
Abstract
The 3rd Generation Intel® Xeon® Scalable Processors with Sunny Cove core
microarchitecture significantly improves AES throughput compared to previous
generation processors. Throughput is improved up to 2x on legacy AES software
running on Sunny Cove cores. In newly developed software, the AVX-512_VAES
extension enables AES operations to be performed on 64-byte ZMM registers (up
to 4 AES blocks) with a single instruction and achieves up to 3.84x improvement
over the previous generation11.

The Intel® Multi-Buffer Crypto for IPsec library’s CENC CBCS implementation
leverages these new features and enhancements to dramatically improve crypto
performance compared to the previous generation of Intel processors. This
significantly reduces the crypto overhead in multimedia packager stacks such as
GPAC when doing MPEG DRM encryption and decryption by up to 15x compared to
the default implementation that leverages OpenSSL4.

Introduction
The MPEG Common Encryption (MPEG CENC, ISO/IEC 23001-7) is a DRM-
independent encryption format for ISO-BMFF (mp4) files. This encryption format
is widely used to protect media content delivered by adaptive streaming systems
such as MPEG DASH and Apple HLS. CENC supports several encryption modes,
such as CENC mode (AES-CTR) and CBCS mode (sparse AES-CBC). The latter saw
rapid adoption due to its use in Apple HLS. The CBCS encryption scheme is based
on AES in CBC (cipher block chaining) mode applied to every nth 16-byte block.
CBC mode uses the encrypted previous 16-byte block to encrypt the current
16-byte block, thus introducing a dependency between consecutive blocks. This
does not lend itself to processing multiple blocks of the same stream in parallel,
while a serial implementation limits achievable performance on modern CPU
architectures. A multi-buffer approach can improve the performance in CBCS
mode by encrypting independent access units in parallel. This approach uses SIMD
(single instruction multiple data) instructions and relies on AES-NI extensions to
parallelize data processing for CBCS mode and improve performance of CENC.

In this paper we will discuss a high-performance CBCS mode encryption
implementation on Intel 3rd Generation Xeon Scalable Processors with Sunny
Cove core microarchitecture bringing crypto enhancements that result in up to
3.84x throughput compared to previous generation cores. Additionally, we will
discuss the CENC CBCS mode encryption implementation in the Intel Multi-Buffer
Crypto for IPsec library1, which leverages the above architectural enhancements
to dramatically improve CBCS mode encryption performance in multimedia
packager stacks such as GPAC2, where we achieve up to 15x versus the default
implementation (leveraging OpenSSL4). Since decryption is performed on individual
client devices and not by a packager, this paper will focus on encryption only.

Multi-buffer AVX-512 Accelerated
Parallelization of CBCS Common
Encryption Mode

5G Broadcasting

Table of Contents

Abstract .1
Introduction .1
Background . 2
Intel Multi-Buffer Crypto for IPsec
Enabling for CENC . 2
 CENC CBCS mode overview 2
 CENC CBCS software implementation . . . 3
 Intel Multi-Buffer Crypto for
 IPsec Library . 3

 GPAC Multimedia Framework 3

 CENC CBCS Mode Encryption
 Implementation . 3
 Single-Buffer vs Multi-Buffer
 Processing . 4

 Implementation Overview 4

 GPAC Framework Modifications 6
Test Setup and Profiling . 6
 Results . 6
Test Environment and Configuration 7

Authors
Marcel Cornu (Intel),
Mark Jewett (Intel),

Sumit Mohan (Intel),
Romain Bouqueau (Motion Spell),

Tomasz Kantecki (Intel),
Gordon Kelly (Intel),

Jean Le Feuvre (Telecom Paris),
Alex Giladi (Comcast)

White Paper

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

Background
As the growth of video streaming services has continued
over the last several years, so has the requirement to
protect valuable content from unauthorized access. Popular
streaming protocols such as HTTP Live Streaming (HLS) from
Apple, Microsoft Smooth Streaming, and MPEG-DASH all
use digital rights management (DRM) technologies to protect
the content. DRM technologies enable content publishers
to enforce their own access policies on content, such as
restrictions on copying or viewing. Popular DRM technologies
include FairPlay, which is Apple’s DRM for HLS and works on
iOS, Apple TV, and Safari on OS X. Google Widevine works
with HTML5 in Google Chrome and Android Devices, and
PlayReady from Microsoft. DRM uses encryption and license
management to protect content and is implemented within a
“Packager” in a typical video distribution workflow.

In a typical over the top (OTT) video distribution workflow,
a video asset is transcoded into multiple resolutions and
bitrates, called adaptive bitrate encoding (ABR), to ensure
the best-possible experience for the end user by adapting
to any changes in the user’s network or playback conditions.
After transcoding, each of the different bitrate streams
are segmented into small multi-second parts, typically
between 2 and 10 seconds. The individual segments are then
encrypted by the “packager” using the encryption algorithm
of the particular DRM technology. Different live streaming
protocols support different segmentation, container, and
encryption schemes. This means that several different
renditions of a single asset need to be created to support
playback on different devices, which can be very costly.
Common Media Application Format (CMAF) and Common
Encryption (CENC) emerged to make it possible to create a
single rendition of an asset for distribution across numerous
playback devices/platforms which use different DRM systems.

Once the video asset has been transcoded into appropriate
ABR profiles and segmented and encrypted by the packager,
the content is stored on an origin server. When an end user
wishes to access a particular asset, a request is made to a
service which a DNS resolves to a CDN router. If the CDN has

Package
and Encrypt

Video Assets

Transcoder

Bitrate Variants

Manifest and Chunks
stored in Origin Server

CDN

Request/Serve
Video Segments

and MPD

Video Player

the requested asset in its cache, it is retrieved and delivered
to the client device. When a customer plays the content,
the player sends the license request to the content owner’s
platform which communicates with an authentication
process. Once the validation of the user’s rights to the
content has been completed, the DRM platform creates
the license/decryption key which is then returned to the
customer’s proxy and ultimately to the user’s player.

CENC is an ISO 23001-7 standard that defines a common
format for encryption, decryption, and key mapping
methods. The primary goal of CENC was to ensure that a
single file needed to be encrypted only once for distribution
across numerous playback devices and platforms that use
different DRM systems. The CENC encryption process is not
proprietary to individual DRM systems, and video content
essentially becomes DRM-neutral. CENC is supported by
FairPlay, Windvine, and PlayReady when using fragmented
MP4 containers and supports both AES-CTR (counter mode)
and AES-CBC (cipher block chaining). AES-CTR and AES-
CBC serve the same function—to protect content from
unauthorized access, but fragmented support for AES-CTR
and AES-CBC modes means that unless all target playback
devices support a single encryption mode, two file sets are
still needed today.

Intel Multi-Buffer Crypto for IPsec Enabling
for CENC

CENC CBCS mode overview
The CENC CBCS mode encryption scheme is based on AES
in CBC (cipher block chaining) mode of operation. Standard
AES-CBC provides privacy by encrypting sequential 16-byte
blocks of data which can later be decrypted using the same
private key. The general operation of AES-CBC encryption is
described as follows.

2

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

Encryption is performed by XORing the first plaintext block
with a 16-byte initialization vector (IV) before encrypting using
AES to produce a ciphertext block. Each subsequent plaintext
block is XORed with the previous ciphertext block before
encrypting for the remainder of the message. The dependency
between plaintext and the previous ciphertext blocks means
parallel processing of a single buffer is not possible.

CENC CBCS mode encryption operation is similar to AES-CBC
with a configurable crypt:skip pattern where a crypt 16-byte
block is encrypted and a number of subsequent skip blocks
are left in the clear. A common crypt:skip pattern used is 1:9,
meaning 1 block is encrypted and the following 9 blocks are
left in plaintext. Decryption operates in the same manner.

CENC CBCS software implementation
CENC CBCS mode is enabled through the open-source Intel
Multi-Buffer Crypto for IPsec library and GPAC multimedia
framework.

Intel Multi-Buffer Crypto for IPsec Library

The Intel Multi-Buffer Crypto for IPsec library supports a
wide range of confidentiality and authentication algorithms
and uses various software optimization techniques to
maximize CPU core utilization and crypto performance on
Intel processors. SIMD instructions and AES-NI extensions
are heavily used throughout the library to parallelize
data processing. This paper focuses on the AVX512
implementation targeted at the Sunny Cove core. However,

IV

P0 P1 P2 P3 P4

Encrypt K Encrypt K Encrypt KEncrypt K Encrypt K

AES in CBC mode encryption

C0 C1 C2 C3 C4

IV

P0

Encrypt K Encrypt K Encrypt K Encrypt K

CENC CBCS mode encryption (1:9 pattern)

C0

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

the library provides optimized CENC CBCS implementations
for all recent Intel processors and can perform runtime
feature detection to select the most optimal implementation
for your hardware.

GPAC Multimedia Framework

GPAC is a popular open-source multimedia framework
used in many media production chains to process and
package video files. The GPAC framework supports all CENC
encryption modes and currently leverages the OpenSSL4
AES-CBC for its CBCS implementation.

Experimental support for the IPsec Multi-Buffer CBCS mode
implementation5 was added to the GPAC framework to
evaluate the multi-buffer CBCS implementation performance.

CENC CBCS Mode Encryption Implementation
The CENC CBCS encryption implementation leverages new
features and enhancements available on the Sunny Cove
core. Vectorized AES enhancements and the new AVX-512
VAES extension enables AES operations to be performed on
full 64-byte ZMM registers (up to 4 AES blocks) with a single
instruction, resulting in up to 3.84x throughput compared
to previous generation cores. Refer to reference3 for more
information on 3rd Generation Intel Xeon Scalable Processor
crypto enhancements.

3

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

Single-Buffer vs Multi-Buffer Processing

The Intel Multi-Buffer Crypto for IPsec library provides
optimized single-buffer and multi-buffer algorithm
implementations.

The figures above show examples of how data blocks from
four buffers are processed using single-buffer and multi-
buffer implementations.

Single-buffer implementations process buffers sequentially
and use SIMD instructions to process multiple blocks of a
single buffer in parallel. Where algorithm limitations exist
that prevent parallel processing of a single buffer, multi-
buffer processing can be used.

Multi-buffer implementations process single blocks from
multiple buffers in parallel to maximize performance. Multi-
buffer implementations add extra complexity since data must
be organized correctly before processing can begin. To deal
with this complexity, the library contains internal schedulers
that manage the organization and processing of buffers to
achieve the greatest processor utilization and throughput.
In the case of CENC CBCS encryption, a multi-buffer
implementation is used since it cannot be parallelized.

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

E
xe

cu
ti

on

Time

Single-buffer processing of 4 buffers

BUFFER A A0 A1 A2 A3

BUFFER B B0 B1 B2 B3

BUFFER C C0 C1 C2 C3

BUFFER D D0 D1 D2 D3

Multi-buffer processing of 4 buffers

BUFFER A A0 A1 A2 A3

BUFFER B B0 B1 B2 B3

BUFFER C C0 C1 C2 C3

BUFFER D D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

E
xe

cu
ti

on

Time

For more information on multi-buffer processing, please
refer to reference 8.

Implementation Overview

The core of the CENC CBCS implementation is performing
AES encryption on multiple blocks of data in parallel. Data
and AES round keys are loaded into 64-byte ZMM registers,
then AES-NI vector instructions are used to process the data
before storing the result.

In CENC CBCS encryption, each block is from a separate
buffer and each buffer represents a single access unit (AU) of
a video stream to be encrypted. On processors supporting
AVX512 VAES extensions, an experimental study of critical
instructions, latency, and throughput found that processing
12 AUs concurrently resulted in best performance. This is
a fairly realistic scenario, as a single 60-fps video segment
contains 120 AUs. For the Sunny Cove core microarchitecture,
it is best to issue at least three independent AES-NI
instructions. Each instruction works on four AES blocks from
different AUs. Three instructions on four AES blocks = 12.

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

lo
ad

 16
 b

yt
es

zmm0

zmm1

zmm2

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

st
or

e
16

 b
yt

es

 A
U

 0

 A
U

 1

 A
U

 2

 A
U

 3

 A
U

 4

 A
U

 5

 A
U

 6

 A
U

 7

 A
U

 8

 A
U

 9

 A
U

 10

 A
U

 11

1. Load plaintext
blocks into

ZMM registers

3. Store ciphertext
blocks back
to memory

2. Perform
vectorized AES

on ZMM
registers

4

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

Since blocks to be encrypted are at 160-byte offsets, each
block must be individually loaded into the correct index of
the ZMM register. To do this, the vmovdqu64 instruction is
used to load the first block into the first index, followed by
three vinserti64x2 instructions to insert the remaining blocks
into indexes 1, 2, and 3 of the ZMM register. Once all 12
blocks have been loaded into registers, processing can begin.

AU0_BLOCK_0

AU1_BLOCK_0

AU2_BLOCK_0

AU3_BLOCK_0

AU3 AU2 AU1 AU0

ZMM0 BLOCK_0 BLOCK_0 BLOCK_0 BLOCK_0

Memory

vmovdqu64

vinserti64x2

vinserti64x2

vinserti64x2

vmovdqu64 xmm0, [AU0_BLOCK_0]
vinserti64x2 zmm0, [AU1_BLOCK_0], 1
vinserti64x2 zmm0, [AU2_BLOCK_0], 2
vinserti64x2 zmm0, [AU3_BLOCK_0], 3

Steps 1 and 3: Loading and Storing Data

Step 2: Performing Vectorized AES on ZMM registers

Once all rounds of AES are complete, the vmovdqu64
instruction is used again, this time to store the first ciphertext
block followed by three vextracti64x2 instructions to extract
the blocks in indexes 1, 2, and 3 of the ZMM register and
store back to memory.

5

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

The current CENC CBCS implementation uses a 128-bit key to
encrypt data blocks. This operation is made up of 11 rounds
and can be summarized in three steps:

 1. Initial round 0
First, add (bitwise XOR) the IV or ciphertext block with
the next plaintext block. Next, the AES round 0 key is
added to the result. The AVX512 vpternlogq bitwise
ternary logic instruction allows these two operations
to be performed with a single instruction. This reduces
the number of instructions in the main processing
loop and frees up the CPU port which improves overall
performance of the algorithm.

 2. Rounds 1 to 10
This step makes up the bulk of the overall AES encryption
process. The resulting data from the initial round is
transformed using the vectorized AESENC instruction
to perform a single round of AES encryption. Since
vectorized AES on Sunny Cove core can operate 4 blocks
in a single instruction, three vaesenc instructions are
required to process all 12 blocks / AUs per round. This
process is repeated 10 times using round keys 1 to 10 as
the second source operand.

 3. Final Round
The final round uses the vectorized AESENCLAST
instruction to perform the last round of AES encryption
on all 12 blocks / AUs. Three vaesenclast instructions
are issued with round 11 key as the second source
operand, producing the final ciphertext blocks as
the result.

GPAC Framework Modifications
The GPAC CENC encryption filter currently supports only
synchronous encryption. However, since the optimized
CENC CBCS encryption operates on 12 buffers in parallel,
experimental support for asynchronous processing was
added. This allows data packets (buffers) to be queued until
enough packets have been submitted to the IPsec Multi-
Buffer library to start processing. Once processing begins,
encrypted packets are returned and removed from the queue
before being sent to the next destination filter for further
processing.

Test Setup and Profiling
Testing was performed using the “gpac”2 packager
application to measure the time taken to complete
encryption of select video files using the default (OpenSSL)
implementation and IPsec Multi-Buffer. Time spent in GPAC’s
CENC encryption module was also recorded to determine the
cost of crypto processing.

Results

Test Video File Details

Big Buck Bunny6 Full HD@30fps (3Mbps), Full
HD@60fps (4Mbps), 4K@30fps
(7.5Mbps), 4K@60fps (8Mbps)

Chimera7 4K@24fps (54.4Mbps)

OpenSSL

BBB FHD 30fps BBB 4K 30fps BBB 4K 60fps Chimera 4K 24fpsBBB FHD 60fps

OpenSSL OpenSSL OpenSSL OpenSSLIPSecMB IPSecMB IPSecMB IPSecMB IPSecMB

CryptoNon-Crypto

Average Time To Complete (less is better)

A significant improvement was observed when using IPsec
Multi-Buffer library for CBCS encryption when compared
to GPAC’s default implementation leveraging OpenSSL.
Crypto processing saw 55 to 90 percent improvement
depending on the video bitrate. Unsurprisingly, much higher
speed-ups have been achieved with higher bitrate files. The
improvement when measuring the overall runtime was 25
to 65 percent, again achieving better results with higher
bitrate files.

Conclusion
Combining crypto enhancements on the latest Intel® Xeon®
Processors with optimized software implementations can
dramatically accelerate MPEG DRM encryption. This reduces
the processing resource requirements of the “packager”
and reduces the total cost of ownership for an over-the-top
service.

Best performance gains were observed in video streams
with higher bitrates. This is due to larger buffer sizes
being encrypted requiring less buffer management, and
significantly more CPU time spent on encryption. With higher
quality higher-rate content (such as 8K and immersive)
becoming more popular, even greater efficiency could be
achieved.

6

White Paper | Multi-buffer AVX-512 Accelerated Parallelization of CBCS Common Encryption Mode

References
1. Intel® Multi-Buffer Crypto for IPsec library:

https://github.com/intel/intel-ipsec-mb

2. GPAC Multimedia framework:
https://dl.acm.org/doi/10.1145/3339825.3394929

3. 3rd Generation Intel® Xeon® Scalable Processor
crypto enhancements: https://newsroom.intel.com/
articles/crypto-acceleration-enabling-path-future-
computing/#gs.n34xtw

4. OpenSSL: https://www.openssl.org

5. GPAC - IPsec Multi-Buffer asynchronous prototype:
https://github.com/mdcornu/gpac/tree/async_cryp_
ipsecmb

6. Big Buck Bunny video files:
http://bbb3d.renderfarming.net/download.html

7. Chimera video file:
http://download.opencontent.netflix.com

8. Processing Multiple Buffers in Parallel to Increase
Performance on Intel Architecture Processors:
https://github.com/intel/intel-ipsec-mb/wiki/doc/
communications-ia-multi-buffer-paper.pdf

9. CENC CBCS example code: https://github.com/intel/
intel-ipsec-mb/wiki/MPEG-CENC-in-CBCS-mode

10. For documentation on vector AES-NI instructions, see
volume 2, chapter 3 of the Intel Software Developers
Manual: https://software.intel.com/content/www/us/en/
develop/articles/intel-sdm.html

11. 3rd Gen Intel® Xeon® Scalable Platform Press
Presentation (Appendix 20): https://newsroom.intel.com/
wp-content/uploads/sites/11/2021/04/3rd-Gen-Intel-
Xeon-Scalable-Platform-Press-Presentation-281884.pdf

Test Environment and Configuration

 Performance varies by use, configuration, and other factors. Learn more at https://www.intel.com/PerformanceIndex.
 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component

can be absolutely secure.
 Your costs and results may vary.
 Intel technologies may require enabled hardware, software, or service activation.
 Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function

as trademarks.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
 0622/DL/MESH/PDF 351727-001US

Solution provided by:

Test by Intel as of December 10th 2021

Platform Inspur NF5180M6

CPU 2S Intel(R) Xeon(R) Gold 6348 (2.60GHz)

Microcode 0xd0002a0

Hyperthreading Disabled

Turbo Disabled

Operating
System

Ubuntu 20.04.03 LTS (5.4.0-91-generic)

Codec H.264

7

https://github.com/intel/intel-ipsec-mb
https://dl.acm.org/doi/10.1145/3339825.3394929
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/#gs.n34xtw
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/#gs.n34xtw
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/#gs.n34xtw
https://www.openssl.org/
https://github.com/mdcornu/gpac/tree/async_cryp_ipsecmb
https://github.com/mdcornu/gpac/tree/async_cryp_ipsecmb
http://bbb3d.renderfarming.net/download.html
http://download.opencontent.netflix.com/
https://github.com/intel/intel-ipsec-mb/wiki/doc/communications-ia-multi-buffer-paper.pdf
https://github.com/intel/intel-ipsec-mb/wiki/doc/communications-ia-multi-buffer-paper.pdf
https://github.com/intel/intel-ipsec-mb/wiki/MPEG-CENC-in-CBCS-mode
https://github.com/intel/intel-ipsec-mb/wiki/MPEG-CENC-in-CBCS-mode
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://newsroom.intel.com/wp-content/uploads/sites/11/2021/04/3rd-Gen-Intel-Xeon-Scalable-Platform-Press-Presentation-281884.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2021/04/3rd-Gen-Intel-Xeon-Scalable-Platform-Press-Presentation-281884.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2021/04/3rd-Gen-Intel-Xeon-Scalable-Platform-Press-Presentation-281884.pdf

	Authors
	Introduction
	Background
	Intel Multi-Buffer Crypto for IPsec Enabling
for CENC
	CENC CBCS mode overview
	CENC CBCS software implementation
	Intel Multi-Buffer Crypto for IPsec Library
	GPAC Multimedia Framework

	CENC CBCS Mode Encryption Implementation
	Single-Buffer vs Multi-Buffer Processing
	Implementation Overview

	GPAC Framework Modifications

	Test Setup and Profiling
	Results

	Test Environment and Configuration

