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Executive Summary 

Microservice architectures are decoupling applications from maintaining and managing 

infrastructure operations to performing only the required business logic. Infrastructure 
tasks such as transferring data, performing health checks, and rate limiting are being 
decoupled from orchestrators like Kubernetes (K8s) and are being taken up by service 
mesh using sidecar proxies, forming a software-defined data plane for microservices.  

Applications running as microservices still perform tasks for which logic has to be 

replicated by each microservice. Service mesh decouples these operations. A service 
mesh deployment makes use of iptables to establish network connections between pods 
and nodes, managing the networking and port forwarding rules.  

Each layer of networking adds 15-30% to the overall latency and reduces the total 
number of requests per second (RPS). We present the characterized and optimized 
performance of Kubernetes CNIs like Calico, web proxies like NGINX, service mesh like 
Istio-Envoy, and remote procedure call frameworks for gRPC. We recommend using 
eBPF, DPDK, and VPP-based optimized networking stack, which provide more than 2x 
performance with Intel® Xeon® processor accelerator offloads and Xeon processor-
specific instructions (ISAs). 

This document is part of the Network and Edge Platform Experience Kits. 

 

Introduction 

Traditionally, enterprise applications were created as monolithic applications, meaning 
the applications were written and integrated into a single software image. These 
applications contained all the code and functionality to perform ALL the business 
activities the application could perform. The problem with the single image approach is 
that 1) scalability requirements often vary dramatically across the code, and 2) it is often 
desirable to use different programming languages that run on different node types 
depending on function. These monolithic applications became large with increasing 
complexity and requirements, and ultimately negatively impact businesses as well as the 
ability to scale. 

To address this issue, applications were rearchitected as “Microservices”. Microservices 
design breaks applications into smaller, independent, and self-contained functions that 
are managed and maintained separately. This is typically done in a container-based 
environment such as Kubernetes. Having separate functions means that scale is 
achieved by expanding the number of containers to perform a task. Microservices use 
remote procedure calls (RPCs) to invoke libraries on remote systems. The RPC stacks 
are computationally costly, have high latency, and expose the program to higher latency 
variability (tail latency) across the network rather than within the node. 
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Key to any microservice deployment is the ability to enforce service-level agreements for each node running microservices as 
well as the overall service. The predictability of an application’s response time is measured in terms of jitter. Jitter refers to the 
variability of latency, the slight variation (earlier or later) in turnaround time when a response is received, rather than the 
average latency in a server. The distribution of jitter increases with scale. The tail latency, i.e., the largest outliers within the set 
of system response times, in an otherwise fast system, becomes an increasingly significant factor for consideration as the 
data center scales with more servers. Tail latency has a visible impact to the client but it is hard to isolate exact sources within 
a data center. Thus, any reduction in tail latency is important for achieving high utilization of data center resources. 

The second challenge in microservices-based workloads is how to scale the application with the optimized utilization of the 
underlying compute resources. Often the system contains a large number of different microservices that have complex 
interactions. When unpredictable workloads arrive, it is problematic to identify the scaling needed and evaluate the amount of 
data center resources needed. 

In addition, a service mesh consisting of proxy and security services is often needed as a side car container. The RPC, service 
mesh, transport, and container network interface amounts to a very costly network stack, impacting overall performance and 
the ability to scale. Furthermore, Kubernetes allows for automation of many management tasks such as provisioning and 
scaling but impacts performance. This results in four top challenges for efficient deployment:  

1. Reduction of tail latency 

2. Application scalability /utilization 

3. Throughput 

4. Security 

As data volume grows and workload requirements shift to address new business opportunities, new performance bottlenecks 
arise. Thus, performance of the system can be impacted and the third challenge on throughput emerges. Throughput, or the 
amount of data that can be transferred from one location to another in a given amount of time, is measured in transactions per 
second. Improving throughput in a microservices application is a key metric to be considered at scale. 

Finally, some of the inherent benefits from microservices architecture pose new security risks when deployed at scale. For 
example, given that the microservice containers are smaller and widely distributed, the chance of propagating a threat 
increases when changes are made. Increasing the number of infrastructure layers that require protection also adds increased 
risk. Attacks can come through weaknesses in the application code, infrastructure layers, or networking within the data center. 
Having compute resources accessible on the public cloud also increases the risk of cyberattacks. Protecting the data center 
resources and underlying infrastructure through robust security policies can help mitigate the security risks. 

 

Addressing the Challenges 

Let’s take a detailed look at where performance bottlenecks exist, and the steps data center operators can take to more 

efficiently deploy microservices. Figure 1 depicts a typical microservices design for an application and network flows within 
the services. Service request communications happen with gRPC (remote procedure call) calls to specific applications. The 
applications perform different functions such as web requests, data transfer, and compute, requiring time to perform the task, 
which is measured in transactions per second. The latencies result from the time it takes to process requests, the 
communication within the microservice, and how the response is communicated outside the request. The direct correlation is 
between the queries per second resolved by the applications in pods and the tail latencies of each of these resolved queries. 
Unlike Layer 3 (IP) benchmarking that considers packet delay variation or jitter or round-trip latencies, Layer 7 (HTTP, 
HTTPS, gRPC, and so on) latency benchmarking considers latencies for the time required for a certain percentile of queries to 
a particular application to be completed. For example, the P90 latency represents the highest latency value with respect to 
the lower 90 percent of all recorded transaction latencies. 
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Figure 1. Industry Trends for Microservices Deployment 

Performance bottlenecks in the context of microservices workloads are depicted in Figure 2.  

(1) the overhead of the Linux Transmission Control Protocol/Internet Protocol (TCP/IP) stack and Kubernetes networking 

(2) Higher core context switches; Higher inter-core transfers and caches misses; higher inter-NUMA domain challenges; 

Higher security and performance challenges 

(3) Exploding E-W traffic; New security requirements; Increasing use of service mesh; Multiple traversals across the TCP/IP 
stack 

(4) Higher inter-node communication and overhead due to tunnels. The adoption of CNI and service mesh introduce large 
latencies 

 

 

Figure 2. Networking Layer Performance Bottlenecks 
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Performance Advantage of Intel Performance Characterization 

Kubernetes, a de-facto software and toolset for orchestration and management at the edge can customize its functionality 
similar to building blocks and enable application developers to develop and deploy edge services using a microservices 
approach with various container network interfaces (CNI) like Calico. Thus, we focus on characterizing the performance of 
baseline Linux, Calico CNI, Envoy, NGINX, and DSB. 

As summarized in Table 1, each bottleneck is addressed. 

Table 1. Addressing Networking Layer Performance Bottlenecks 

Bottleneck Software Stack Hardware Acceleration 
L2/3 TCP performance with large 

packet copies 

Bypass kernel eBPF or user mode stack 

with VPP and DPDK in Calico 

Intel® Data Streaming Accelerator (Intel® DSA) 

L3 routing  Bypass kernel eBPF or user mode stack 

with VPP Calico 

 

HTTP1 &2 performance - Core 

scheduling and load balancing 

Envoy or NGINX with core load 

balancing offload 

Intel® Dynamic Load Balancer (Intel® DLB) 

HTTPs performance with TLS and 

crypto 

NGINX and Envoy with OpenSSL and 

BoringSSL crypto offload 

Intel® Advanced Vector Extensions 512 (Intel® AVX-

512) and Intel® QuickAssist Technology (Intel® QAT) 

 

Layer 2/3 Performance with Calico 

Cloud deployment desperately needs a Layer 2/3 networking solution. Today scaling is hindered by Linux kernel network 
stack. Calico and Cilium –are two Kubernetes (K8s) bridge (CNI) based on kernel stack. Kernel bypass using eBPF is available 
in both Cilium and Calico.  

Alternative CNIs are Calico and Cilium eBPF provide near bare metal performance. Calico is a flexible, open source CNI that 
supports multiple data planes such as standard Linux, eBPF, VPP, and Windows. Calico provides both network and IPAM 
plugins to Kubernetes. In other words, as a CNI, Calico needs to create the networking between pods and assign IPs to pods. 
Calico can also provide restricted access to pods. Calico by default uses the host/nodes kernel routing tables to route traffic 
between the pods. Tunnels are used to connect each node to every other node in the cluster. The routing rules are synced and 
updated using BGP across the cluster. 

Vector Packet Processor (VPP) 

VPP is a highly optimized layer 2 - layer 4 network stack. It has a pluggable graph-based structure that allows it to perform 
functions such as load balancing, switching, and routing. It supports multiple interface types such as tap tun, which interfaces 
to the kernel, and memif, which is an optimized user space interface. 

Calico VPP 

Calico can switch out its data plane to use VPP. Calico VPP takes over the Ethernet Adapter and creates a tap tun interface to 
the host that uses the name that was originally assigned to the Ethernet Adapter. As the new tap tun interface to VPP has the 
same name as that was assigned to the physical Ethernet Adapter, all the host routing rules are kept intact. A tap tun interface 
is also created and used for each pod. VPP does the routing before the traffic hits the host OS. Traffic for the pods is routed 
through the VPP routing table and does not need to interact with the host’s kernel routing table. Although the routing is taken 
away from the kernel, packets still need to go through the kernel tap tun interfaces to be received by the pod. 
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Calico VPP with memif 

Memif is a highly optimized software packet interface that includes critical features such as multi-queue and one-way zero 
copy. 

 

 

Figure 3. Calico VPP memif % of Cycles doing memcpys 

Calico VPP provides memif user space packet interfaces to the K8s pods. Memif can be enabled through pod annotation and 
the pod interface is selected as memif or tun for ingress traffic based on ports. Memif boosts user plane applications as it 
completely bypasses the kernel. By default, VPP is the controller for the memif interface. Figure 4 is the Calico VPP block 
graph. 

 

 

Figure 4. Calico VPP memif Block Graph 

CPU cycle analysis shows 26–33% of the time is spent in memcpy operations in the memif interface (Figure 3). Focusing on 
accelerating the memcpy performance resulted in offloading the operation to a CPU accelerator when packet sizes were 
larger than cycles used in offload operations. Intel Data Stream Accelerator (Intel DSA) provides DMA offload as a high-
performance data copy and transformation engine, starting with 4th Gen Intel® Xeon® Scalable processors. The platform 
exposes the hardware as PCIe devices. The integration of Intel DSA technology into VPP memif breaks through the CPU 
bottleneck for software data copy operations and improves the performance of Calico VPP memif interface, as shown in 
Figure 5. 
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Figure 5. Calico VPP Frame Scaling Throughput with 1500 B and 9000 B MTU 

In summary, we conclude the following benefits: 

▪ Up to 2.33x [MTU 1500, 1500 B] and 2.63x [MTU 9000, 2400 B] higher single core throughput on 4th Gen Intel 
Xeon Scalable processor with Intel DSA memory copy compared with software memory copy 

▪ MTU 9000 has better performance for large packet sizes 

▪ Tun interface has low throughput across all frame sizes 

▪ Calico VPP CPU usage is 100% 

 

 

Figure 6. Calico VPP Core Scaling Throughput for 1500 B and 9000 B MTU 

Figure 6 shows additional core saving benefits, as follows: 

▪ Save up to 3 cores to achieve 100 Gbps throughput with 4th Gen Intel Xeon Scalable processor and Intel DSA with 
Intel DSA memif vs. software memif at MTU 1500 and 1024 B frame size  

▪ Save up to 2 cores to achieve 100 Gbps throughput with 4th Gen Intel Xeon Scalable processor and Intel DSA with 
Intel DSA memif vs. software memif at MTU 9000 and 2400 B frame size  

▪ Tun interface has low throughput across CPU cores 

▪ Calico VPP CPU usage is 100% 
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eBPF-Based Bridge Using Calico 

eBPF is used to bypass iptables routing in Calico. A baseline comparison shows that an 8 core (8C) allocation of 4th Gen Intel 
Xeon Scalable processor can be used for a maximum of 93 Gbps network bandwidth throughput (Figure 7) as opposed to a 
3rd Gen Intel Xeon Scalable processor, which provides about 89 Gbps throughput. In comparison, a Calico VPP provides a 
100 Gbps throughput using 6 cores.  

 

 

Figure 7. eBPF Benefits in Calico in 4th Gen Intel Xeon Scalable Processors1  

  

 

 
1 In this figure, ICX represents 3rd Gen Intel® Xeon® Scalable processor and SPR represents 4th Gen Intel® Xeon® Scalable processor 
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NGINX 

In microservice environments, web servers and proxies like NGINX distribute requests through worker threads and processes. 
The request distribution across cores may not be even, especially if the requests are of different object types and sizes. Some 
cores are more occupied than the others. NGINX has a software load balancer but takes many CPU cycles and does not do 
object prioritization. The connection load balancing in such environments depends on kernel scheduling. 

NGINX with Intel Dynamic Load Balancer 

The NGINX HTTP2/3 distributor was enhanced using Intel® Dynamic Load Balancer (Intel® DLB) to offload the distribution 
of requests across worker cores at the server. The NGINX thread pool is designed to eliminate the blocking issue, especially in 
environments with heavy I/O. It offloads the tasks into a thread pool and when one task is blocked by the system, the other 
tasks can be picked by the free thread immediately and processed as shown in Figure 8. In the current implementation, all 
tasks are treated equally and processed in order. However, in some scenarios, different HTTP requests have different 
priorities. To achieve the priority feature, a hardware Intel DLB priority queue is used in the NGINX thread pool as shown in 
Figure 8. The consumer thread fetches tasks from the queue by priority. The priority parameter is configured in the HTTP 
request Uniform Resource Indicator (URI). The NGINX cache server parses the parameter and sets the corresponding 
priority. As the latency graph shows, even core usage and efficient hardware scheduling provide latency improvements up to 
1.3–2.3X when offloaded to Intel DLB for various object sizes. 

 

 

Figure 8. Intel DLB Hardware Queue in NGINX Thread Pool 
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gRPC 

gRPC is a modern, cross-platform, open-source, high-performance remote procedure call technology that enables client and 
server applications to communicate transparently. gRPC uses protocol buffers to define the services and the messages 
exchanged between the clients and servers. Figure 9 shows the average performance per core improvement gen-on-gen for a 
single NUMA zone deployment (1-4 CPU cores) for two gRPC services implemented in Go and C++ and when using small and 
large messages. Depending on the runtime and on the type of message, the throughput (Requests/Second) improves up to 
1.14x for small messages and up to 1.16x for large messages. The latency improves up to 1.14x for small messages and up to 1.16x 
for large messages. 

 

 
 

 

Figure 9. Average Performance per CPU Core Improvement in gRPC for Small and Large Messages 

 

Service Mesh 

Service mesh used in microservices environment helps in observability, security, and scalability. Envoy is a popular L7 proxy 

used in an Istio service mesh. When Envoy is used as an edge proxy, it often must terminate a large number of TLS 
connections. The RSA asymmetric cryptography operations needed for this can be accelerated using Intel® QuickAssist 
Technology (Intel® QAT). Intel® QAT is a special hardware accelerator that is visible to the operating system as a PCI device. 
The Envoy Intel QAT private key provider expects that the Intel QAT devices are available using the regular Linux kernel 
driver, present in Linux kernel from version 5.15 onward. The Intel QAT endpoint is exposed to Envoy via an SR-IOV VF device, 
which is the standard Intel® QAT container deployment method used, for example, in Kubernetes via the Intel QAT device 
plugin.  

CryptoMB private key provider uses Intel AVX-512 multi-buffer instructions for accelerating TLS handshakes. The Intel AVX-
512 instructions are present starting with 3rd Gen Intel Xeon Scalable processors, and they do not require any special 
hardware enabling. 
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Figure 10. Service Mesh Benchmark Setup 

Using a Nighthawk benchmark tool with a client running on one server and an Envoy proxy with microservices as a service 
mesh as shown in Figure 10, we measure baseline HTTPs with Intel AVX 512 accelerated performance and Intel QAT 
offloaded performance. CryptoMB private key provider, using Intel AVX-512 multi-buffer RSA acceleration, Intel QAT private 
key provider, using a single virtual function with (1) TLS v1.3 used with cipher TLS_AES_128_GCM_SHA256, (2) X25519 
curve, (3) 2048-bit RSA key. On a 2.0 GHz 4th Gen Intel Xeon Scalable processor we achieved the following results 
(Figure 11): 

▪ Up to 3.5x throughput improvement with one Intel QAT device and 3x improvement with two Intel QAT devices 

▪ Up to 1.95x latency reduction with two Intel QAT devices 

▪ CPU utilization up to 95% for 1-4 cores and 58% for 8 cores 

 

     

Figure 11. Service Mesh HTTPs Accelerated Performance on 4th Gen Intel Xeon Scalable Processor using Intel QAT 

 

Memcached  

Caching for microservices using a Memcached workload can speed up return of results. Intel® successfully optimized 
performance and scalability on a Pelikan Twemcache workload by leveraging Application Device Queues (ADQ) technology in 
the 4th Gen Intel Xeon Scalable processor and the Intel® Ethernet 800 Series Network Adapter under the same SLA in a 
microservices environment achieving a ~3x improvement in throughput and ~10x in P9999 tail latency. Furthermore, a POC 
web server load balancing on cores in software and using Intel DLB within the 4th Gen Intel Xeon Scalable processor had latency 
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reductions up to - 22-42% and cycle utilization reduced up to- 30-60%. In addition, the pairing of an Intel® Infrastructure 
Processing Unit (Intel® IPU) ES2000 with 4th Gen Intel Xeon Scalable processor showcasing the performance differences 
obtained by moving the microservices load balancer to the Intel IPU ES2000 resulted in a 30% performance improvement 
between the 3rd Gen Intel Xeon Scalable processor and 4th Gen Intel Xeon Scalable processor. An additional 30% 
performance increase was observed when the layer 4 load balancer is offloaded to the Intel IPU ES2000.  

 

Conclusion 

The world is increasingly complex and the move towards disaggregated architecture remains a challenge. Our results present 
some of the top challenges for the networking infrastructure layer in microservice performance in the cloud and edge with 
significant impact to application performance, scaling, and resource utilization. Intel’s latest platform, the 4th Gen Intel Xeon 
Scalable processor with built-in accelerators like Intel Data Streaming Accelerator, Intel Dynamic Load Balancer, and Intel 
Quick Assist Technology, delivers substantial performance improvements for microservices: 

▪ Up to 2.33x [MTU 1500, 1500 B] and 2.63x [MTU 9000, 2400 B] higher single core throughput on 4th Gen Intel 
Xeon Scalable processor with Intel DSA memory copy compared with software memory copy  

▪ Save up to 3 cores to achieve 100 Gbps throughput with 4th Gen Intel Xeon Scalable processor and Intel DSA with 
DSA memif vs. software memif at MTU 1500 and 1024 B frame size  

▪ Save up to 2 cores to achieve 100 Gbps throughput with 4th Gen Intel Xeon Scalable processor and Intel DSA with 
DSA memif vs. software memif at MTU 9000 and 2400 B frame size  

▪ Up to 3.5x throughput improvement with one Intel QAT device and 3x improvement with two Intel QAT devices, up 
to 1.95x latency reduction with two Intel QAT devices  

▪ Up to 1.14x improvement for small messages and up to 1.16x for large messages in a NUMA zone deployment (1-4 

CPU cores) for two gRPC services implemented in Go and C++ 

▪ Up to 2.3x latency improvement for CDN workload objects of different sizes using Intel DLB 

The outcomes shared describe how the 4th Gen Intel Xeon Scalable processor with built-in accelerators is optimized for 
microservices applications and demonstrate how Intel is developing innovative solutions for these industry challenges to help 
our customers efficiently deploy their workloads at scale. 

 

Appendix A Configurations 
Envoy: 1-node, pre-production platform with 2x Intel® Xeon® Platinum 8480+ with Intel QAT on Intel ArcherCity with GB (16 slots/ 32GB/ 

DDR5 4800) total memory, ucode 0x2b0000a1, HT on, Turbo off, Ubuntu 22.04.1 LTS, 5.17.0-051700-generic, 1x 54.9G INTEL 

SSDPEK1A058GA, 1x Ethernet Controller I225-LM, 4x Ethernet Controller E810-C for QSFP, 2x Ethernet Controller XXV710 for 25GbE 

SFP28, Nighthawk, gcc version 11.2.0, Docker 20.10.17, Kubernetes v1.22.3, Calico 3.21.4, Istio 1.13.4. DLB SW v 7.8, qatlib is 22.07.1, Nighthawk 

PODs with response size: 25 PODs each with 1kB/10kB/1MB/mixed size, test by Intel on 10/27/2022.  

Calico: 1-node, pre-production platform with 2x Intel® Xeon® Platinum 8480+  on Intel M50FCP2SBSTD with  GB (16 slots/ 32GB/ DDR5 

4800)  total memory, ucode 0x9000051, HT on, Turbo on, Ubuntu 22.04 LTS, 5.15.0-48-generic, 1x 894.3G Micron_5300_MTFD, 3x 

Ethernet Controller E810-C for QSFP, 2x Ethernet interface, Calico VPP Version 3.23.0, VPP Version 22.02, gcc 8.5.0, DPDK Version 21.11.0, 

Docker Version 20.10.18, Kubernetes Version 1.23.12, ISIA Traffic Generator 9.20.2112.6, NIC firmware 3.20 0x8000d83e 1.3146.0, ice 5.18.19-

051819-generic, Calico VPP Core Number: 1/2/3/4/5/6, VPP L3FWD Core Number: 1/2/3/4/5/6, Protocol: TCP, DSA: 1 instance, 4 engines, 4 

work queues,  test by Intel on 10/26/2022 

 

gRPC Config1 (ICX) - 1-node, 2x Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz, 36 cores, HT Off, Turbo Off, Total Memory 512GB 

(32x16GB DDR4 3200 MT/s [3200 MT/s]), BIOS SE5C620.86B.01.01.0004.2110190142, microcode 0xd000375, 1x Ethernet Controller 

E810-C for QSFP, 2x BCM57416 NetXtreme-E Dual-Media 10G RDMA Ethernet Controller, 2x 1.8T INTEL SSDPE2KX020T8, Ubuntu 22.04.1 

LTS, 5.15.0-52-generic, g++ (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0, go version go1.17.5 linux/amd64, Ghz v0.110.0, gRPC v1.49, 4838.819 and 

4868.116 throughput/core for C++ and Go for Echo message, and 3773.04 and 3785.163 throughput/core for C++ and Go for B1M1 message 

gRPC Config2 (SPR) - 1-node, 2x Intel(R) Xeon(R) Platinum 8480+, 56 cores, HT Off, Turbo Off, Total Memory 1024GB (32x32GB DDR5 

4800 MT/s [4400 MT/s]), BIOS EGSDCRB1.SYS.8901.P01.2209200243, microcode 0x2b0000a1, 1x Ethernet Controller I225-LM, 4x 

Ethernet Controller E810-C for QSFP, 2x Ethernet Controller XXV710 for 25GbE SFP28, 1x 54.9G INTEL SSDPEK1A058GA, 2x 372.6G 

INTEL SSDPF21Q400GB, Ubuntu 22.04.1 LTS, 5.15.0-52-generic, g++ (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0, go version go1.17.5 

linux/amd64, Ghz v0.110.0, gRPC v1.49, 5496.879167 and 5557.79 throughput/core for C++ and Go for Echo message, and 4392.733333 and 

4396.638333 throughput/core for C++ and Go for B1M1 message 

 

NGINX BASELINE: 1-node, Intel(R) Xeon(R) Platinum 8490H 1S 60core HT/ON, Turbo ON, Total Memory 256GB (8 slots/ 32GB/ 4800 

MT/s [4400 MT/s]), EGSDCRB1.86B.0091.D05.2210161326, 0xab000110, CentOS Stream 8, 5.15.0-spr.bkc.pc.12.7.15.x86_64, gcc (GCC) 

8.5.0 20210514 (Red Hat 8.5.0-15), ldd (GNU libc) 2.28, nginx version: nginx/1.16.1   
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NGINX NEW-1: 1-node, Intel(R) Xeon(R) Platinum 8490H 1S 60core HT/ON, Turbo ON, Total Memory 256GB (8 slots/ 32GB/ 4800 MT/s 

[4400 MT/s]), EGSDCRB1.86B.0091.D05.2210161326, 0xab000110, CentOS Stream 8, 5.15.0-spr.bkc.pc.12.7.15.x86_64, gcc (GCC) 8.5.0 

20210514 (Red Hat 8.5.0-15), ldd (GNU libc) 2.28, nginx version: nginx/1.16.1, Driver dlb7.8.0v. 

 

Terminology 

Table 2. Terminology 

Abbreviation Description 

8C Eight Core 

ADQ Application Device Queues (ADQ) 

BGP Border Gateway Protocol 

BNG Broadband Network Gateway 

CDN Content Delivery Network 

CNI Container Network Interface 

DMA Direct Memory Access 

DPDK Data Plane Development Kit 

Intel® AVX-512) Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 

Intel® DLB Intel® Dynamic Load Balancer (Intel® DLB) 

Intel® DSA Intel® Data Streaming Accelerator (Intel® DSA) 

Intel® IPU Intel® Infrastructure Processing Unit (Intel® IPU) 

Intel® QAT Intel® QuickAssist Technology (Intel® QAT) 

IP Internet Protocol 

IPAM IP Address Management 

ISA Instruction Set Architecture 

K8s Kubernetes 

MTU Maximum Transmission Unit 

NF Network Function 

RPC Remote Procedure Call 

RPS Requests per Second 

SR-IOV Single Root Input Output Virtualization 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UPF User Plane Function 

URI Uniform Resource Indicator 

VF Virtual Function 

VM Virtual Machine 

VPP Vector Packet Processing 

 

References 

Table 3. References 

Reference Source 

Application Device Queues (ADQ) Resource Center 
https://www.intel.com/content/www/us/en/architecture-and-

technology/ethernet/adq-resource-center.html 

Intel® Dynamic Load Balancer (Intel® DLB) 
https://www.intel.com/content/www/us/en/download/686372/intel-

dynamic-load-balancer.html 

https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
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Reference Source 

Envoy https://www.envoyproxy.io/ 

NGINX https://www.nginx.com/ 

Calico-VPP – Get started with VPP networking 
https://projectcalico.docs.tigera.io/getting-

started/kubernetes/vpp/getting-started 

Introducing the Intel® Data Streaming Accelerator (Intel® 

DSA) 
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator  
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