Develop and verify cloud-native services for 5G Core UPF using BMRA on 4th Gen Intel® Xeon® Scalable processor platform.

Authors
Abhijit Sinha

Introduction
The Reference System Architectures (Reference Systems1) are a cloud-native, forward-looking Kubernetes*-cluster template solution for network implementations. They provide Ansible* playbooks that define configuration profiles for fast, automatic deployment of needed cluster services and capabilities.

This document is a quick start guide to configure the Container Bare Metal Reference System Architecture (BMRA) on 4th Gen Intel® Xeon® Scalable processor-based platform for 5G Core User Plane Function (UPF).

The Reference System has a variety of configuration profile settings for different network traffic workloads. This quick start guide enables 5G UPF use case using the Remote Central Office-Forwarding Configuration Profile. For details on this and other Configuration Profiles and hardware options, refer to the User Guides listed in the Reference Documentation section.

Remote Central Office-Forwarding Configuration Profile Architecture
Figure 1 shows the architecture of the Remote Central Office-Forwarding (remote_fp) profile, which deploys the infrastructure for 5G Core.

1 In this document, “Reference System” refers to the Network and Edge Reference System Architecture.
Hardware BOM
Following is the list of the hardware components that are required for setting up reference systems:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansible host</td>
<td>Laptop or server running a UNIX base distribution</td>
</tr>
<tr>
<td>Controller Node(s)</td>
<td>Any 3rd or 4th Gen Intel® Xeon® Scalable processor-based server</td>
</tr>
<tr>
<td>Worker Node(s)</td>
<td>1x 4th Gen Intel® Xeon® Scalable processors on Intel SDP S2EG4SEQ5Q</td>
</tr>
<tr>
<td>Ethernet Adapter</td>
<td>Intel® Ethernet Network Adapter E810-CQDA2 or Intel® Ethernet Controller XXV/XL710</td>
</tr>
<tr>
<td>Recommended BIOS</td>
<td>"Max Performance Turbo" BIOS configuration (refer to Chapter 3.8 of the BMRA User Guide) - Enable SGX in the BIOS</td>
</tr>
</tbody>
</table>

Software BOM
Following is the list of the software components that are required for setting up reference systems:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>OpenSSL, SGX, QAT</td>
</tr>
<tr>
<td>Storage</td>
<td>LPVSP</td>
</tr>
<tr>
<td>Observability</td>
<td>Prometheus, Collectd, Grafana</td>
</tr>
<tr>
<td>Acceleration/Data Plane</td>
<td>DPDK</td>
</tr>
<tr>
<td>Operators & Device plugins</td>
<td>Intel® QAT and SGX plugins, Multus, SRIOV network operator, Intel® Ethernet Operator</td>
</tr>
<tr>
<td>Container Runtime</td>
<td>Docker</td>
</tr>
<tr>
<td>Orchestration</td>
<td>Kubernetes v1.27.1, Assisted Scheduling: Telemetry Aware Scheduling (TAS)</td>
</tr>
<tr>
<td>OS</td>
<td>Ubuntu 22.04.2 LTS (kernel 5.15.0-72 generic) and RHEL 9.2</td>
</tr>
</tbody>
</table>

For more details of software versions for the Remote Central Office-Forwarding Configuration Profile, refer to the Chapter 4 of BMRA User Guides listed in the Reference Documentation section.

Intel® DLB, Intel® DSA, and Intel® Scalable IOV SW are set as optional in the Remote Central Office-Forwarding Configuration Profile.

Getting Started
Pre-Requisites
Before starting the deployment, perform the following steps:

- A fresh OS installation is expected on the controller and target nodes to avoid a conflict between the RA deployment process with the existing software packages. To deploy RA on the existing OS, ensure that there is no prior Docker or Kubernetes* (K8s) installations on the server(s).
- The controller and target server hostname(s) must be in lowercase, numerals, and hyphen ‘- ’.
 - For example: wrk-8 is acceptable, wrk_8, WRK8, Wrk^8 are not accepted as hostnames.
- The servers in the cluster are Network Time Protocol (NTP) synced, i.e., they must have the same date and time.
- The BIOS on the target server is set as per the recommended settings.
Deployment Setup

Figure 2 shows the deployment model for Remote Central Office-Forwarding Configuration using BMRA. The Ansible host is used for configuring and deploying BMRA on a set of target servers.

Figure 2: BMRA deployment set-up for 5G Core UPF

Note: The K8s cluster deployed using BMRA is scalable to multiple controller and worker nodes.

Installation Flow for RA Deployment

Ansible playbooks are used to install the Bare Metal Reference Systems Architecture (BMRA). Before the playbooks can be run, there are a few steps to prepare the environment and change relevant configuration options.

Step 1 - Set Up the System

The below mentioned steps assume that both the Ansible host and target servers are running Ubuntu as the operating system and the user has root or sudo access. For RHEL, use ‘yum’ or ‘dnf’ as the package manager instead of ‘apt’.

Ansible Host

1. Install necessary packages (some might already be installed):

   ```
   # sudo apt update
   # sudo apt install -y python3 python3-pip openssh-client git build-essential
   # pip3 install --upgrade pip
   ```

2. Generate a SSH keypair if needed (check /root/.ssh/):

   ```
   # ssh-keygen -t rsa -b 4096 -N "" -f ~/.ssh/id_rsa
   ```
3. Copy the public key to the target servers - controller and worker nodes:

   ```
   # ssh-copy-id root@<target IP>
   ```

4. Verify passwordless connectivity to the target servers:

   ```
   # ssh root@<target IP>
   ```

Target Server

1. Install necessary packages (some might already be installed):

   ```
   # sudo apt install -y python3 openssh-server lshw
   ```

2. As part of the configuration in Step 3, information about PCI devices for SR-IOV must be specified. Find the relevant PCI IDs (bus:device.function) using `lspci`, and note down the IDs for later when configuring host_vars on the Ansible host:

   ```
   # lspci | grep Eth
   ```

3. Verify if the target server’s CPU has an on-chip QAT device.

   ```
   # lspci -nnD | grep 494*
   ```

Step 2 - Download and Install

Ansible Host

1. Download the source code from GitHub repository for the Reference System server:

   ```
   # git clone https://github.com/intel/container-experience-kits/
   # cd container-experience-kits
   # git checkout v23.10
   ```

2. Set up Python* virtual environment and install dependencies:

   ```
   # python3 -m venv venv
   # source venv/bin/activate
   # pip3 install -r requirements.txt
   ```

3. Install Ansible dependencies for the Reference System:

   ```
   ansible-galaxy install -r collections/requirements.yml
   ```

Step 3 - Configure BMRA

The **Remote Central Office-Forwarding** configuration profile (remote_fp) is used for 5G UPF deployment.

Ansible Host

1. Generate the configuration files:

   ```
   # make k8s-profile PROFILE=remote_fp ARCH=spr
   ```

2. Update the `inventory.ini` file to match the deployment set-up. The values for `<target hostname>` and `<target IP>` must be updated to match the target systems in the BMRA cluster as shown in Figure 1.

   ```
   # vim inventory.ini
   ```

   ```
   [all]
   <controller hostname> ansible_host=<controller IP> ip=<controller IP> ansible_user=root
   <worker hostname> ansible_host=<worker IP> ip=<worker IP> ansible_user=root
   localhost ansible_connection=local ansible_python_interpreter=/usr/bin/python3
   
   [vm_host]
   [kube_control_plane]
   <controller hostname>
   [etcd]
   <controller hostname>
   [kube_node]
   ```
3. Update the host_vars filename with the target machine's hostname:

 # mv host_vars/node1.yml host_vars/<worker hostname>.yml

To utilize features depending on SR-IOV and Intel® QAT, host_vars must be updated with information about the PCI devices on the worker node server. The example below can be used as a reference for the configuration but should be updated to match the correct PCI IDs of the worker node server.

4. Update host_vars/<worker hostname>.yml with PCI device information specific to the worker node server:

 # vim host_vars/<worker hostname>.yml
 dataplane_interfaces:
 - bus_info: "18:00.0" # Use the SR-IOV PCI ID here
 pf_driver: ice
 ddp_profile: "ice_comms-1.3.40.5.pkg"
 default_vf_driver: "iavf"
 sriov_numvfs: 8
 sriov_vfs: # This is optional but can be used to change the driver of specific VFs. Any VF not specified here will use the "default_vf_driver" specified above.
 vf_00: "vfio-pci"
 vf_05: "vfio-pci"

 Note: Additional details about the configuration options and values can be found as comments in the file.
 Note: Be sure to remove the square brackets [] that follows the 'dataplane_interfaces' configuration option by default.

5. If the server is behind a proxy, update group_vars/all.yml by updating and uncommenting the lines for http_proxy, https_proxy, and additional_no_proxy.

 # vim group_vars/all.yml
 ## Proxy configuration ##
 http_proxy: "http://proxy.example.com:port"
 https_proxy: "http://proxy.example.com:port"
 additional_no_proxy: ".example.com,mirror_ip"

6. (Required) Apply required patches for Kubespray:

 # ansible-playbook -i inventory.ini playbooks/k8s/patch_kubespray.yml

7. (Optional, recommended) Verify that Ansible can connect to the target servers, by running the below command and checking the output generated in the all_system_facts.txt file:

 # ansible -i inventory.ini -m setup all > all_system_facts.txt

8. (Optional, recommended) Check dependencies of components enabled in group_vars and host_vars with the packaged dependency checker. This step is also run by default as part of the main playbook:

 # ansible-playbook -i inventory.ini playbooks/preflight.yml

Step 4 - Deploy

Ansible Host

Now the Reference System cluster can be deployed using the below command:

 # ansible-playbook -i inventory.ini playbooks/remote_fp.yml --flush-cache

Note: If the playbook fails or if you want to clean up the environment to run a new deployment, you can optionally use the provided Cluster Removal Playbook to remove any previously installed Kubernetes and related plugins.

 # ansible-playbook -i inventory.ini playbooks/redeploy_cleanup.yml
Step 5 - Validate

Ansible Host

1. To interact with the Kubernetes CLI (kubectl), start by connecting to a controller node in the cluster:

   ```bash
   # ssh root@<controller-node ip>
   ```

2. Once connected, the status of the Kubernetes cluster can be checked:

   ```bash
   # kubectl get nodes -o wide
   # kubectl get pods --all-namespaces
   ```

Additional feature verification tests can be found here:

Reference Documentation

The [Network and Edge Bare Metal Reference System Architecture User Guide](#) provides information and full set of installation instructions for a BMRA.

The [Network and Edge Virtual Machine Reference System Architecture User Guide](#) provides information and full set of installation instructions for a VMRA.

The [Network and Edge Cloud Reference System Architecture User Guide](#) provides the means to develop and deploy cloud-native applications in a CSP environment and still experience Intel® technology benefits.

The [Network and Edge Reference System Architectures Portfolio User Manual](#) provides additional information for the Reference System including a complete list of reference documents.

Other collaterals, including technical guides and solution briefs that explain in detail the technologies enabled in the Reference Systems are available in the following location: Network & Edge Platform Experience Kits.

Document Revision History

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>July 2023</td>
<td>Initial release.</td>
</tr>
<tr>
<td>002</td>
<td>October 2023</td>
<td>Updated BMRA version to 23.10, added profile architecture and ansible flow for deployment.</td>
</tr>
</tbody>
</table>

No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software, or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.