

Document Number: 606833-001

Node Feature Discovery

Application Note

December 2018

Node Feature Discovery
Application Note December 2018
2 Document Number: 606833-001

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725
or by visiting: http://www.intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at http://www.intel.com/ or from the OEM or retailer.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 3

Contents

1.0 Introduction .. 5

2.0 Overview ... 6

3.0 How NFD Works .. 9

4.0 Feature Labels ...10

5.0 Deployment ...12
5.1 Deployment as a DaemonSet .. 12
5.2 Deployment as a Job ... 13
5.3 Deploying Custom-Built Version .. 13

6.0 Using Labels to Schedule Pods ..14
6.1 nodeSelector .. 14
6.2 nodeAffinity .. 14

7.0 Runtime Configuration ...16
7.1 Command Line Options .. 16
7.2 Configuration File ... 16

8.0 Summary...18

Appendix A Terminology and References ..19

Figures

Figure 1. Node Feature List .. 8
Figure 2. Node Feature Discovery in Kubernetes .. 9

Tables

Table 1. Feature Labels .. 10
Table 2. Command Line Options .. 16
Table 3. Terminology ... 19
Table 4. References ... 19

Node Feature Discovery
Application Note December 2018
4 Document Number: 606833-001

Revision History

Date Revision Description

December 2018 001 Initial release.

Introduction

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 5

1.0 Introduction

Node Feature Discovery (NFD) is a Kubernetes* add-on that detects and advertises
hardware and software capabilities of a platform that can, in turn, be used to facilitate
intelligent scheduling of a workload. This document details the deployment and usage
of NFD. It is written for developers and architects who want to integrate NFD into their
Kubernetes deployment in order to facilitate improved workload placement based on
platform capabilities.

Node Feature Discovery is part of the Enhanced Platform Awareness (EPA) suite which
represents a methodology and a set of changes in Kubernetes targeting intelligent
configuration and capacity consumption of platform capabilities. Through increased
awareness and orchestration of system resources and capabilities, EPA delivers
improved application performance and determinism.

NFD is an open source Kubernetes community project. The software is available at:
https://github.com/kubernetes-sigs/node-feature-discovery

This document is part of the Container Experience Kit for Enhanced Platform
Awareness (EPA). Container Experience Kits are collections of user guides, application
notes, feature briefs, and other collateral that provide a library of best-practice
documents for engineers who are developing container-based applications. Other
documents in the EPA Container Experience Kit can be found at:
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Note: This document does not describe how to set up a Kubernetes cluster. We recommend
that you perform those steps as a prerequisite. For more setup and installation
guidelines of a complete system, refer to the Deploying Kubernetes and Container Bare
Metal Platform for NFV Use Cases with Intel® Xeon® Scalable Processors User Guide
listed in Table 4.

The relevant documents include:
Document Title Document Type

Enhanced Platform Awareness in Kubernetes Feature Brief

Enhanced Platform Awareness in Kubernetes Application Note

Enabling New Features with Kubernetes for NFV White Paper

Enhanced Platform Awareness in Kubernetes Performance Benchmark Report

https://github.com/kubernetes-sigs/node-feature-discovery
https://networkbuilders.intel.com/network-technologies/container-experience-kits

Overview

Node Feature Discovery
Application Note December 2018
6 Document Number: 606833-001

2.0 Overview

In a standard deployment, Kubernetes reveals very few details about the underlying
platform to the user. This may be a good strategy for general data center use, but, in
many cases a workload behavior or its performance, may improve by leveraging the
platform (hardware and/or software) features. Node Feature Discovery detects these
features and advertises them through a Kubernetes concept called node labels which,
in turn, can be used to control workload placement in a Kubernetes cluster. NFD runs as
a separate container on each individual node of the cluster, discovers capabilities of the
node, and finally, publishes these as node labels using the Kubernetes API.

NFD only handles non-allocatable features, that is, unlimited capabilities that do not
require any accounting and are available to all workloads. Allocatable resources that
require accounting, initialization and other special handling (such as Intel® QuickAssist
Technology, GPUs, and FPGAs) are presented as Kubernetes Extended Resources and
handled by device plugins. They are out of the scope of NFD.

NFD currently detects the following features:

• CPUID: Intel® processors have a special CPUID instruction for determining the CPU
features, including the model and support for instruction set extensions, such as
Intel® Advanced Vector Extensions (Intel® AVX). Certain workloads, such as machine
learning, may gain a significant performance improvement from these extensions
(e.g. AVX-512). NFD advertises all CPU features obtained from the CPUID
information.

• SR-IOV networking: Single Root I/O Virtualization (SR-IOV) is a technology for
isolating PCI Express* resources. It allows multiple virtual environments to share a
single PCI Express hardware device (physical function, PF) by offering multiple
virtual functions (VF) that appear as separate PCI Express interfaces. In the case of
network interface cards (NICs), SR-IOV VFs allow direct hardware access from
multiple Kubernetes pods, increasing network I/O performance, and making it
possible to run fast user-space packet processing workloads (for example, based in
Data Plane Development Kit). NFD detects the presence of SR-IOV-enabled NICs,
allowing optimized scheduling of network-intensive workloads.

• Intel® RDT: Intel® Resource Director Technology (Intel® RDT) allows visibility and
control over the usage of last-level cache (LLC) and memory bandwidth between
co-running workloads. By allowing allocation and isolation of these shared
resources, and thus reducing contention, RDT helps in mitigating the effects of
noisy neighbors. This provides more consistent and predictable performance which
may be essential in meeting Service Level Agreements (SLA), for example. NFD
detects the different RDT technologies supported by the underlying hardware
platform.

• Intel® Turbo Boost Technology: Intel® Turbo Boost Technology accelerates
processor performance for peak loads, dynamically overclocking processor cores if

Overview

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 7

they are operating within the power, current, and temperature limits of the
processor. This can provide significant performance benefits for CPU-bound
workloads. On the other hand, some workloads behave better when this
technology has been disabled. NFD detects the state of Intel® Turbo Boost
Technology, allowing optimal scheduling of workloads that have a well-understood
dependency on this technology.

• IOMMU: An input/output memory management unit (IOMMU), such as Intel®
Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d) technology,
allows isolation and restriction of device accesses. This enables direct hardware
access in virtualized environments, highly accelerating I/O performance by
removing the need for device emulation and bounce buffers. This can be crucial for
I/O heavy workloads in Kubernetes deployments using hypervisor-based container
runtimes, such as Kata* Containers. NFD detects if an IOMMU is supported by the
host hardware platform and enabled in the kernel of the host operating system.

• SSD storage: Solid state drives (SSD) have a huge performance advantage over
traditional rotational hard disks. This may be important for disk I/O intensive
workloads. NFD detects the presence of non-rotational block storage on the node,
making it possible to accelerate workloads requiring fast local disk access.

• NUMA topology: Non-uniform memory access (NUMA) is a memory architecture
where CPU’s memory access times are dependent on the memory location. Access
to CPU’s local memory is faster than to non-local memory (local memory of another
CPU) which can cause workloads to perform poorly if not properly designed for
NUMA systems. On the other hand, some highly NUMA-aware applications may
experience negligible performance penalties. NFD detects the presence of NUMA
topology, making it possible to optimize scheduling of applications based on their
NUMA-awareness.

• Linux* kernel: Some specific workloads may be highly dependent on the kernel
version of the underlying host operating system. For example, some kernel features
may be required to be able to run an application, or, they provide measurable
performance benefits. NFD detects the kernel version and advertises it through
multiple labels, allowing the deployment of workloads with different granularity of
kernel version dependency.

• PCI: Detecting the presence of compatible PCI hardware devices is beneficial for
some workloads. For example, Kubernetes device plugins need to be deployed only
on nodes that have hardware that the device plugin manages. NFD detects PCI
devices, allowing optimized scheduling of workloads dependent on certain PCI
devices.

NFD is under active development, and in 2018 it has evolved significantly, gaining new
functionality, including the discovery of multiple new features, as shown in Figure 1.

Overview

Node Feature Discovery
Application Note December 2018
8 Document Number: 606833-001

Figure 1. Node Feature List

How NFD Works

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 9

3.0 How NFD Works

Node Feature Discovery is designed to run on every node in a Kubernetes cluster, either
as a daemon set or a job. The Node Feature Discovery pod discovers capabilities on
each node it runs on, and then advertises those capabilities as node labels. As seen in
Figure 2 below, NFD has run on each node and discovered the capabilities of the nodes
(Turbo Boost, AVX, IOMMU, etc.) and then advertised those as labels which are stored
on the Kubernetes Master node in the ETCD data store. ETCD stores configuration
information for large scale distributed systems; the name originates from the Unix*
/etc folder plus d for distributed systems.

Using a Node Selector, an incoming pod can express its requirements for specific
capabilities. Figure 2 shows Application A needs to land on a node with SR-IOV and
Turbo Boost capabilities. The Kubernetes scheduler on the master node will use the
stored node labels to match the incoming pod to the most appropriate node. In
Figure 2, this is Node 1. Application B has no special capability requests, therefore it can
be placed on either node. In Figure 2, it has been placed on Node 2.

Figure 2. Node Feature Discovery in Kubernetes

Feature Labels

Node Feature Discovery
Application Note December 2018
10 Document Number: 606833-001

4.0 Feature Labels

NFD uses labels for advertising node-level features. Kubernetes labels are key-value
pairs that are attached to Kubernetes objects, such as pods or nodes for specifying
attributes of objects that may be relevant to the end user. They can also be used to
organize objects into specific subsets. Labels are a part of the metadata information
that is attached to each node's description. All this information is stored in etcd in the
Kubernetes control plane. Node labels published by NFD encode the following
information:

• A namespace

• The source of the feature

• The name of the feature, with optional attribute name or sub-feature separated by
a dot

• The value or the state of the feature

An example of a label created by node feature discovery:
node.alpha.kubernetes-incubator.io/nfd-network-sriov.capable = true

This indicates that the namespace is node.alpha.kubernetes-incubator.io, the
source is network, feature name is sriov.capable and the value is true, indicating
the presence of SR-IOV capable network interface card.

In addition to the actual node feature labels, NFD advertises its own software version:
node.alpha.kubernetes-incubator.io/node-feature-discovery.version =
v0.3.0

The following table describes the details of the supported feature sources and their
feature labels.

Table 1. Feature Labels

Source Feature Attribute Possible
values

Description

cpuid <cpuid feature
name>

n/a true All CPU features returned by the CPUID instruction. Examples:
node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX = true
node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512F = true
node.alpha.kubernetes-incubator.io/nfd-cpuid-SHA = true

kernel version full <version
string>

Full kernel version. Example:
node.alpha.kubernetes-incubator.io/nfd-kernel-version.full = 4.5.6-
7-g123abcde

major <version
number>

First component of the kernel version. Example:
node.alpha.kubernetes-incubator.io/nfd-kernel-version.major = 4

minor <version
number>

Second component of the kernel version. Example:
node.alpha.kubernetes-incubator.io/nfd-kernel-version.minor = 5

Feature Labels

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 11

Source Feature Attribute Possible
values

Description

revision <version
number>

Third component of the kernel version. Example:
node.alpha.kubernetes-incubator.io/nfd-kernel-version.minor = 6

iommu enabled n/a true An IOMMU is present and enabled in the kernel. Example:
node.alpha.kubernetes-incubator.io/nfd-iommu-enabled = true

memory numa n/a true NUMA topology detected. Example:
node.alpha.kubernetes-incubator.io/nfd-memory-numa = true

network sriov capable true SR-IOV capable Network Interface Card(s) present. Example:
node.alpha.kubernetes-incubator.io/nfd-network.sriov.capable =
true

configured true SR-IOV Virtual Functions have been configured. Example:
node.alpha.kubernetes-incubator.io/nfd-network.sriov.configured =
true

pci <device label> present true Presence of PCI device is detected. Example:
node.alpha.kubernetes-incubator.io/nfd-pci-
1200_8086.present=true

NOTE: <device label> is composed of raw PCI IDs, separated by underscores. The set of fields is configurable, valid
fields being class, vendor, device, subsystem_vendor and subsystem_device (defaults are class and vendor).
Also the set of PCI device classes that the feature source detects is configurable. By default, device classes
03(h), 0b40(h) and 12(h), i.e. GPUs, co-processors, and accelerator cards, are detected. See the Runtime
Configuration section for more details about NFD configuration options.

rdt RDTCMT n/a true Intel® RDT Cache Monitoring Technology is supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTCMT = true

RDTMBM n/a true Intel® RDT Memory Bandwidth Monitoring is supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTMBM = true

RDTMBA n/a true Intel® RDT Memory Bandwidth Allocation is supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTMBA = true

RDTMON n/a true Intel® RDT monitoring technologies are supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTMON = true

RDTL3CA n/a true Intel® RDT L3 Cache Allocation Technology is supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTL3CA= true

RDTL2CA n/a true Intel® RDT L2 Cache Allocation Technology is supported. Example:
node.alpha.kubernetes-incubator.io/nfd-rdt-RDTL2CA= true

selinux enabled n/a true SELinux enforcing has been turned on in the Linux kernel. Example:
node.alpha.kubernetes-incubator.io/nfd-selinux-enabled = true

storage nonrotationaldisk n/a true Non-rotational block device(s), like an SSD, is present. Example:
node.alpha.kubernetes-incubator.io/nfd-storage-nonrotationaldisk =
true

Deployment

Node Feature Discovery
Application Note December 2018
12 Document Number: 606833-001

5.0 Deployment

5.1 Deployment as a DaemonSet

The preferred way to deploy NFD is to run it as a Kubernetes DaemonSet. This ensures
that all nodes of the cluster run NFD, and also, new nodes get automatically labeled as
soon as they become schedulable in the cluster. As a DaemonSet, NFD runs in the
background, re-labeling nodes every 60 seconds (by default) so that any changes in the
node capabilities are detected.

In its Github repository, NFD provides template specs that can be used for deployment:

$ kubectl create -f \
 https://raw.githubusercontent.com/kubernetes-incubator/node-feature-
discovery/master/rbac.yaml
$ kubectl create -f \
 https://raw.githubusercontent.com/kubernetes-incubator/node-feature-
discovery/master/node-feature-discovery-daemonset.yaml.template

This deploys the latest release of NFD, with the default configuration in the default
Kubernetes namespace.

You can verify that NFD is running as expected by running:
$ kubectl get ds/node-feature-discovery

The output is similar to:
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
node-feature-discovery 5 5 5 5 <none> 2m

Also, you can check the labels created by NFD:
$ kubectl label node --list –all

Listing labels for Node./node2:
 beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 kubernetes.io/hostname=node2
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AESNI=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-CLMUL=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-CMOV=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-CX16=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-ERMS=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-F16C=true
 node.alpha.kubernetes-incubator.io/nfd-cpuid-MMX=true
…

Deployment

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 13

5.2 Deployment as a Job

An alternative deployment mechanism is to run NFD as a one-shot Kubernetes Job.
This may be a useful in a static cluster where no hardware changes are expected and
the number of running pods need to be minimized. The NFD repository contains an
example template and a deployment script that demonstrates this. You need to clone
the repository in order to run this:

$ git clone https://github.com/kubernetes-incubator/node-feature-
discovery && cd node-feature-discovery
$./label-nodes.sh

The script launches as many instances of NFD as there are nodes in the Ready state in
the cluster. However, this approach is not guaranteed to correctly run NFD on every
node in all situations. For example, if some node is tainted NoSchedule or fails to start a
job for some other reason, then NFD may not run correctly. For these reasons, we
recommend that you use a DaemonSet deployment.

5.3 Deploying Custom-Built Version

Sometimes it may be desirable to run a self-built version of NFD, for example to try out
an unreleased version. You must have installed Docker* and make to run the build.
Follow the steps below:
1. Clone NFD source code:
$ git clone https://github.com/kubernetes-incubator/node-feature-
discovery
$ cd node-feature-discovery

2. Next, run make to build the Docker image:
$ make

3. Take a note of the NFD image hash built in the previous step, tag it and push the
NFD image to your Docker registry, available for your Kubernetes cluster:

$ docker tag <image hash> <docker registry>/<image name>
$ docker push <docker registry>/<image name>

4. Edit node-feature-discovery-daemonset.yaml.template and change it to
use your custom-built container image:

...
Image: <docker registry>/<image name>

5. Deploy NFD:
$ kubectl apply -f node-feature-discovery-daemonset.yaml.template

Using Labels to Schedule Pods

Node Feature Discovery
Application Note December 2018
14 Document Number: 606833-001

6.0 Using Labels to Schedule Pods

Deploying NFD in a Kubernetes cluster labels all schedulable nodes according to the
underlying platform features. These labels can be used for placing hard or soft
constraints on where specific pods should be run. This section describes the two
mechanisms to achieve this: nodeSelector and nodeAffinity.

6.1 nodeSelector

nodeSelector is a simple and limited mechanism to specify hard requirements on
which node a pod should be run. nodeSelector contains a list of key-value pairs
presenting required node labels and their values. A node must fulfill each of the
requirements, that is, it must have each of the indicated label-value pairs in order for
the pod to be able to be scheduled there.

The example below shows a pod specification requiring to be run on a node with
SR-IOV capability:

apiVersion: v1
kind: Pod
metadata:
 name: node-selector-example
spec:
 nodeSelector:
 node.alpha.kubernetes-incubator.io/nfd-network-sriov.capable:
"true"
 containers:
 - name: nginx
 image: nginx

6.2 nodeAffinity

nodeAffinity provides a much more expressive way to specify constraints on which
nodes a pod should be run. It provides a range of different operators to use for
matching label values (not just “equal to”), and allows the specification of both hard
and soft requirements (i.e. preferences).

The example below presents a pod specification where a pod is required to be run on a
host with kernel version greater than 4.14, with a preference for Intel® Turbo Boost
Technology being disabled (demonstrating soft anti-affinity).

apiVersion: v1
kind: Pod
metadata:
 name: node-affinity-example
spec:

Using Labels to Schedule Pods

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 15

 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node.alpha.kubernetes-incubator.io/nfd-kernel-
version.major
 operator: Gt
 values: ["3"]
 - key: node.alpha.kubernetes-incubator.io/nfd-kernel-
version.minor
 operator: Gt
 values: ["14"]
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: node.alpha.kubernetes-incubator.io/nfd-pstate-
turbo
 operator: NotIn
 values: ["true"]
 containers:
 - name: nginx
 image: nginx

Runtime Configuration

Node Feature Discovery
Application Note December 2018
16 Document Number: 606833-001

7.0 Runtime Configuration

The template deployment specs provided as part of the NFD source code repository
(see the Deployment section) specifies a default configuration that should be usable
as-is for most users. However, NFD provides ways to alter its behavior through
command line options and a configuration file.

7.1 Command Line Options

NFD has multiple command line options that can be used for tasks such as altering the
set of labels to be advertised, for example. Specify the desired command line options
under the Args keyword in the NFD pod specification.

Available command line options are listed in the following table.

Table 2. Command Line Options

Option Description

--sources=<sources> Comma-separated list of enabled feature sources. Can be used to limit
detected features to a limited set of features. By default, all sources are
enabled.

--label-whitelist=<pattern> Regular expression to filter published label names. Empty by default, that
is, no whitelist filter is enabled and all labels are published.

--oneshot Label once and exit after that. This is used in the one-shot Job
configuration.

--sleep-interval=<time> Interval of re-labeling. Specified using numbers and units ("s", "m", "h"), for
example: "1m30s". Non-positive value implies no re-labeling (that is,
infinite sleep). Does not have any effect if --oneshot is specified. Default
interval is 60s.

--no-publish Do not publish any labels. Useful for testing.

--config=<path> NFD configuration file to read. Can be used to specify a custom location
for the configuration file.

--options=<config> Specify configuration options from command line, specified in the same
format as in the configuration file (i.e. json or yaml). These options will
override settings read from the configuration file. Useful for quickly testing
configuration options and specifying a single configuration option.

7.2 Configuration File

Some aspects of NFD can be configured through an optional configuration file, which is
located by default in /etc/kubernetes/node-feature-discovery/node-
feature-discovery.conf. A custom location can be specified using the --config
command line option. The configuration file must be available inside the NFD pod, and

Runtime Configuration

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 17

thus, Volumes and VolumeMounts are needed to make it available for NFD. The
preferred method is to use a ConfigMap.

The following steps provide an example of creating and deploying a configuration map,
using the example configuration from the NFD source code repository as a template.
1. Use the example configuration as a base for your customized configuration.
$ cp node-feature-discovery.conf.example node-feature-
discovery.conf
$ vim node-feature-discovery.conf # edit the configuration

2. Create a Kubernetes ConfigMap object from your configuration file.
$ kubectl create configmap node-feature-discovery-config --from-
file=node-feature-discovery.conf

3. Configure Volumes and VolumeMounts in the NFD pod spec:

Note: Only the relevant code snippets are shown below.

...
 containers:
 - volumeMounts:
 - name: node-feature-discovery-config
 mountPath: "/etc/kubernetes/node-feature-discovery/"
...
 volumes:
 - name: node-feature-discovery-config
 configMap:
 name: node-feature-discovery-config
...

4. NFD will read your custom configuration file.

You could also use other types of volumes, of course. For example, hostPath could be
used for local node-specific configurations.

The example configuration in the NFD source code repository is used as a configuration
in the NFD container image. Thus, by directly editing the example configuration, you
can alter the default configuration in custom-built images.

Configuration options can also be specified via the --options command line flag, in
which case no mounts need to be used. This is mostly recommended for quickly testing
configuration options and possibly specifying single options without the need to use
ConfigMap. For example (a snippet from NFD DaemonSet specification):
...
 containers:
 - args:
 - '--options={"sources": { "pci": { "deviceClassWhitelist":
["12"] } } }'
 - '--sleep-interval=60s'
...

Currently, the only available configuration options are related to the PCI feature source.

Summary

Node Feature Discovery
Application Note December 2018
18 Document Number: 606833-001

8.0 Summary

Together with other EPA technologies, including device plugins, NFD facilitates
workload optimization through resource-aware scheduling. In particular, NFD can
benefit workloads that utilize modern vector data processing instructions, require
SR-IOV networking, and have specific kernel requirements.

This document describes the usage and benefits of Node Feature Discovery in a
Kubernetes deployment, including:

• Deployment of NFD

• Description of platform features discovered by NFD

• Using NFD labels for optimizing workload placement

• Runtime configuration of NFD

For more information on what Intel is doing with containers, see:
https://networkbuilders.intel.com/network-technologies/intel-container-experience-
kits

§

https://networkbuilders.intel.com/network-technologies/intel-container-experience-kits
https://networkbuilders.intel.com/network-technologies/intel-container-experience-kits

Terminology and References

 Node Feature Discovery
December 2018 Application Note
Document Number: 606833-001 19

Appendix A Terminology and References

Table 3. Terminology

Term Description

CPUID CPU Identification

DPDK Data Plane Development Kit

EPA Enhanced Platform Awareness

etcd Distributed key value store that serves as a reliable way to store data across a cluster
of machines

Intel® AVX Intel® Advanced Vector Extensions

Intel® RDT Intel® Resource Director Technology

Intel® VT-d Intel® Virtualization Technology (Intel® VT) for Directed I/O

IOMMU Input/Output Memory Management Unit

NFD Node Feature Discovery

NUMA Non-Uniform Memory Access

PF Physical Function

P-state CPU performance state

RDT Intel® Resource Director Technology

SLA Service Level Agreement

SR-IOV Single Root I/O Virtualization

VF Virtual Function

Table 4. References

Document Document No./Location

Deploying Kubernetes and Container Bare
Metal Platform for NFV Use Cases with
Intel® Xeon® Scalable Processors

https://builders.intel.com/docs/networkbuilders/deploying-
kubernetes-and-container-bare-metal-platform-for-nfv-
use-cases-with-intel-xeon-scalable-processors-user-
guide.pdf

https://builders.intel.com/docs/networkbuilders/deploying-kubernetes-and-container-bare-metal-platform-for-nfv-use-cases-with-intel-xeon-scalable-processors-user-guide.pdf
https://builders.intel.com/docs/networkbuilders/deploying-kubernetes-and-container-bare-metal-platform-for-nfv-use-cases-with-intel-xeon-scalable-processors-user-guide.pdf
https://builders.intel.com/docs/networkbuilders/deploying-kubernetes-and-container-bare-metal-platform-for-nfv-use-cases-with-intel-xeon-scalable-processors-user-guide.pdf
https://builders.intel.com/docs/networkbuilders/deploying-kubernetes-and-container-bare-metal-platform-for-nfv-use-cases-with-intel-xeon-scalable-processors-user-guide.pdf

	1.0 Introduction
	2.0 Overview
	3.0 How NFD Works
	4.0 Feature Labels
	NOTE: <device label> is composed of raw PCI IDs, separated by underscores. The set of fields is configurable, valid fields being class, vendor, device, subsystem_vendor and subsystem_device (defaults are class and vendor). Also the set of PCI device classes that the feature source detects is configurable. By default, device classes 03(h), 0b40(h) and 12(h), i.e. GPUs, co-processors, and accelerator cards, are detected. See the Runtime Configuration section for more details about NFD configuration options.
	5.0 Deployment
	5.1 Deployment as a DaemonSet
	5.2 Deployment as a Job
	5.3 Deploying Custom-Built Version

	6.0 Using Labels to Schedule Pods
	6.1 nodeSelector
	6.2 nodeAffinity

	7.0 Runtime Configuration
	7.1 Command Line Options
	7.2 Configuration File

	8.0 Summary
	Appendix A Terminology and References

