops increasing ZPL throughput to reach 100% line rate.

This paper summarizes key learnings that took a lot of time and effort and we hope that
this paper is helpful for tuning the network performance of your infrastructure. Please refer
to Appendix C for details of implementation with respect to manual and JetPack6 powered
OpenStack deployment methods separately for general performance practice undertaken
for jumbo frames. We encourage you to implement the list of best practices presented
here to get the maximum performance for jumbo frames.

Lastly, this paper confirmed that recommendations for best practices from Red Hat are
vital to achieve optimal performance for all packet sizes including jumbo frames over
OpenStack environment.

6 JetPack: Dell Technologies powered JetPack automation toolkit is an open-source offering, which
is an innovative automation package that is used to configure and deploy the Ready Architecture
Dell Technologies infrastructure hardware with Red Hat OpenStack in a fully automated fashion. For
further details, please visit:

https://www.delltechnologies.com/en-au/solutions/cloud/openstack/ready-bundle-for-openstack.html

https://github.com/dsp-jetpack/JetPack/tree/JS-16.1

https://www.delltechnologies.com/en-au/solutions/cloud/openstack/ready-bundle-for-openstack.html
https://github.com/dsp-jetpack/JetPack/tree/JS-16.1

14 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Appendix A
Following are the details for hardware and software specifications for Red Hat OpenStack
Platform infrastructure consisting of Dell EMC PowerEdge R740xd servers.

Table 2. Compute Node specification

Component Specification

Platform Dell EMC PowerEdge
R740xd

CPU Intel® Xeon® Gold 6140 CPU
@ 2.30GHz (18C per socket)

CPU microcode 0x5003003

RAM 192GB - 12 x 16GB Dual
Rank DDR4 2666 MT/s

Bonded NICs 4 x Intel® Ethernet Network
Adapters XXV710-DA2
(25GbE)

Note: The issue was observed by Dell during testing in November 2020 on RHOSP 16.1 test
setup and resolved later in April 2021 in collaboration with Intel.

Table 3. Software specifications

Parameter Specification

Kernel version 4.18.0-193.14.3.el8_2.x86_64

PMD cores 1 PMD core used (8 PMD
cores/compute node)

DPDK version 19.11.1

Libvirt version 6.0.0

Hypervisor QEMU 4.2.0

NIC firmware version driver: i40e
 version: 2.8.20-k

firmware-version: 7.10
0x800075e6 19.5.12

BIOS version 2.8.2

OpenStack Platform 16.1

Operating System Red Hat Enterprise Linux
(RHEL) 8.2

Compute Node
specification

Software
specifications

15 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Table 4. Other configurations

Parameter Configuration

DPDK socket memory 8192

Grub command line
parameters

BOOT_IMAGE=(hd0,gpt3)/bo
ot/vmlinuz-4.18.0-
193.14.3.el8_2.x86_64
root=UUID=99a3522b-0b91-
43d5-9c37-47911cb1682b ro
console=ttyS0
console=ttyS0,115200n81
no_timer_check
crashkernel=auto rhgb quiet
iommu=pt intel_iommu=on
intel_pstate=disable
nosoftlockup
default_hugepagesz=1GB
hugepagesz=1G
hugepages=164.0
skew_tick=1 nohz=on
nohz_full=2-35,38-71
rcu_nocbs=2-35,38-71
isolcpus=2-35,38-71

Spirent VM flavor 4 vCPUs, 4096 MB RAM, 20
GB HDD

Note: Node restart is required after updating the grub command line parameters.

Other
configurations

16 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Appendix B
This section highlights the troubleshooting steps carried out in the Standalone
environment in collaboration with Intel.

Table 5 represents the results for the test cases mentioned in Troubleshooting section.
The details of the test cases are given below.

Table 5. RFC2544 ZPL benchmark results

Test
Case
ID Test Case

VLAN
Translation Bonding

RX
Qs,
TX
Qs

Line
Rate (%)
/ PPS for
4096
Byte
Packets

Line Rate
(%) / PPS
for 8192
Byte
Packets

Line
Rate (%)
/ PPS for
9000
Byte
Packets

1 Baremetal PF #N/A Disabled 2
100 /
759,231

100 /
380,540

100 /
346,452

2 VM PF #N/A Disabled 2
100 /
759,231

100 /
380,540

100 /
346,452

3
OVS-DPDK
Single Bridge Disabled Disabled 2

100 /
759,230

100 /
380,539

100 /
346,451

4
OVS-DPDK
Dual Bridge Disabled Disabled 2

100 /
759,228

100 /
380,539

100 /
346,451

5
OVS-DPDK
Dual Bridge Enabled Disabled 1

86.852 /
659,404

99.227 /
377,596

100 /
346,450

6
OVS-DPDK
Dual Bridge Enabled Enabled 1

96.906 /
735,740

100 /
380,540

100 /
346,450

7
OVS-DPDK
Dual Bridge Enabled Disabled 2

100 /
759,224

100 /
380,539

100 /
346,451

8
OVS-DPDK
Dual Bridge Enabled Enabled 2

100 /
759,232

100 /
380,537

100 /
346,452

Note: Unless otherwise stated, all configurations use DPDK 19.11.6 on the host/guest, with OVS
2.13.3, along with Intel® Ethernet Network Adapters XXV710-DA2, testpmd, with a 4K descriptor
size, benchmarked with RFC2544 with Zero Packet Loss (ZPL).

The following test cases were run in the isolated KVM based environment (listed in order
of priority) with increasingly complexity step by step to reproduce the issue.

1. Bare Metal Physical Function (PF).

2. Single Root IO Virtualization (SRIOV).

3. VirtIO with OVS and DPDK with single bridge topology.

4. VirtIO with OVS and DPDK with dual bridge topology, VLAN translation disabled.

5. VirtIO with OVS and DPDK with single queue, dual bridge topology, VLAN
translation enabled.

6. VirtIO with OVS and DPDK with single queue, dual bridge topology, VLAN
translation enabled with bonding.

17 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

The following run test cases define the impact of single queue for transmit and receive:

7. VirtIO with OVS and DPDK with dual bridge topology, VLAN translation enabled.

8. VirtIO with OVS and DPDK with dual bridge topology, VLAN translation enabled
with bonding.

By implementing different optimizations, line rate network throughput was ensured for
each test case with increasing level of virtual overhead. Test cases 1-4 with minimal
infrastructure complexity reported no packet loss.

Identical test setup was simulated in test cases 5-8 with the OpenStack environment.
Configuring single RX queue resulted in packet loss for all jumbo frames. However, re-
running the same test setup with multiple RX queues, i.e. test case 7 and 8 eliminated the
packet loss and 100% line-rate throughput was achieved.

The following figure represents isolated test setup used in test cases 5-8.

Figure 4. Isolated test setup replicating OpenStack environment

18 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Appendix C
This section provides insights on implementing best practices concerning Dell EMC
powered JetPack OpenStack and manual Red Hat OpenStack Platform deployments.

Red Hat OpenStack Platform can either be deployed manually or via automation scripts
provided under JetPack automation toolkit. Manual deployment is typical but time-
consuming. Installation and configuration need to be performed manually7. Contrarily,
automation scripts ease the deployment with JetPack automation toolkit. Separate
instructions have been written for the suggested tunings, where applicable, for manual
and automated modes of deployment in the below sections.

The best practices discussed below have been validated and implemented on Dell
PowerEdge R740xd servers provided under Dell EMC Ready Architecture RHOSP 16.1 8.

Relation between NIC and NUMA socket

NUMA-awareness is hardware architectural design dividing processor cores into single or
multiple NUMA nodes. Each NUMA node has its own set of CPUs and memory allocation.
Memory access to the processor has performance significance. A processor accessing
memory from neighboring NUMA node would be slower than utilizing its own local
memory. Performance could be improved when NIC and CPUs allocated to VMs are from
the same NUMA node. The relationship between the two components can be verified
through the steps discussed below.

Logical cores are divided equally among the two NUMA nodes on each compute host.
The following snapshot indicates the vCPUs distribution on each compute node for the
current setup.

Figure 5. Distribution of cores across NUMA sockets

After RHOSP 16.1 installation, the NUMA socket of DPDK enabled interfaces can be
verified using the commands below.

List all the interfaces on compute node with PCIe addresses:
lshw -c network -businfo

7 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index

8 https://www.delltechnologies.com/asset/en-us/products/ready-solutions/technical-support/dell-emc-
ready-architecture-guide-red-hat-v16-1.pdf

Implementation
of best practices

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index
https://www.delltechnologies.com/asset/en-us/products/ready-solutions/technical-support/dell-emc-ready-architecture-guide-red-hat-v16-1.pdf
https://www.delltechnologies.com/asset/en-us/products/ready-solutions/technical-support/dell-emc-ready-architecture-guide-red-hat-v16-1.pdf

19 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Figure 6. List of interfaces with PCIe Addresses

Find the NUMA socket for DPDK interfaces using their PCIe addresses.
lspci -vmms 01:00.0 | grep NUMANode

Above mentioned snapshot verifies that DPDK ports are from the same NUMA socket 0.

Note: This step is valid for both manual and automated deployments.

Isolated CPU allocation for PMD and guest VMs

The current setup i.e. Appendix A includes the isolation of CPUs for DPDK Poll Mode
Drivers (PMDs) and guest VMs from CPUs allocated to host processes. Out of 72 cores
on a host, four are dedicated to host processes with parameter HostCpusList, whereas
ten are assigned as PMD cores (eight from NUMA socket-0, two from NUMA socket-1)
with parameter NeutronDpdkCoreList. The default convention is to allocate one PMD
thread per NUMA node, whereas guest VMs utilize the remaining cores with the
parameter NovaVcpuPinSet.

These updated parameters are in a template file for automated (neutron-OVS-
dpdk.yaml) and manual (network-environment.yaml) deployments. The reference for
CPU parameters 9, DPDK parameters for network environment files10 and OVS-DPDK
parameters template 11 are given for detailed understanding.

DPDK socket memory

The socket memory is a buffer memory for packets in OVS-DPDK. Allocating optimal size
for socket memory on compute hosts reduces packet drops.

9 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_planning_and_configurat
ion_guide/assembly_OVSdpdk_parameters#concept_OVSdpdk-cpu-parameters

10 https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-
single/network_functions_virtualization_planning_and_configuration_guide/index#proc_derive-dpdk

11 https://github.com/dsp-jetpack/JetPack/blob/JS-16.1/src/pilot/templates/neutron-ovs-dpdk.yaml

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters#concept_ovsdpdk-cpu-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters#concept_ovsdpdk-cpu-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_planning_and_configuration_guide/assembly_ovsdpdk_parameters#concept_ovsdpdk-cpu-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/network_functions_virtualization_planning_and_configuration_guide/index#proc_derive-dpdk
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/network_functions_virtualization_planning_and_configuration_guide/index#proc_derive-dpdk
https://github.com/dsp-jetpack/JetPack/blob/JS-16.1/src/pilot/templates/neutron-ovs-dpdk.yaml

20 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Note: This is also pre-deployment optimization that needs to be verified for compute host(s).

Based on the following guidance12 for a quad-port Intel Ethernet Network Adapter XXV710
NIC, MTU of 9,000 bytes for each port, the following set of socket memory calculations
apply:

1. Round-up 9,000 bytes to the nearest multiple of 1,024 bytes, specifically 9,216
bytes.

2. Add padding of 800 bytes to the previous result and multiply by (4,096 X 64) to
achieve 2,625,634,304 bytes.

a. Note that 800 bytes are the overhead value, and 4,096 X 64 is the
number of packets in the mempool.

3. Repeat steps one and two for each DPDK port connected to socket 0.

4. Calculate the total amount of memory required and include a 512 MB buffer. In
this case the total memory required would be (4 X 2,625,634,304 bytes) +
536,870,912 bytes or 11,039,408,128 bytes.

5. Convert from bytes to megabytes, in this case resulting in 10,528 MB.

6. Round the previous result to the nearest multiple of 1,024 MB, specifically 11,264
MB.

7. Repeat steps one through six for socket one. Thus, for a NUMA balanced
architecture with 2x quad-port Intel Ethernet Network Adapter XXV710 NIC, MTU
of 9,000 bytes, the result would be 11,264 MB for socket 0 and 11,264 MB for
socket one.

Note: Allocate at least 1024 MB to the unused socket if there are no DPDK ports attached to
socket one.

Manual deployment

The compute hosts assign hugepage memory allocation as DPDK socket memory on
each NUMA node. The network-environment.yaml file needs to be updated and passed
as a template file when deploying OVS-DPDK. Socket memory parameter is set as
OVSDpdkSocketMemory parameter in the file. The size of socket memory for each NIC
is dependent on the size of MTU. The greater the size of MTU, the larger the socket
memory. The previous section describes the detailed calculations for socket memory.

The reference template network-environment.yaml populates the DPDK socket memory
with other parameters mentioned.13

12 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configurat
ion_guide/assembly_OVSdpdk_parameters#c_OVSdpdk-memory-params

13 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configurat
ion_guide/part-dpdk-configure#proc_derive-dpdk

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_derive-dpdk
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_derive-dpdk
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_derive-dpdk

21 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Automated deployment

Update the socket memory for RHOSP 16 deployment using JetPack automation toolkit
as follows:

• Manually calculate the DPDK socket memory for MTU 9000 bytes as calculated
in the previous section. Name that value X. This value is for a single NIC.
Similarly, calculate for other NICs, as this setup uses four NICs. Use the
aggregated value for 4 NICs in the get_socket_memory formula’s packets pool
to produce 12288 MB of resultant socket memory.

• Clone the JetPack automation toolkit.

• Go to directory: Jetpack/src/pilot

• Edit the file nfv_parameters.py, update the function get_socket_memory by
replacing 4096*64 with calculated value ‘X’ in previous steps as (4X*64). It will
populate the neutron-ovs-dpdk.yaml file parameters on the runtime.

Figure 7. Socket memory function

Multiple RX queues on DPDK physical ports

Usually, the NIC has single Rx queue processing packets between the hardware and the
kernel. However, the performance with single Rx queue is confined to larger packet sizes.
The NIC redirects traffic to the Rx queue by hashing source/destination IP or
source/destination port. Better performance is obtained with multiple Rx queues because
each Rx queue has a separate CPU pinned to it.

Initially, the current setup utilized a single Rx queue and experienced packet drops.
Afterward, we enabled multiple Rx queues on physical DPDK ports of compute hosts. The
IP stepping was enabled in the traffic generator to hash the traffic on multiple Rx queues,
basically employing Receive Side Scaling (RSS). Significant optimization was achieved
that ultimately helped to gain ZPL with a 100% line rate.

We now discuss how to configure these parameters in a manual and automated RHOSP
deployment.

22 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Manual deployment

Enable multiple Rx queues in the compute.yaml template file. Reference for compute
template is included to scale Rx queues14. Make sure to enable multi-Rx queues before
deployment. The parameter that sets the number of Rx queues is rx_queue in Red Hat
documentation.

Figure 8. Rx Queue parameter in compute template
Automated deployment

In the JetPack toolkit, edit the file dellcompute_dpdk.yaml containing detailed
parameters of compute host, located at the path:

JetPack/src/pilot/templates/nic-configs/OVS-dpdk_9_port/dellcompute_dpdk.yaml

To scale the Rx queues, update this parameter in the file: rx_queue. This parameter
takes positive integer values.

NumDpdkInterfaceRxQueues:

 description: Number of Rx Queues required for DPDK bond or DPDK ports

 default: 2

 type: number

14 https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configurat
ion_guide/part-dpdk-configure#proc_OVSdpdk-multiqueu

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_OVSdpdk-multiqueu
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_OVSdpdk-multiqueu
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/network_functions_virtualization_planning_and_configuration_guide/part-dpdk-configure#proc_OVSdpdk-multiqueu

23 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

- type: OVS_dpdk_bond

 name: dpdkbond0

 rx_queue:

 get_param: NumDpdkInterfaceRxQueues

Note: The latest deployment was done using two Rx queues per DPDK port with zero ZPL.

Hugepages backing for VM profile

Hugepages are to be enabled on compute hosts for OVS-DPDK deployment in Red Hat
OpenStack Platform16.1; this is a pre-deployment requirement. The recommended size
for a hugepage is 1GiB. Virtual machines spun on compute hosts are allocated the
desired number of hugepages from the host node.

DPDK memory channels

The multi-channel memory architecture technology enables support for multiple
communication channels, thus, increasing the data transfer rates between memory
modules, DRAM, and the memory controller. Hardware should be capable of supporting
multiple memory channels.

Memory channels are wire traces between the memory unit and CPU for data movement.
The number of memory channels acts as paths for data transfer at faster rates. For OVS-
DPDK, the parameter OVSDpdkMemoryChannels holds the number of actively used
channels. Mostly, memory channels per NUMA node are four (default) but may vary with
platform. Configure the number of memory channels pre or post-deployment.

Before deployment, expose parameter “OvsDpdkMemoryChannels” in network-
environment.yaml file. After deployment on the compute node, scale the number of
memory channels on the runtime. The following commands scale the memory channels
from default to the desired number.

List the default values:
ovs-vsctl get Open_vSwitch . other_config

Scale the memory channels to six.
ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-n 6”

{dpdk-extra="-n 6", dpdk-init="true", dpdk-lcore-
mask="3000000003", dpdk-socket-mem="8977,1024", pmd-cpu-
mask="100601004100601004"}

DPDK Tx and Rx descriptor size

The descriptor size defines the Tx/Rx queue size for each port. On each compute node,
both Tx and Rx descriptor sizes change from default 2048 to 4096. The steps to
configure this are as follows:

Check the default statistics for the DPDK port.
ovs-appctl dpctl/show --statistics | grep dpdk0

24 Jumbo frames performance analysis for Zero Packet Loss (ZPL) over Red Hat OpenStack Infrastructure
Whitepaper

Scale the Tx, Rx descriptors size for each DPDK port, respectively.
ovs-vsctl set Interface dpdk0 options:n_rxq_desc=4096
ovs-vsctl set Interface dpdk0 options:n_txq_desc=4096

Figure 9. DPDK port statistics

Emulator thread policy, multiple Rx queues on VirtIO

Achieve Emulator thread pinning by assigning an extra flavor spec, the default policy for
this spec is dedicated. It’s recommended to use the isolate policy in addition to the
dedicated property with the flavor15.

Enabling multiple Rx queues on virtual interfaces requires assigning an extra flavor spec.
The following command shows how to set both properties flavors during instance
creation16.
openstack flavor set <flavor name> --property
hw:emulator_threads_policy=isolate --property
hw:cpu_policy=dedicated --property hw_vif_multiqueue_enabled=true

Figure 10. VM flavor properties

IsolCPUs

The kernel thread interrupts are run in isolation from CPUs dedicated for guest VMs. This
parameter is configured in grub command line parameters. List of CPUs for parameters
nohz_full and rcu_nocbs are identical to isolCPUs. The configuration is mentioned in
Appendix A under “Other configurations“ section.

15 https://access.redhat.com/solutions/3384881

16 https://docs.openstack.org/glance/rocky/admin/useful-image-properties.html

https://access.redhat.com/solutions/3384881
https://docs.openstack.org/glance/rocky/admin/useful-image-properties.html

	List of Figures
	List of Tables
	List of Acronyms/Abbreviations
	Introduction
	Problem statement
	Troubleshooting
	Learnings and Best-Known Practices
	Red Hat OpenStack template recommendation for jumbo packets

	Summary and conclusion
	Appendix A
	Compute Node specification
	Software specifications
	Other configurations

	Appendix B
	Appendix C
	Implementation of best practices
	Relation between NIC and NUMA socket
	Isolated CPU allocation for PMD and guest VMs
	DPDK socket memory
	Manual deployment
	Automated deployment

	Multiple RX queues on DPDK physical ports
	Manual deployment
	Automated deployment

	Hugepages backing for VM profile
	DPDK memory channels
	DPDK Tx and Rx descriptor size
	Emulator thread policy, multiple Rx queues on VirtIO
	IsolCPUs

