
Abstract
The 3rd Generation Intel® Xeon® Scalable Processors with Sunny Cove core 
microarchitecture significantly improves AES throughput compared to previous 
generation processors. Throughput is improved up to 2x on legacy AES software 
running on Sunny Cove cores. In newly developed software, the AVX-512_VAES 
extension enables AES operations to be performed on 64-byte ZMM registers (up 
to 4 AES blocks) with a single instruction and achieves up to 3.84x improvement 
over the previous generation11.

The Intel® Multi-Buffer Crypto for IPsec library’s CENC CBCS implementation 
leverages these new features and enhancements to dramatically improve crypto 
performance compared to the previous generation of Intel processors. This 
significantly reduces the crypto overhead in multimedia packager stacks such as 
GPAC when doing MPEG DRM encryption and decryption by up to 15x compared to 
the default implementation that leverages OpenSSL4.

Introduction
The MPEG Common Encryption (MPEG CENC, ISO/IEC 23001-7) is a DRM-
independent encryption format for ISO-BMFF (mp4) files. This encryption format 
is widely used to protect media content delivered by adaptive streaming systems 
such as MPEG DASH and Apple HLS. CENC supports several encryption modes, 
such as CENC mode (AES-CTR) and CBCS mode (sparse AES-CBC). The latter saw 
rapid adoption due to its use in Apple HLS. The CBCS encryption scheme is based 
on AES in CBC (cipher block chaining) mode applied to every nth 16-byte block. 
CBC mode uses the encrypted previous 16-byte block to encrypt the current 
16-byte block, thus introducing a dependency between consecutive blocks. This 
does not lend itself to processing multiple blocks of the same stream in parallel, 
while a serial implementation limits achievable performance on modern CPU 
architectures. A multi-buffer approach can improve the performance in CBCS 
mode by encrypting independent access units in parallel. This approach uses SIMD 
(single instruction multiple data) instructions and relies on AES-NI extensions to 
parallelize data processing for CBCS mode and improve performance of CENC.

In this paper we will discuss a high-performance CBCS mode encryption 
implementation on Intel 3rd Generation Xeon Scalable Processors with Sunny 
Cove core microarchitecture bringing crypto enhancements that result in up to 
3.84x throughput compared to previous generation cores. Additionally, we will 
discuss the CENC CBCS mode encryption implementation in the Intel Multi-Buffer 
Crypto for IPsec library1, which leverages the above architectural enhancements 
to dramatically improve CBCS mode encryption performance in multimedia 
packager stacks such as GPAC2, where we achieve up to 15x versus the default 
implementation (leveraging OpenSSL4). Since decryption is performed on individual  
client devices and not by a packager, this paper will focus on encryption only.
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Background
As the growth of video streaming services has continued 
over the last several years, so has the requirement to 
protect valuable content from unauthorized access. Popular 
streaming protocols such as HTTP Live Streaming (HLS) from 
Apple, Microsoft Smooth Streaming, and MPEG-DASH all 
use digital rights management (DRM) technologies to protect 
the content. DRM technologies enable content publishers 
to enforce their own access policies on content, such as 
restrictions on copying or viewing. Popular DRM technologies 
include FairPlay, which is Apple’s DRM for HLS and works on 
iOS, Apple TV, and Safari on OS X. Google Widevine works 
with HTML5 in Google Chrome and Android Devices, and 
PlayReady from Microsoft. DRM uses encryption and license 
management to protect content and is implemented within a 
“Packager” in a typical video distribution workflow.

In a typical over the top (OTT) video distribution workflow, 
a video asset is transcoded into multiple resolutions and 
bitrates, called adaptive bitrate encoding (ABR), to ensure 
the best-possible experience for the end user by adapting 
to any changes in the user’s network or playback conditions. 
After transcoding, each of the different bitrate streams 
are segmented into small multi-second parts, typically 
between 2 and 10 seconds. The individual segments are then 
encrypted by the “packager” using the encryption algorithm 
of the particular DRM technology. Different live streaming 
protocols support different segmentation, container, and 
encryption schemes. This means that several different 
renditions of a single asset need to be created to support 
playback on different devices, which can be very costly. 
Common Media Application Format (CMAF) and Common 
Encryption (CENC) emerged to make it possible to create a 
single rendition of an asset for distribution across numerous 
playback devices/platforms which use different DRM systems.

Once the video asset has been transcoded into appropriate 
ABR profiles and segmented and encrypted by the packager, 
the content is stored on an origin server. When an end user 
wishes to access a particular asset, a request is made to a 
service which a DNS resolves to a CDN router. If the CDN has 
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the requested asset in its cache, it is retrieved and delivered 
to the client device. When a customer plays the content, 
the player sends the license request to the content owner’s 
platform which communicates with an authentication 
process. Once the validation of the user’s rights to the 
content has been completed, the DRM platform creates 
the license/decryption key which is then returned to the 
customer’s proxy and ultimately to the user’s player.

CENC is an ISO 23001-7 standard that defines a common 
format for encryption, decryption, and key mapping 
methods. The primary goal of CENC was to ensure that a 
single file needed to be encrypted only once for distribution 
across numerous playback devices and platforms that use 
different DRM systems. The CENC encryption process is not 
proprietary to individual DRM systems, and video content 
essentially becomes DRM-neutral. CENC is supported by 
FairPlay, Windvine, and PlayReady when using fragmented 
MP4 containers and supports both AES-CTR (counter mode) 
and AES-CBC (cipher block chaining). AES-CTR and AES-
CBC serve the same function—to protect content from 
unauthorized access, but fragmented support for AES-CTR 
and AES-CBC modes means that unless all target playback 
devices support a single encryption mode, two file sets are 
still needed today.

Intel Multi-Buffer Crypto for IPsec Enabling  
for CENC

CENC CBCS mode overview
The CENC CBCS mode encryption scheme is based on AES 
in CBC (cipher block chaining) mode of operation. Standard 
AES-CBC provides privacy by encrypting sequential 16-byte 
blocks of data which can later be decrypted using the same 
private key. The general operation of AES-CBC encryption is 
described as follows.
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Encryption is performed by XORing the first plaintext block 
with a 16-byte initialization vector (IV) before encrypting using  
AES to produce a ciphertext block. Each subsequent plaintext 
block is XORed with the previous ciphertext block before 
encrypting for the remainder of the message. The dependency 
between plaintext and the previous ciphertext blocks means 
parallel processing of a single buffer is not possible.

CENC CBCS mode encryption operation is similar to AES-CBC 
with a configurable crypt:skip pattern where a crypt 16-byte 
block is encrypted and a number of subsequent skip blocks 
are left in the clear. A common crypt:skip pattern used is 1:9, 
meaning 1 block is encrypted and the following 9 blocks are 
left in plaintext. Decryption operates in the same manner.

CENC CBCS software implementation
CENC CBCS mode is enabled through the open-source Intel 
Multi-Buffer Crypto for IPsec library and GPAC multimedia 
framework.

Intel Multi-Buffer Crypto for IPsec Library

The Intel Multi-Buffer Crypto for IPsec library supports a 
wide range of confidentiality and authentication algorithms 
and uses various software optimization techniques to 
maximize CPU core utilization and crypto performance on 
Intel processors. SIMD instructions and AES-NI extensions 
are heavily used throughout the library to parallelize 
data processing. This paper focuses on the AVX512 
implementation targeted at the Sunny Cove core. However, 
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the library provides optimized CENC CBCS implementations 
for all recent Intel processors and can perform runtime 
feature detection to select the most optimal implementation 
for your hardware.

GPAC Multimedia Framework

GPAC is a popular open-source multimedia framework 
used in many media production chains to process and 
package video files. The GPAC framework supports all CENC 
encryption modes and currently leverages the OpenSSL4 
AES-CBC for its CBCS implementation.

Experimental support for the IPsec Multi-Buffer CBCS mode 
implementation5 was added to the GPAC framework to 
evaluate the multi-buffer CBCS implementation performance.

CENC CBCS Mode Encryption Implementation
The CENC CBCS encryption implementation leverages new 
features and enhancements available on the Sunny Cove 
core. Vectorized AES enhancements and the new AVX-512 
VAES extension enables AES operations to be performed on 
full 64-byte ZMM registers (up to 4 AES blocks) with a single 
instruction, resulting in up to 3.84x throughput compared 
to previous generation cores. Refer to reference3 for more 
information on 3rd Generation Intel Xeon Scalable Processor 
crypto enhancements.
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Single-Buffer vs Multi-Buffer Processing

The Intel Multi-Buffer Crypto for IPsec library provides 
optimized single-buffer and multi-buffer algorithm 
implementations. 

The figures above show examples of how data blocks from 
four buffers are processed using single-buffer and multi-
buffer implementations. 

Single-buffer implementations process buffers sequentially 
and use SIMD instructions to process multiple blocks of a 
single buffer in parallel. Where algorithm limitations exist 
that prevent parallel processing of a single buffer, multi-
buffer processing can be used.

Multi-buffer implementations process single blocks from 
multiple buffers in parallel to maximize performance. Multi-
buffer implementations add extra complexity since data must 
be organized correctly before processing can begin. To deal 
with this complexity, the library contains internal schedulers 
that manage the organization and processing of buffers to 
achieve the greatest processor utilization and throughput. 
In the case of CENC CBCS encryption, a multi-buffer 
implementation is used since it cannot be parallelized. 
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For more information on multi-buffer processing, please 
refer to reference 8.

Implementation Overview

The core of the CENC CBCS implementation is performing 
AES encryption on multiple blocks of data in parallel. Data 
and AES round keys are loaded into 64-byte ZMM registers, 
then AES-NI vector instructions are used to process the data 
before storing the result. 

In CENC CBCS encryption, each block is from a separate 
buffer and each buffer represents a single access unit (AU) of 
a video stream to be encrypted. On processors supporting 
AVX512 VAES extensions, an experimental study of critical 
instructions, latency, and throughput found that processing 
12 AUs concurrently resulted in best performance. This is 
a fairly realistic scenario, as a single 60-fps video segment 
contains 120 AUs. For the Sunny Cove core microarchitecture, 
it is best to issue at least three independent AES-NI 
instructions. Each instruction works on four AES blocks from 
different AUs. Three instructions on four AES blocks = 12. 
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Since blocks to be encrypted are at 160-byte offsets, each 
block must be individually loaded into the correct index of 
the ZMM register. To do this, the vmovdqu64 instruction is 
used to load the first block into the first index, followed by 
three vinserti64x2 instructions to insert the remaining blocks 
into indexes 1, 2, and 3 of the ZMM register. Once all 12 
blocks have been loaded into registers, processing can begin.

AU0_BLOCK_0

AU1_BLOCK_0

AU2_BLOCK_0

AU3_BLOCK_0

AU3 AU2 AU1 AU0

ZMM0 BLOCK_0 BLOCK_0 BLOCK_0 BLOCK_0

Memory

vmovdqu64

vinserti64x2

vinserti64x2

vinserti64x2 

vmovdqu64 xmm0, [AU0_BLOCK_0]
vinserti64x2 zmm0, [AU1_BLOCK_0], 1
vinserti64x2 zmm0, [AU2_BLOCK_0], 2
vinserti64x2 zmm0, [AU3_BLOCK_0], 3

Steps 1 and 3: Loading and Storing Data

Step 2: Performing Vectorized AES on ZMM registers

Once all rounds of AES are complete, the vmovdqu64 
instruction is used again, this time to store the first ciphertext 
block followed by three vextracti64x2 instructions to extract 
the blocks in indexes 1, 2, and 3 of the ZMM register and 
store back to memory.
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The current CENC CBCS implementation uses a 128-bit key to 
encrypt data blocks. This operation is made up of 11 rounds 
and can be summarized in three steps: 

  1.  Initial round 0 
First, add (bitwise XOR) the IV or ciphertext block with 
the next plaintext block. Next, the AES round 0 key is 
added to the result. The AVX512 vpternlogq bitwise 
ternary logic instruction allows these two operations 
to be performed with a single instruction. This reduces 
the number of instructions in the main processing 
loop and frees up the CPU port which improves overall 
performance of the algorithm.

  2.  Rounds 1 to 10 
This step makes up the bulk of the overall AES encryption 
process. The resulting data from the initial round is 
transformed using the vectorized AESENC instruction 
to perform a single round of AES encryption. Since 
vectorized AES on Sunny Cove core can operate 4 blocks 
in a single instruction, three vaesenc instructions are 
required to process all 12 blocks / AUs per round. This 
process is repeated 10 times using round keys 1 to 10 as 
the second source operand.

  3.  Final Round 
The final round uses the vectorized AESENCLAST 
instruction to perform the last round of AES encryption 
on all 12 blocks / AUs. Three vaesenclast instructions 
are issued with round 11 key as the second source 
operand, producing the final ciphertext blocks as  
the result.

GPAC Framework Modifications
The GPAC CENC encryption filter currently supports only 
synchronous encryption. However, since the optimized 
CENC CBCS encryption operates on 12 buffers in parallel, 
experimental support for asynchronous processing was 
added. This allows data packets (buffers) to be queued until 
enough packets have been submitted to the IPsec Multi-
Buffer library to start processing. Once processing begins, 
encrypted packets are returned and removed from the queue 
before being sent to the next destination filter for further 
processing.

Test Setup and Profiling
Testing was performed using the “gpac”2 packager 
application to measure the time taken to complete 
encryption of select video files using the default (OpenSSL) 
implementation and IPsec Multi-Buffer. Time spent in GPAC’s 
CENC encryption module was also recorded to determine the 
cost of crypto processing. 

Results

Test Video File Details

Big Buck Bunny6 Full HD@30fps (3Mbps), Full 
HD@60fps (4Mbps), 4K@30fps 
(7.5Mbps), 4K@60fps (8Mbps)

Chimera7 4K@24fps (54.4Mbps)

OpenSSL

BBB FHD 30fps BBB 4K 30fps BBB 4K 60fps Chimera 4K 24fpsBBB FHD 60fps

OpenSSL OpenSSL OpenSSL OpenSSLIPSecMB IPSecMB IPSecMB IPSecMB IPSecMB

CryptoNon-Crypto

Average Time To Complete (less is better)

A significant improvement was observed when using IPsec 
Multi-Buffer library for CBCS encryption when compared 
to GPAC’s default implementation leveraging OpenSSL. 
Crypto processing saw 55 to 90 percent improvement 
depending on the video bitrate. Unsurprisingly, much higher 
speed-ups have been achieved with higher bitrate files. The 
improvement when measuring the overall runtime was 25  
to 65 percent, again achieving better results with higher 
bitrate files.

Conclusion
Combining crypto enhancements on the latest Intel® Xeon® 
Processors with optimized software implementations can 
dramatically accelerate MPEG DRM encryption. This reduces 
the processing resource requirements of the “packager” 
and reduces the total cost of ownership for an over-the-top 
service.

Best performance gains were observed in video streams 
with higher bitrates. This is due to larger buffer sizes 
being encrypted requiring less buffer management, and 
significantly more CPU time spent on encryption. With higher 
quality higher-rate content (such as 8K and immersive) 
becoming more popular, even greater efficiency could be 
achieved.
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Test Environment and Configuration

  Performance varies by use, configuration, and other factors. Learn more at https://www.intel.com/PerformanceIndex.
  Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component 

can be absolutely secure. 
  Your costs and results may vary.
  Intel technologies may require enabled hardware, software, or service activation.
  Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function 

as trademarks. 
  © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
  0622/DL/MESH/PDF 351727-001US

Solution provided  by:

Test by Intel as of December 10th 2021

Platform Inspur NF5180M6

CPU 2S Intel(R) Xeon(R) Gold 6348 (2.60GHz)

Microcode 0xd0002a0

Hyperthreading Disabled

Turbo Disabled

Operating  
System

Ubuntu 20.04.03 LTS (5.4.0-91-generic)

Codec H.264
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