
  1 

User Guide 
 

 

 

Network and Edge Cloud Reference 
System Architecture Release 24.01 
 

 

Authors 
Joseph Gasparakis 

Abhijit Sinha 

 

 

 

 

 

1 Introduction 
1.1 Purpose and Scope 

The Network and Edge Cloud Reference System Architecture (Cloud RA) is part of the 
Network and Edge Reference System Architectures (Reference System1) Portfolio. The 
Cloud RA provides the means to develop and deploy applications in a Cloud Service Provider 
(CSP) environment (public cloud) while leveraging Intel® technology benefits. The Cloud RA 
uses a CSP’s Intel-based instances for running cloud-native applications in the cloud. In this 
type of deployment, the CSP handles the control plane. The worker instance software stack 
additions are provided per the demands of specific deployable workloads. More tools and 
deployment targets will be added in future releases.  

This document discusses the latest release of the Cloud RA and describes how the Network 
and Edge Cloud Reference System Architecture (Cloud RA) is provisioned, deployed, and 
used. 

See Network and Edge Reference System Architectures Portfolio User Manual for an 
overview of the Network and Edge Reference System Architectures. 

1.2 Version 24.01 Release Information 

This release of the Cloud RA (24.01) is built upon previous Cloud RA releases. The release 
supports Microsoft* Azure Kubernetes Service (AKS) and Amazon Elastic Kubernetes 
Service* (Amazon EKS). Release highlights: 

 Updated scripts to configure and deploy Cloud RA 
o Default Kubernetes version: 1.28 (AKS & Amazon EKS) 
o Updated Terraform providers:  

- Amazon Web Services (5.31) 
- AzureRM (3.85) 
- Kubernetes (2.24) 
- Helm (2.12.1) 

Experience Kits, the collaterals that explain in detail the technologies enabled in Cloud RA 
release 24.01, including benchmark information, are available in the following location: 
Network & Edge Platform Experience Kits. For NDA material, contact your regional Intel 
representative. 

 

 

 
1 In this document, "Reference System" refers to the Network and Edge Reference System Architecture. 

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-reference-system-architectures-portfolio-user-manual
https://networkbuilders.intel.com/intel-technologies/experience-kits


User Guide | Network and Edge Cloud Reference System Architecture 

  2 

Table of Contents 
1 Introduction.......................................................................................................................................................................................................... 1 

1.1 Purpose and Scope ........................................................................................................................................................................................... 1 
1.2 Version 24.01 Release Information .............................................................................................................................................................. 1 

2 Overview .............................................................................................................................................................................................................. 4 
2.1.1 Amazon Web Services* (AWS) Deployment ........................................................................................................................................ 4 
2.1.2 Microsoft Azure* Deployment ..................................................................................................................................................................... 5 

3 Preparation of the Deployment Host ......................................................................................................................................................... 5 
3.1 Prerequisites ....................................................................................................................................................................................................... 5 
3.2 Software Requirements ................................................................................................................................................................................. 5 
3.3 Docker* Configuration .................................................................................................................................................................................... 6 
3.4 Proxy Configurations ....................................................................................................................................................................................... 6 

4 Preparation of the Deployment Process .................................................................................................................................................. 7 
4.1 Obtaining Cloud RA ......................................................................................................................................................................................... 7 
4.2 CSP Command Line Interface (CLI) Configuration ............................................................................................................................. 7 

4.2.1 AWS Command Line Interface (CLI) Configuration ............................................................................................................................ 7 
4.2.2 Azure Command Line Interface (CLI) Configuration .......................................................................................................................... 7 

5 Prepare the Cloud Reference Architecture ............................................................................................................................................. 8 
5.1 Generate Configuration Templates ........................................................................................................................................................... 8 
5.2 Update Ansible* Host and Group Variables ............................................................................................................................................ 8 

6 Defining Deployment ...................................................................................................................................................................................... 8 
6.1 Hardware Configuration Profile ................................................................................................................................................................... 8 

6.1.1 Example of cwdf.yaml for AWS ...................................................................................................................................................................8 
6.1.2 Example of cwdf.yaml for Azure .................................................................................................................................................................. 9 

6.2 Software Configuration Profile .................................................................................................................................................................... 9 
6.2.1 Example of sw.yaml for AWS and Azure ................................................................................................................................................... 9 

7 Deployment Process ..................................................................................................................................................................................... 10 
7.1 Automated Deployment Process ............................................................................................................................................................. 10 
7.2 Manual Deployment Process ...................................................................................................................................................................... 10 

7.2.1 Step 1 - Prepare the Deployment ............................................................................................................................................................... 10 
7.2.2 Step 2 - Create the Instances for the Cluster of Workers ................................................................................................................. 10 
7.2.3 Step 3 - Deploy the Software on Worker Nodes and Execute the Desired Containers .......................................................... 11 
7.2.4 Step 4 - Clean up ............................................................................................................................................................................................. 12 

8 Key Terms .......................................................................................................................................................................................................... 12 

9 Reference Documentation .......................................................................................................................................................................... 13 

 Cloud RA Release Notes .............................................................................................................................................................................. 14 
 Cloud RA 24.01 Release Updates ............................................................................................................................................................. 14 
 Cloud RA 23.10 Release Updates .............................................................................................................................................................. 14 
 Cloud RA 23.07 Release Updates ............................................................................................................................................................. 14 
 Cloud RA 23.02 Release Updates ............................................................................................................................................................ 14 
 Cloud RA 22.11 Release Updates ............................................................................................................................................................... 14 
 Cloud RA 22.08 Release Updates ............................................................................................................................................................ 15 

 Abbreviations ................................................................................................................................................................................................... 15 

 

Figures 
Figure 1.  Cloud RA AWS High-level Deployment .................................................................................................................................................. 4 
Figure 2.  Cloud RA AKS High-level Deployment ..................................................................................................................................................... 5 
 

Tables 
Table 1. Terms Used ....................................................................................................................................................................................................... 12 
Table 2. Software Configuration Taxonomy .......................................................................................................................................................... 13 



User Guide | Network and Edge Cloud Reference System Architecture 

  3 

Table 3.  Abbreviations ................................................................................................................................................................................................... 15 

 

Document Revision History 

Revision Date Description 
001 September 2022 Initial release. 

002 December 2022 
Updated for Reference System Architecture Release 22.11; Included deployment of Microsoft Azure 
Kubernetes Service 

003 March 2023 
Updated for Reference System Architecture Release 23.02; Support for “Cloud” CLI and CPU 
features (Intel® Software Guard Extensions (Intel® SGX) and static CPU Management Policy). 

004 July 2023 
Updated for Reference System Architecture Release 23.07; Support for Cilium eBPF Dataplane on 
Microsoft Azure* and updates to Kubernetes version and tools used to deploy on Azure and AWS*. 

005 October 2023 
Updated for Reference System Architecture Release 23.10; Updates to Kubernetes version and 
tools. 

006 January 2024 
Updated for Reference System Architecture Release 24.01; Updates to Kubernetes version and tools 
versions. 

 

 



User Guide | Network and Edge Cloud Reference System Architecture 

  4 

2 Overview 
2.1.1 Amazon Web Services* (AWS) Deployment 

The Cloud RA can be used to deploy a cluster on AWS using EKS (Elastic Kubernetes Service). Figure 1 shows the high-level 
view of this deployment. 

 

Figure 1.  Cloud RA AWS High-level Deployment 

In a nutshell, the user needs to use the deployment host, which is a computer that runs Linux OS (Ubuntu and Fedora have been 
tested) and is connected to the Internet and is able to access AWS servers. That computer needs to be further prepared based 
on the instructions provided in sections Prerequisites and Preparation of the Deployment Process.  

When properly prepared, the user can use it to leverage the Cloud RA to deploy a user defined number of AWS EKS worker 
nodes using the user defined type of instance (T3.large by default). Cloud RA also automatically deploys the Control Plane of 
the EKS Cluster and an ECR Registry to allow the user to store containers and deploy them on the worker nodes.  

The deployment can be performed in an automated way (by running one single command) or in a manual way (by running 
several steps), depending on the level of control the user requires. Automated way makes things simpler to the user, but manual 
allows the user to possibly make further additions and/or modifications on the deployment during different stages. 

Either way, the user will need to prepare their deployment host as described in Preparation of the Deployment Host.  

Next, the user will need to define what exactly they want to deploy (for example the number of the worker node instances). They 
will also need to define some parameters based on their environment (like their public IP address they use). More details are 
available in section Defining Deployment. 

Then, the user can follow the Automated Deployment Process or the Manual Deployment Process. 

For this release, AWS “Cloud” CLI or HashiCorp* Terraform can be used as the back-end tool for deployments. 
  



User Guide | Network and Edge Cloud Reference System Architecture 

  5 

2.1.2 Microsoft Azure* Deployment 

The Cloud RA can be used to deploy a cluster on Microsoft Azure using AKS (Azure Kubernetes Services). Figure 2 shows the 
high-level view of this deployment. 

 

Figure 2.  Cloud RA AKS High-level Deployment 

Azure instances together with the Ansible* instance, the Azure Container Registry, and the control plane. For Azure 
deployment, follow the same Prerequisites and Preparation of the Deployment Process. 

For this release, AWS “Cloud” CLI or HashiCorp* Terraform can be used as the back-end tool for deployments. 

3 Preparation of the Deployment Host 
3.1 Prerequisites 

We are assuming the user to have an Ubuntu 22.04 development machine that has access to the Internet, with the software 
packages described in Software Requirements installed.  

• AWS and/or Azure account is needed. 
• Initially, the user needs to describe their AWS EKS or Azure AKS worker instances and their networking parameters and 

the software to be deployed.  
• These choices need to be input in two yaml files as described in Defining Deployment. 

3.2 Software Requirements 

Install the following software before running Cloud RA: 

• Python* 3.8 
• AWS CLI 2.14.5 (https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html) 
• Azure CLI 2.55.0 (https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt)  
• Terraform 1.6.5 (https://www.terraform.io/downloads) 
• Docker* 20.10.17 

Install the following packages - If you are using a proxy server to configure your package manager to use it: 

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://www.terraform.io/downloads


User Guide | Network and Edge Cloud Reference System Architecture 

  6 

• python3 
• python3-pip 
• git 
• netcat (needed specifically for SSH in a proxy environment) 

Also, further guidelines for setting up the proxy can be found in Proxy Configurations. 

Docker and HashiCorp Terraform require distro specific instructions. Please follow the ones needed for yours based on this 
instruction: https://docs.docker.com/engine/install/ . 

Also, make sure to follow the instructions on the Proxy Configurations for some further configuration on Docker. 

Finally, install HashiCorp Terraform from here:  https://learn.hashicorp.com/tutorials/terraform/install-cli. Go to the “Install 
Terraform” section and choose your Linux distro. Follow the instructions on the website. 

3.3 Docker* Configuration 

Depending on your environment, a few additional steps might be needed to configure Docker. 

If you plan to use a non-root account for deploying Cloud RA, you will first have to create a Docker group, and add the current 
user to the group: 

$ sudo groupadd docker 
$ sudo usermod -aG docker $USER 

At this point, either log out and log in back as the user, or run the following command: 
$ newgrp docker 

Make sure that the Docker service is running on the system: 
$ sudo service docker start 
(OR) $ sudo systemctl start docker.service 

Verify that Docker is running, and can be accessed as the user: 
$ docker ps 
CONTAINER ID     COMMAND   CREATED   STATUS    PORTS     NAMES 

The above steps, plus additional information about configuring Docker, can be found here: 
https://docs.docker.com/engine/install/linux-postinstall/#configure-docker-to-start-on-boot 

3.4 Proxy Configurations 

If you are not using a proxy, skip this section and move to the next one. 

The following steps are based on Ubuntu 22.04, in an environment where proxy is needed to reach the internet. Depending on 
your setup, the steps might slightly vary. The below examples should be valid in most cases. 

Eventually, you will need to have working SSH, Docker, and remote connectivity with the package manager. 

Start by exporting proxy variables for the system environment: 

export http_proxy=http://<proxy server>:<proxy port> 
export https_proxy=http://<proxy server>:<proxy port> 
export no_proxy=<depends on your network> 
export HTTP_PROXY=http://<proxy server>:<proxy port> 
export HTTPS_PROXY=http://<proxy server>:<proxy port> 
export NO_PROXY=<depends on your network> 

Configure Docker to use proxy settings. On Ubuntu 22.04 (using Systemd), perform the following command: 

$ sudo mkdir -p /etc/systemd/system/docker.service.d 
$ sudo nano /etc/systemd/system/docker.service.d/http-proxy.conf 
 
[Service] 
Environment="HTTP_PROXY=http://<proxy server>:<proxy port>” 
Environment="HTTPS_PROXY=https://<proxy server>:<proxy port>" 
 
$ sudo systemctl daemon-reload 
$ sudo systemctl restart docker 

If you are using a setup without Systemd, such as Ubuntu on Windows Subsystem for Linux 2 (WSL2), the steps to configure 
Docker changes: 

$ sudo nano /etc/default/docker 
 

https://docs.docker.com/engine/install/
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://docs.docker.com/engine/install/linux-postinstall/#configure-docker-to-start-on-boot


User Guide | Network and Edge Cloud Reference System Architecture 

  7 

export http_proxy=http://<proxy server>:<proxy port> 
export https_proxy=http://<proxy server>:<proxy port> 
export ftp_proxy=http://<proxy server>:<proxy port> 
export socks_proxy=<proxy server>:<proxy port> 
export no_proxy=<depends on your network> 
export HTTP_PROXY=http://<proxy server>:<proxy port> 
export HTTPS_PROXY=http://<proxy server>:<proxy port> 
export FTP_PROXY=http://<proxy server>:<proxy port> 
export SOCKS_PROXY=<proxy server>:<proxy port> 
export NO_PROXY=<depends on your network> 
 
$ sudo service docker restart 

If you also need a proxy for SSH connections, you can add a global proxy configuration, which will be used during Cloud RA 
deployment: 

$ nano ~/.ssh/config 
 
Host * 
  ProxyCommand nc -X 5 -x <proxy server>:<proxy port> %h %p 

4 Preparation of the Deployment Process 
This section describes how to obtain the code for the Cloud RA and how to configure the AWS CLI that is being used during the 
deployment phase. 

4.1 Obtaining Cloud RA 

Cloud RA is provided as part of Network and Edge Reference System Architecture. It can be obtained by cloning the GitHub 
repository:  

$ git clone https://github.com/intel/container-experience-kits.git 
$ cd container-experience-kits 
$ git checkout v24.01 

Install the requirements for the container-experience-kits: 
$ pip install -r requirements.txt 

Now change to the directory containing the Cloud RA content: 
$ cd container-experience-kits/cloud 

Unless otherwise noted, the rest of this User Guide assumes that you are in this directory. 

Install the additional requirements needed for Cloud RA: 

$ pip install -r requirements.txt 

Create a deployment directory in this folder, which will be used by Cloud RA scripts to assist with provisioning: 
$ mkdir deployment 

4.2 CSP Command Line Interface (CLI) Configuration 

Before starting the deployment process, the system must be configured with valid CSP logins. 

4.2.1 AWS Command Line Interface (CLI) Configuration 

Before configuring the AWS CLI, make sure that you have a user prepared with sufficient permissions configured in AWS 
Identity and Access Management (IAM). For the default configuration method, you will need an access ID and access key for the 
user. The default region does not matter as the deployment configuration specifies the region. 

To configure the AWS CLI, run the following command and provide details based on your AWS account: 
$ aws configure 

4.2.2 Azure Command Line Interface (CLI) Configuration 

To configure the Azure CLI, run the following command: 
$ az login 

Follow the steps on the screen to login. A browser window will open asking you to sign in. 

https://github.com/intel/container-experience-kits.git


User Guide | Network and Edge Cloud Reference System Architecture 

  8 

5 Prepare the Cloud Reference Architecture 
The following steps will configure the Cloud Reference Architecture, which is needed before running the deployment scripts. 

Start by returning to the container-experience-kits folder if you are currently in the cloud directory: 
$ cd container-experience-kits 

5.1 Generate Configuration Templates 

Generate the configuration files for the profile being deployed. Here the Build-Your-Own configuration profile is used. Note the 
architecture (ARCH) option, which must match the earlier architecture of the CSP instance types being used. For the example 
instance types included here, the instances are either 1st Gen Intel® Xeon® Scalable processors (skl) or 2nd Gen Intel® Xeon® 
Scalable processors (clx), so the architecture should be set to skl. 

To generate the configuration files, run: 
$ make cloud-profile PROFILE=build_your_own ARCH=skl 

For more information on the Configuration Profiles for Container Bare Metal Reference System Architecture (BMRA), refer to 
section 2.2 Configuration Profiles in the Network and Edge Container Bare Metal Reference System Architecture User Guide. 

5.2 Update Ansible* Host and Group Variables 

After generating the configuration templates, two new folders and files will be created: 

• group_vars/all.yml: Contains cluster level configuration options.  
• host_vars/node1.yml: Contains node level configuration options. The options here will be used for all instances that 

are part of the CSP managed Kubernetes cluster. 

The options in both these files are based on the choice of profile when the configuration templates were generated. Values can 
be updated manually at this point. However, be aware that changing any of them can cause issues with the deployment. 

6 Defining Deployment 
The user is required to define a “Hardware Configuration Profile” and a “Software Configuration Profile”. Both are YAML files. 
The first describes the desired instance and networking deployment, and latter describes the software components and 
versions that will be deployed on the worker instances. Below are the schemas of the two files. 

6.1 Hardware Configuration Profile 

The hardware configuration, contained in the cwdf.yaml file, specifies details of the public cloud environment to be deployed. 
This section provides examples for both AWS and Azure. These examples are also available in the ‘cloud’ directory of the 
Network and Edge Reference System Architecture source code. 

Place the cwdf.yaml file in the previously created deployment directory as follows: 
container-experience-kits/cloud/deployment/cwdf.yaml 

6.1.1 Example of cwdf.yaml for AWS 
cloudProvider: aws 
awsConfig: 
  profile: default 
  region: eu-central-1 
  vpc_cidr_block: "10.21.0.0/16" 
  extra_tags: 
    Owner: "some_user" 
  subnets: 
    - name: "subnet_a" 
      az: eu-central-1a 
      cidr_block: "10.21.1.0/24" 
    - name: "subnet_b" 
      az: eu-central-1b 
      cidr_block: "10.21.2.0/24" 
  sg_whitelist_cidr_blocks: [] 
  ecr_repositories: 
    - "example-repo" 
  eks: 
    kubernetes_version: "1.28" 
    subnets: ["subnet_a", "subnet_b"] 
    custom_ami: "ubuntu" # Comment out this line to use Amazon Linux 2 OS 
    node_groups: 
      - name: "default" 

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide


User Guide | Network and Edge Cloud Reference System Architecture 

  9 

        instance_type: "t3.large" 
        vm_count: 3 

6.1.2 Example of cwdf.yaml for Azure 
cloudProvider: azure 
azureConfig: 
  location: "West Europe" 
  vpc_cidr_block: "10.21.0.0/16" 
  extra_tags: 
    Owner: "some_user" 
  subnets: 
    - name: "subnet_a" 
      cidr_block: "10.21.1.0/24" 
    - name: "subnet_b" 
      cidr_block: "10.21.2.0/24" 
    - name: "subnet_c" 
      cidr_block: "10.21.3.0/24" 
  sg_whitelist_cidr_blocks: [] 
  enable_proximity_placement: true 
  aks: 
    kubernetes_version: "1.28" 
    cni: "kubenet" #  Possible values are: kubenet, cilium 
    enable_sgx: false # Requires DCsv series instances in one of node pools 
    default_node_pool: 
      subnet_name: "subnet_a" 
      vm_count: 1 
      vm_size: "Standard_D2_v3" 
    additional_node_pools: 
      - name: "large" 
        subnet_name: "subnet_b" 
        vm_count: 1 
        vm_size: "Standard_D4_v3" 
      - name: "burstable" 
        subnet_name: "subnet_c" 
        vm_count: 1 
        vm_size: "Standard_B2ms" 

6.2 Software Configuration Profile 

The software configuration, ‘sw.yaml’, specifies details of the software configuration to be used. Below are examples for both 
AWS and Azure. These examples are also available in the cloud/sw_deployment directory of the Network and Edge Reference 
System Architecture source code. 

The example shown in Section 6.2.1 works for both AWS and Azure. The only differences are the values in cloud_settings. 
Examples for both AWS and Azure are also available in the cloud/sw_deployment directory of the Network and Edge 
Reference System Architecture source code. 

You can ignore several options in the software configuration (marked with x’s) by using the automated deployment process. 
These options will be populated as part of the hardware provisioning. 

Place the ‘sw.yaml’ file in the previously created deployment directory as follows: 
container-experience-kits/cloud/deployment/sw.yaml 

6.2.1 Example of sw.yaml for AWS and Azure 
ansible_host_ip: xxx.xxx.xxx.xxx # This value can be ignored for automatic deployment 

cloud_settings: 

  provider: azure # Use the value from `profile` in the cwdf.yaml file 

  region: "West Europe" # Use the value from `region` in the cwdf.yaml file 

controller_ips: 

  - 127.0.0.1 

exec_containers: [] 

replicate_from_container_registry: https://registry.hub.docker.com 

replicate_to_container_registry: xxxxx # This value can be ignored for automatic deployment 

ssh_key: ../deployment/ssh/id_rsa # Leave this value as is for automatic deployment 

worker_ips: # These values can be ignored for automatic deployment 

  - xxx.xxx.xxx.xxx 



User Guide | Network and Edge Cloud Reference System Architecture 

  10 

  - xxx.xxx.xxx.xxx 

  - xxx.xxx.xxx.xxx 

For more information on the Configuration Profiles for Container Bare Metal Reference System Architecture (BMRA), refer to 
section 2.2 Configuration Profiles in the Network and Edge Container Bare Metal Reference System Architecture User Guide. 

7 Deployment Process  
This section describes two deployment process. It is strongly recommended that the user should not open ports on the Internet 
side. The deployments should have robust ACLs to prevent users (with Internet connection) from scanning and attacking the 
cloud deployment. With the standard deployment, port 22 (SSH) is opened on the Ansible instance to allow the user to access 
the deployment. 

7.1 Automated Deployment Process 

Using the automated deployment, the user can invoke the deployer.py to let it deploy all the instances and software described 
in the two files mentioned above.  

There are two internal ways how to deploy infrastructure in cloud. First (default) tool is Terraform. Second tool is Bash script 
using cli tool of selected cloud provider.  

The parameter is specified for the selection of the deployment tool: 
--provisioner_tool <terraform/cloudcli> 

The use of this parameter is optional. If this parameter is not specified, the Terraform tool is automatically selected. 

The below command assumes that the configuration files have been added to the “deployment” directory: 
$ python3 deployer.py deploy --deployment_dir=deployment 

The automated deployment process will deploy an additional Ansible instance and container registry alongside the cluster. 

After infrastructure provisioning is completed, deployer.py will run discovery and save the results in discovery results folder both 
on the local machine and on the Ansible host. 

To destroy the deployment and shut down the cloud instances, run the following: 
$ python3 deployer.py cleanup --deployment_dir=deployment 

If a deployment has failed and the cleanup script fails to remove resources, the manual steps in 0 can be utilized. 

After running the cleanup script or manually removing resources, some Terraform files will remain in the deployment directory. 
Either delete these files manually (including a few hidden files and folder) or remove the entire deployment directory. If you plan 
on redeploying later, it might be useful to back up the cwdf.yaml and sw.yaml files before deleting the directory. 

7.2 Manual Deployment Process 

The manual deployment has more steps but allows the user to have more control on each step of the deployment. The process 
can be summarized in the following four steps: 

7.2.1 Step 1 - Prepare the Deployment 

Similar to Defining Deployment, the user needs to define the hardware and software configuration profiles. 

7.2.2 Step 2 - Create the Instances for the Cluster of Workers 

7.2.2.1 Using Terraform 

Generate the Terraform manifests from the Hardware Configuration Profile by invoking cwfd.py. The following assumes a 
directory “deployment” created under the main directory: 

$ python3 cwdf.py generate-terraform 

  --cwdf_config=deployment/cwdf.yaml 

  --ssh_public_key=deployment/ssh/id_rsa.pub #SSH key should already exist 

  --job_id=manual 

  --create_ansible_host=True 

  --create_container_registry=True 

  > deployment/main.tf 

This should generate main.tf. Then, deploy this manifest using HashiCorp Terraform. Change directory into the deployment 
directory and start the deployment using the following command: 

$ cd deployment 

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide


User Guide | Network and Edge Cloud Reference System Architecture 

  11 

$ terraform init 

$ terraform apply 

When running “terraform apply” or “terraform destroy” in Azure environment you may run into the error: "Kubernetes cluster 
unreachable" or “Service Unavailable”. This is caused due to a bug in Terraform Helm provider when the AKS authorization 
token expires. 

To work around this issue, note AKS cluster name and Azure resource group name by running the following commands from the 
deployment directory: 

$ terraform output aks_cluster_name 

$ terraform output resource_group_name 

Then, run the following commands to authenticate against AKS cluster: 
$ az aks install-cli # If kubectl is not installed on your machine 

$ az aks get-credentials -n <aks_cluster_name> -g <resource_group_name> 

Now the  terraform apply or terraform destroy command should succeed.  These steps are performed automatically 
when using the automated deployment process. 

7.2.2.2 Using CloudCLI 

Generate the CloudCLI bash scripts from the Hardware Configuration Profile by invoking cwfd.py. The following assumes a 
directory “deployment” created under the main directory:s 

python3 cwdf.py generate-cloudcli 
--deployment_dir=./deployment/ \ 
--cwdf_config=./deployment/cwdf.yaml \ 
--job_id=manual \ 
--create_ansible_host=True \ 
--create_container_registry=True 

This should generate two bash scripts. First with name <cloud_provider>_cloudcli_provisioning.sh is for deployment 
of the new cloud infrastructure. The second script is intended for cleaning. 

The desired instances and their networking should be deployed. At this instance, user must note the following information: 

• IP addresses of the worker instances 
• IP address of the Ansible Instance 
• AWS ECR or Azure Registry URL 

7.2.3 Step 3 - Deploy the Software on Worker Nodes and Execute the Desired Containers 

Update deployment/sw.yaml with the output information from section 7.2.2. The file should already contain all of the variables 
shown in section 6.2.1. 

$ nano deployment/sw.yaml 

 

(existing content skipped) 

ansible_host_ip: < public IP of the Ansible instance (ansible_host_public_ip) > 

replicate_to_container_registry: < URL of the ECR resource (ecr_url) > 

ssh_key: < path to the private key matching the public key (ssh_public_key) used for generating 
the Terraform manifests > 

worker_ips: # List of private IPs of the EKS worker instances (eks_worker_instances.private_ip) 

- < worker 1 private IP > 

- < worker 2 private IP > 

- < worker 3 private IP > 

Run the sw_deployment_tool.py like this: 
$ cd sw_deployment # from the cloud/ directory 

$ python3 sw_deployment_tool.py  

 



User Guide | Network and Edge Cloud Reference System Architecture 

  12 

7.2.4 Step 4 - Clean up 

7.2.4.1 Using Terraform 

To shut down and delete the deployed instances by Terraform, use the following command: 
$ cd deployment # from the cloud/ directory 

$ terraform destroy 

7.2.4.2 Using CloudCLI 

To shut down and delete the deployed instances by CloudCLI, use the following command: 
$ cd deployment # from the cloud/ directory 

$ <cloud_provider>_cloudcli_cleanup.sh 

8 Key Terms 
Table 1 lists the key terms used throughout the portfolio. These terms are specific to Network and Edge Reference System 
Architectures Portfolio deployments. 

Table 1. Terms Used 

Term Description 
Experience Kits Guidelines delivered in the form of—manuals, user guides, application notes, solution briefs, 

training videos—for best-practice implementation of cloud native and Kubernetes 
technologies to ease developments and deployments. 

Network and Edge Reference System 
Architectures Portfolio 

A templated system-level blueprint for a range of locations in enterprise and cloud 
infrastructure with automated deployment tools. The portfolio integrates the latest Intel 
platforms and cloud-native technologies for multiple deployment models to simplify and 
accelerate deployments of key workloads across a service infrastructure. 

Deployment Model Provides flexibility to deploy solutions according to IT needs. The portfolio offers three 
deployment models: 

• Container Bare Metal Reference System Architecture (BMRA) – A deployment model 
of a Kubernetes cluster with containers on a bare metal platform. 

• Virtual Machine Reference System Architecture (VMRA)– A deployment model of a 
virtual cluster on a physical node. The virtual cluster can be a Kubernetes containers-
based cluster. 

• Cloud Reference System Architecture (Cloud RA) – A deployment model of a cluster 
on a public Cloud Service Provider. The cluster can be Kubernetes with containers 
based. 

Configuration Profiles A prescribed set of components—hardware, software modules, hardware/software 
configuration specifications, designed for a deployment for specific workloads at a network 
location (such as Access Edge). Configuration Profiles define the components for 
optimized performance, usability, and cost per network location and workload needs. In 
addition, generic Configuration Profiles are available to developers for flexible 
deployments. 

Reference System Architecture Flavor An instance of reference architecture generated by implementing a Configuration Profile 
specification. 

Ansible Playbook A set of validated scripts that prepare, configure, and deploy a Reference System 
Architecture Flavor per Configuration Profile specification. 

Configuration Profile Ansible Scripts  Automates quick, repeatable, and predictive deployments using Ansible playbooks. Various 
Configuration Profiles and Ansible scripts allow automated installations that are 
application-ready, depending on the workload and network location. 

Kubernetes cluster A deployment that installs at least one worker node running containerized applications. 
Pods are the components of the application workload that are hosted on worker nodes. 
Control nodes manage the pods and worker nodes. 

Intel® Platforms Prescribes Intel platforms for optimized operations. The platforms are based on 4th Gen 
and 5th Gen Intel® Xeon® Scalable processors. The platforms integrate Intel® Ethernet 700 
and 800 Series, Intel® QuickAssist Technology (Intel® QAT), Intel® Server GPU (Graphic 
Processor Unit), Intel® Optane™ technology, and more.  

 



User Guide | Network and Edge Cloud Reference System Architecture 

  13 

 
In addition to key terms, portfolio deployment procedures follow a hardware and software configuration taxonomy. Table 2 
describes the taxonomy used throughout this document.  

Table 2. Software Configuration Taxonomy 

TERM DESCRIPTION 
Software Taxonomy 

TRUE Feature is included and enabled by default 

FALSE Feature is included but disabled by default - can be enabled and configured by user 

N/A Feature is not included and cannot be enabled or configured 

9 Reference Documentation 
The Network and Edge Reference System Architectures Portfolio User Manual contains a complete list of reference 
documents. Additionally, a bare metal-based reference system architecture (BMRA) deployment allows creation of a 
Kubernetes cluster on multiple nodes. The Network and Edge Container Bare Metal Reference System Architecture User Guide 
provides information and installation instructions for a BMRA. A virtual machine-based reference architecture (VMRA) 
deployment allows creation of a Kubernetes cluster for a Configuration Profile on a virtualized infrastructure. The Network and 
Edge Virtual Machine Reference System Architecture User Guide provides information and installation instructions for a VMRA. 

Collaterals, including technical guides and solution briefs that explain in detail the technologies enabled in Cloud RA release 
v24.01, are available in the following location: Network & Edge Platform Experience Kits. 
  

https://networkbuilders.intel.com/solutionslibrary/network-and-edge-reference-system-architectures-portfolio-user-manual
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-container-bare-metal-reference-system-architecture-user-guide
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-virtual-machine-reference-system-architecture-user-guide
https://networkbuilders.intel.com/solutionslibrary/network-and-edge-virtual-machine-reference-system-architecture-user-guide
https://networkbuilders.intel.com/intel-technologies/experience-kits


User Guide | Network and Edge Cloud Reference System Architecture 

  14 

 Cloud RA Release Notes 
This section lists the notable changes from the previous releases, including new features, bug fixes, and known issues.2 

 Cloud RA 24.01 Release Updates 

New Components/Features: 
• None 

Updates/Changes: 
• Support for Kubernetes 1.28 on Amazon EKS 
• Support for Kubernetes 1.28 on AKS 

Removed Support: 
• Kubernetes 1.25 on Amazon EKS 

 Cloud RA 23.10 Release Updates 

New Components/Features: 
• None 

Updates/Changes: 
• Support for Kubernetes 1.27 on Amazon EKS 
• Support for Kubernetes 1.27 on AKS 

Removed Support: 
• Kubernetes 1.24 on Amazon EKS 
• Kubernetes 1.25 on AKS 

 Cloud RA 23.07 Release Updates 

New Components/Features: 
• Support for Cilium eBPF dataplane on Azure Kubernetes Service 

Updates/Changes: 
• Support for Kubernetes 1.25, 1.26 on Amazon EKS 
• Support for Kubernetes 1.26 on AKS 

Removed Support: 
• Cilium using bring-your-own CNI deployment on AKS 
• Kubernetes 1.22, 1.23 on Amazon EKS 
• Kubernetes 1.23, 1.24 on AKS 

 Cloud RA 23.02 Release Updates 

New Components/Features: 
• Support for using Amazon Web Services (AWS) and Azure “Cloud” CLIs as an alternative to Terraform 
• Azure Kubernetes Service (AKS) support for static CPU Management Policy and Intel® CPU Control Plane Plugin for 

Kubernetes 
• Intel® Software Guard Extensions (Intel® SGX) on AKS 

Updates/Changes: 
• Supported Kubernetes versions updated for AKS and Amazon EKS  
• Ubuntu images updated for AKS and Amazon EKS 
• Ability to deploy more RA software components on Azure and AWS 

o Elasticsearch 
o Kibana 

Removed Support: 
• full_nfv profile 

 Cloud RA 22.11 Release Updates 

New Components/Features: 
• Support for Azure AKS deployments on top of previous support for AWS EKS 
• Support for Cilium with kube-proxy and eBPF CNI on Azure 

 
2 Workloads and configurations. Results may vary. 

http://www.intel.com/PerformanceIndex


User Guide | Network and Edge Cloud Reference System Architecture 

  15 

• Proximity Placement Groups for Azure 
• Enhanced discovery mechanism 
• Support for generating and deploying configuration profiles 

Updates/Changes: 
• Ability to deploy more software components on both Azure and AWS, namely: 

o Node Feature Discovery (NFD) 
o Userspace CNIs and OVS-DPDK 
o Telemetry (Prometheus, Telegraf, OpenTelemetry) 
o Jaeger 
o Istio 
o Multus 
o Traffic Analytics Development Kit (TADK) Web Application Firewall (WAF) workload 

Known Limitations/Restrictions: 
• Cilium CNI with eBPF is not as performant as kubenet CNI. This is because Azure has an additional VXLAN 

encapsulation that happens outside of the deployment control. As a result, it has a negative impact on performance. 
The positive side is that Cilium CNI with either eBPF or kube-proxy allows network policy to be put in place. 

 Cloud RA 22.08 Release Updates 

This is the first release of Cloud RA. 

 Abbreviations 
The following abbreviations are used in this document. 

Table 3.  Abbreviations 

Term Description 
AWS Amazon Web Services 

AKS Azure Kubernetes Services 

ACL Access Control List 

BMRA Bare Metal Reference Architecture 

CLI Command Line Interface 

ECR Elastic Container Registry 

IAM Identity and Access Management 

I/O Input/Output 

K8s Kubernetes 

OS Operating System 

RA Reference Architecture 

SSH Secure Shell Protocol 

VMRA Virtual Machine Reference Architecture 

 

 

 

 

 

 

 

 

 



User Guide | Network and Edge Cloud Reference System Architecture 

  16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. 

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular 
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. 

Intel technologies may require enabled hardware, software or service activation. 

Intel does not control or audit third-party data.  You should consult other sources to evaluate accuracy. 

The products described may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications.  Current characterized errata are available on request. 

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands 
may be claimed as the property of others. 

 0124/DN/WIT/PDF 739730-006US 

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Purpose and Scope
	1.2 Version 24.01 Release Information

	2 Overview
	2.1.1 Amazon Web Services* (AWS) Deployment
	2.1.2 Microsoft Azure* Deployment

	3 Preparation of the Deployment Host
	3.1 Prerequisites
	3.2 Software Requirements
	3.3 Docker* Configuration
	3.4 Proxy Configurations

	4 Preparation of the Deployment Process
	4.1 Obtaining Cloud RA
	4.2 CSP Command Line Interface (CLI) Configuration
	4.2.1 AWS Command Line Interface (CLI) Configuration
	4.2.2 Azure Command Line Interface (CLI) Configuration


	5 Prepare the Cloud Reference Architecture
	5.1 Generate Configuration Templates
	5.2 Update Ansible* Host and Group Variables

	6 Defining Deployment
	6.1 Hardware Configuration Profile
	6.1.1 Example of cwdf.yaml for AWS
	6.1.2 Example of cwdf.yaml for Azure

	6.2 Software Configuration Profile
	6.2.1 Example of sw.yaml for AWS and Azure


	7 Deployment Process
	7.1 Automated Deployment Process
	7.2 Manual Deployment Process
	7.2.1 Step 1 - Prepare the Deployment
	7.2.2 Step 2 - Create the Instances for the Cluster of Workers
	7.2.2.1 Using Terraform
	7.2.2.2 Using CloudCLI

	7.2.3 Step 3 - Deploy the Software on Worker Nodes and Execute the Desired Containers
	7.2.4 Step 4 - Clean up
	7.2.4.1 Using Terraform
	7.2.4.2 Using CloudCLI



	8 Key Terms
	9 Reference Documentation
	Appendix A Cloud RA Release Notes
	A.1 Cloud RA 24.01 Release Updates
	A.2 Cloud RA 23.10 Release Updates
	A.3 Cloud RA 23.07 Release Updates
	A.4 Cloud RA 23.02 Release Updates
	A.5 Cloud RA 22.11 Release Updates
	A.6 Cloud RA 22.08 Release Updates

	Appendix B Abbreviations

