SOLUTION IMPLEMENTATION GUIDE 2

Intel Corporation

Datacenter Network Solutions Group

Optimizing NFV Infrastructure for
TCP Workloads with
Intel® Xeon® Scalable Processors

Authors

Sarita Maini
Solutions Software Engineer

Marcin Rybka

Solutions Software Engineer

Przemystaw Lal
Solutions Software Engineer

Revision History
October 23,2017

Revision 2.0

1.0 Introduction

Intel® Xeon® Scalable processors incorporate unique features for virtualized
compute, network, and storage workloads, leading to impressive performance
gains compared to systems based on prior Intel processor generations. This new
processor family allows users to run a much higher number of virtual machines
(VMs) and virtual network functions (VNFs) with a more diverse variety of network
function virtualization (NFV) workloads than was previously possible. Intel Xeon
Scalable processors can significantly improve the capability for software-centric,
carrier-grade virtualization which aids communications service providers in
attaining and enforcing service level agreements and increasingly demanding
quality of service requirements.

Network services are generally based on TCP/IP communication. An example of
such a service is a TCP speed test. Many Internet subscribers use a speed test
server as a tool to compare the actual speed they are experiencing with the speed
they signed up for. These speed test servers are also based on the TCP; therefore,
TCP performance is critical in network infrastructures.

This solution Implementation guide demonstrates virtualized, TCP speed test
infrastructure deployed on Intel® Xeon® Platinum 8180 processors, which are
among the highest performing CPUs in the Intel Xeon Scalable processor family.
The document describes the hardware components, software installation, and TCP
performance optimizations implemented to deliver an optimal NFV infrastructure
(NFVI) capable of handling NFV workloads. The demonstrated infrastructure
consists of two servers and uses an open-source software platform based on
OpenStack* to provide the cloud computing environment.

This document is an update to the TCP Broadband Speed Test Implementation
Guide which featured an Intel® Xeon® processor E5-2680 v3 as an OpenStack
controller node and Intel® Xeon® processor E5-2680 v2 as OpenStack compute
nodes. The results of the performance tests conducted on that infrastructure
showed TCP traffic throughput close to the maximum line rate for external
workloads, and a throughput reaching 45 Gbps for the test scenario where the TCP
speed test client and server VMs were deployed on the same OpenStack compute
node.

This solution implementation guide also covers the performance test results
for TCP traffic between two VMs on the same OpenStack compute node with
Intel Xeon Platinum 8180 processors as an OpenStack controller node and an
OpenStack compute node. To showcase the high performance of Intel Xeon
Scalable processors, these results are compared to the results achieved on the
corresponding infrastructure built with an Intel Xeon processor E5-2680 v3 as
an OpenStack controller node and an Intel Xeon processor E5-2680 v2 as an
OpenStack compute node.

https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf
https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 2

Table of Contents

0 143 o T Lot o o 1
2.0 SOlUTION OVEIVIEW . . u ettt sttt ittt it e e et et e a s s e s s e e e s e s aa s aaaanasessnssasssnnnnnesesssssasnsnnnnnssesssssnsnnnnnnnns 4
3.0 Installation GUIdeiiiiii it ittt ittt e saassaaaanasas et asaasasaasnanesrsssasnnnnnnnssssressnsnnnnnnnns 6
3.TEnable Hardware Featuresueiiiii ittt ieiiiaaaanasasssasansnasannassssrassnsnnnnanasssssannnnnnnnansssnns 6
3.2 Prepare Host Machines for the OpenStack* Installation.ouuiiiiiiiiniiiii i ieiaaassasssssssanannssnnsssrssnnnnnnnnns 6

e 20 3 1 T3 T L0 o =T 413 - Ve 8
3.4 Compute Node Configurationccuuuuii ittt it s s s assaaaaasssansnnnssnssassssnnnnnnnssnnssssnnnnnnnnnnnss 17
3.5 Enable the networking-ovs-dpdk Plug-In.ouii ittt sssnaaa s sansaansaarsasnsnnnnnnnnnns 19
3.5.1Prepare the OpenStack NOGesSttt it et e et e s s s s i s a s e e e st e a s a s s e s e sasaasnnnnnnnnenerssnnn 19
3.5.2Clone the Required RePOSIONIeS . ..ttt ittt et s s s s s retaasannnnaseserasannnnnnnnnsnseresnns 20
3.5.3 INSTAll the OV S -D P DK, . . ettt ettt et a e e a e s e a s s s s aa s s a s s s aan s e a s s n e s aaan e 21

3.6 Post-Installation Configuration ...ttt et e e s i s s s s s aassasaaarsasnsannnnnsnnrsssssnnnnnnnnnns 26
4.0 Performance OpPtimizZationsttt it ittt et ettt et et s e e s s e e e e s e 28
4.1 0ptimize the HOSt . ..o oot ittt e st i i s staasasnaanasasesasansannasnasesssssnnnnnnnnnnnnns 28
0 T T = O o e T = 28
40,2 ENable 1 GB HUBE Pages .. uuuuiii ittt assaassene s s aassaansssesannnnssanssssessnnnnsssnsssssssnnnnnnnnnnnrssnns 29
4.1.3 Enable TCP Segmentation Offload in OVS-DPDKttt ittt iiiai i tiaa s taiansrasassssansrannsssnnnsrannnsns 30
4.1.4 Enable the Multiqueue Feature for vHost-user and Physical DPDK Interfacesooiiiiiiiiiiiiiiiiiiiniiaie s 32
4.1.5 Enable Core Pinning and NUMA Awareness in the OpenStack Computet iiiiiii i nnnasannnnnreanns 32

4,2 OPtiMIizZe the GUEST. ...ttt ittt ittt et et e aaaan s s s s s s aaaaansssssaansnnnssnsssssssnnnnnnsnsnnssssnnnnnnnnnnnns 32
4.2.1 Enhanced Platform Awareness (EPA) features—‘extra_specs’ Properties for OpenStack VMscciiiiiiiiiinnnnn. 32
4.2.2 Enable Multiqueue for VirtlO Interfacesouiiiiiiii it iias i ettt s asiasa s rannnannnnaraserarnns 33
4.2.3 Upgrade the CentOS* 7 Kernelto version 4.5.5 0nthe GUest..........oiiiiiiiiiiii ittt iaatiasa s nnnsannnnnreanns 33

LT 0 o 34
5.1 DPDK and Open VOWItCR SetUP ... u .ttt ittt ettt it e e et s e s s a s s e s e s et s a s a e e e 34
5.2 VM Setup and Performance Measurementsuuiuiiuueneeereranansnansaseeererassnsnasnnsessrsransnsnnnnnsessrssnns 36
5.2.TVMFlavors and EPA FeatUures.t tiiiiiiaas s taaaasansasaseresansnnnnnnnsessresannnnnnnnaneserssnns 36
5.2.2 VM Setup and Performance Benchmark Testsuuiiiitiiiiiiiiii it e aaasiaass s annanssannsaresannnnnnnnnnnrsnnns 37

6.0 TCP Speed Test in the Cloud—Performance Benchmarksc.c.uiiiiiiiiiiiiiiiiiii st irtaaasssssssrrsnnnnnssnnssssssnnnnnns 40
6.1 Performance Benchmarks—VMtoVMonaSingle Hostottt iiii st iies s isa s i snaas s ananannns 41
6.1.1 Test Case 1: Network Throughput Scalingt i it et iaas s aanssannssreannnnnnannnnnrennns 41
6.1.2 Test Case 2: Comparison of Top Scenario Configurations.oouiiiiiiiiiiiiiii ittt et saassanas st nnnnnnanannreanns 42

7.0 UMY ¢ ottt ettt s s s s sssaaanaanassssssssnnnnnannssssssssssssannnnsssssssssnsassnsnssssssssnnsnnnnanssssssnnnnnnnnnnnnns 43
ApPEendixX A BIOS SettingSttt ittt ittt ittt 44
Appendix B: Hardware Details.ttt ettt sttt e st s a s s st aa s s s aaaa e aaa s 44
Appendix C: AbBreViatioNs.ttt ittt it a e a e s aa s 45
Y o] 1= e LD 0 N 2 =Y =T T T 46

Legal Information i i it ittt a st aaaa e eaa e eraaa st s 47

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 3

Tables
Table 1. Networks Used in the SolUtioN.ttt ittt st e i i e e et s a s s s s e s e s esaasnnnnnnnseseresnnnnns 5
Table 2. Specification of the Hardware Components. it iiaaa ettt sassaaaasas e raasnnannnnnseseresnnnnns 5
Table 3. Solution Partitioning Schema.u o ittt aasaaas s s s s s anannssnnaassaannnnnnnnnnnssssnnnnnnnnnn 6
Table 4. The IP Addresses of the SetUPcuu it ittt ettt s s s a s s s s s anasresannnnnnnnnnsrennnnnnnnnnn 6
Table 5. MappPing Of DP DK INterfaces . .ottt ittt ettt et st e e s s s e s e et s s s s s n s s s e s s et aannannnnnsnserssnnnnnnnns 26
Table 6. Sample Usage of CPU Cores. ... uuuuuiiiit ittt it saaasssaaasssnasssaaasssnassssnnsssnanssnnnssssnnssnnnssnnnnsss 28
Table 7. The EPA extra_specs Settings for OpenStack Compute flavors. ...t eesasisaa s 32
Table 8. Scenario Configurations for Platforms Based on the Intel® Xeon® Platinum 8180 Processor and the Intel® Xeon® Processor
E5-2680 V2 as CompPuUte NOGeS. ...t iteiaiiiinns s aasaaasssseaananassssssssesansnnssssssssesannnnssnnsssssnnnnnnns 39
Table 9. Scenario Configurations for Platform Based on the Intel® Xeon® Platinum 8180 ProcessorOnly.cccviiieiiiinnrnnannns 39
Figures
Figure 1. Physical Topology of the Solution.. i i i i ittt saasnnsaanasasssasnnnnnnnnnanssnnns 4
Figure 2. Intra-host TCP Traffic Speed Test Configuration.ttt ittt it i saa e aasannannnranerannns 40
Figure 3. Average Throughput at Both Platforms Comparing Corresponding Scenario Configurations................coiiiiiiiinan. 40

Figure 4. Top Intel® Xeon® Processor E5-2680 v2 Performance with Four PMD Threads, Four Virtual Cores per VM vs. the Intel® Xeon®
Platinum 8180 Processor with Eight PMD Threads, Ten Virtual Cores per VM.oiiiiiiiiiinir i iannnnssnnsaarenannnnns 41

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 4

2.0 Solution Overview

This NFVI solution consists of two servers based on Intel® Xeon® Platinum 8180 processors running the Fedora* 21 Server
operating system (OS). OpenStack* Kilo is installed on these servers to provide a cloud computing platform. One server

is configured as the OpenStack controller that also includes OpenStack networking functions, whereas the other server is
configured as an OpenStack compute node. This is the same software installation used by the Intel Xeon processor E5 family
presented in the TCP Broadband Speed Test Implementation Guide, allowing an objective TCP performance comparison with
Intel Xeon Platinum 8180 processors.

The NFV extensions integrated into OpenStack Kilo include the Enhanced Platform Awareness (EPA) features to support
non-uniform memory access (NUMA) topology awareness, CPU affinity in VMs, and huge pages, which aim to improve overall
OpenStack VM performance. The configuration guide “Enabling Enhanced Platform Awareness for Superior Packet Processing
in OpenStack*” is available at this Intel Network Builders link.

For fast packet processing, Open vSwitch* was integrated with the Data Plane Development Kit (DPDK) on the host machines.
Features such as the multi-queue and a patch to enable the TCP segmentation offload in DPDK-accelerated Open vSwitch
(OVS-DPDK), helped achieve an additional performance boost. The iPerf3* tool was used to measure the TCP traffic
throughput between two VMs on the same OpenStack compute node.

O

Internet

TOR Switch

Management Network External Network VLAN Network Data Network (VXLAN)

External Management
br-vxlan br-vxlan
br-tun br-tun

br-int -»Ic- DHCP br-int

Compute
Controller + Neutron OpenStack* Kilo 2015.1.1
OpenStack* Kilo 2015.1.1

Fedora* 21

Fedora* 21

Server based on 2x Intel® Xeon® Platinum 8180 Processor Server based on 2x Intel® Xeon® Platinum 8180 Processor
@ 2.50GHz @ 2.50GHz

Figure 1. Physical topology and Software Stack

https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf
https://builders.intel.com/docs/networkbuilders/EPA_Enablement_Guide_V2.pdf

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 5

Each server has four network interfaces that, through a top-of-rack switch, provide connectivity to the networks
described in Table 1. Table 2 presents the specification of the hardware used in the setup. Appendix B: Hardware Details
compares this hardware configuration to the setup built with the previous Intel Xeon processor family.

Compute Node Network

Network Network Description Interface Controller (NIC) Controller Node NIC
Flat provider network used for Intel® Ethernet Server Adapter Intel® Ethernet Server Adapter
Ext l Internet/remote access to the 1350-T4 1350-T4
xterna hosts and OpenStack* virtual
machines (VMs).
802.1Q tagged network Intel® Ethernet Converged Intel® Ethernet Converged
mapped to the existing Network Adapter X710-DA4 Network Adapter X710-DA4
physical virtual local area
VLAN network (VLAN) provider
network. This network
simulates subscriber
networks.
Management network used Anker* AK-A7610011 USB 3.0 Anker* AK-A7610011 USB 3.0
Management for accessing and managing to Gigabit Ethernet Adapter to Gigabit Ethernet Adapter
OpenStack* services.
Virtual eXtensible LAN Intel® Ethernet Converged Intel® Ethernet Converged
Data (VXLAN) tunnel used to Network Adapter X710-DA4 Network Adapter X710-DA4
(VxLAN) provide overlay network

between host machines.

Table 1. Networks used in the solution.

Hardware Specification

e 2xIntel® Xeon® Platinum 8180 processor, 2.50 GHz, total of 112 logical cores with Intel®
Hyper-Threading Technology (Intel® HT Technology)

384 GB,DDR4-2400 DIMMs

Controller /
Neutron host e Intel® Ethernet Server Adapter I350-T4 (using Intel® Ethernet Controller 1350)
server + Anker* AK-A7610011USB 3.0 to Gigabit Ethernet Adapter

« Intel® Ethernet Converged Network Adapter X710-DA4
« 480GBSSD

. 2x Intel® Xeon® Platinum 8180 processor, 2.50 GHz, total of 112 logical cores with Intel®
Hyper-Threading Technology (Intel® HT Technology)

« 384 GB,DDR4-2400 DIMMs
Compute server e Intel® Ethernet Server Adapter 1350-T4 (using Intel® Ethernet Controller 1350)
e Anker* AK-A7610011USB 3.0 to Gigabit Ethernet Adapter
« Intel® Ethernet Converged Network Adapter X710-DA4

« 480GBSSD

Top-of-rack switch o Extreme Networks Summit* X670V-48t-BF-AC 10GbE Switch, SFP+ Connections

Table 2. Specification of the hardware components.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 6

3.0 Installation Guide

This chapter contains the instructions for installation and configuration of the software stack.

3.1 Enable Hardware Features

1. Before starting to install the OS, enable the following features in the BIOS of all host machines:
« Intel® Virtualization Technology (Intel® VT Technology)
« Intel® Hyper-Threading Technology (Intel® HT Technology)

« Intel® Turbo Boost Technology

3.2 Prepare Host Machines for the OpenStack Installation

Note: The instructions for installing Fedora 21 Server are not within the scope of this document; however, this section
contains information to follow during OS installation or configuration.

1. Install the following packages while installing the OS.
« Cdevelopment tools and libraries
» Development tools
 Virtualization

2. Create custom partitioning as presented in Table 3.

3. After the OS is installed, configure the network interfaces on the host machines with the proper IP addresses. On each host
machine, eno1, eno2, and eno3 interfaces are used for the External, Management and VxLAN tunnel networks, respectively.
These interfaces are assigned with static IP addresses as indicated in Table 4. On the VLAN interface, no assignment of IP
address is required on any node.

Partition

Biosboot 2 MB

/boot 2GB

[swap Double the size of physical memory
/ (root partition) Remaining space

Table 3. Solution partitioning schema.

Component External IP Address Management IP Address | VXLAN Tunnel IP Address
Controller 10.34.249.201 172.16.101.2 172.16.111.2

Compute Node 10.34.249.202 172.16.101.3 172.16.111.3

OpenStack* dashboard http://10.34.249.201/dashboard/auth/login/?next=/dashboard/

External Network 10.34.249.0/24, Untagged

Table 4. The IP addresses of the setup.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

In the Fedora 21 OS, the network script files are located in the /etc/sysconfig/network-scripts directory. Since the Network-
Manager service is not used, the following line is added in the network script file of each interface.

NM_CONTROLLED=no

The following example contains a sample network script with a static IP address assigned on the management
interface on the controller node.

TYPE=Ethernet
BOOTPROTO=static
IPADDR=172.16.101.2
NETMASK=255.255.255.0
DEFROUTE=no

IPV4 FAILURE FATAL=yes
IPV6INIT=no

IPV6 AUTOCONF=yes

IPV6 DEFROUTE=yes

IPV6 FAILURE FATAL=no
NAME=eno2

DEVICE=eno?2
UUID=58215fc4-845e-4e0d-af51-588beb53£536
ONBOOT=yes
HWADDR=EC:F4:BB:C8:58:7A
PEERDNS=yes
PEERROUTES=yes
IPV6_PEERDNS=yeS
IPV6_PEERROUTES=yes

NM_ CONTROLLED=no

On all the host machines, update the network script for the interface that provides external connectivity, and set the default
route only on that interface. To check the default route, run the following command.

route -n

The following listing shows a sample network script for the external network interface with a static IP address and
default route.

TYPE=Ethernet
BOOTPROTO=static
IPADDR=10.250.100.101
NETMASK=255.255.255.0
GATEWAY=10.250.100.1
DEFROUTE=yes

IPV4 FAILURE FATAL=yes
IPV6INIT=no
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes

IPV6 FAILURE FATAL=no
NAME=enol

DEVICE=enol
UUID=58215fc4-845e-4e0d-af51-588beb53£536
ONBOOT=yes
HWADDR=EC:F4:BB:C8:58:7A
PEERDNS=yes
PEERROUTES=yes

IPV6 PEERDNS=yes

IPV6 PEERROUTES=yes
NM_CONTROLLED=no

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 8

4. Once all IP addresses are configured, disable the NetworkManager and enable the network service on all the host machines
in the following order.

systemctl disable NetworkManager

systemctl stop NetworkManager

systemctl enable network
#

systemctl restart network

5. Set the host name on all the host machines by editing the /etc/hostname files. Additionally, provide all the host names of
the setup with their management IP addresses into the /etc/hosts files on each host machine. An example is shown below.

172.16.101.2 controller controller.localdomain
172.16.101.3 computel computel.localdomain

6.Update the software packages on each of the host machines.
yum -y update

7.Disable Security-Enhanced Linux* (SELinux) and the firewall on all the host machines. Edit the etc/sysconfig/selinux file and
set SELINUX=disabled to permanently disable SELinux. Relaxing SELinux control by setting it to “disabled” or “permissive”,
instead of “enforcing”, is a required Linux configuration for Openstack with OVS-DPDK. The following commands can be used
to disable the firewall service and, temporarily, SELinux.

setenforce 0

#

sestatus
systemctl disable firewalld.service
#

systemctl stop firewalld.service
8.Uncomment the following line in the /etc/ssh/sshd_config file.
PermitRootLogin=yes

Note: Remote login as root is not advisable from a security standpoint.
9. Reboot all the host machines.

3.3 Install OpenStack

To install OpenStack Kilo, perform the following steps.
1. Set up RDO repositories on all of the nodes.

yum install -y https://repos.fedorapeople.org/openstack/openstack-kilo/rdo-release-kilo.noarch.rpm

On the controller node:
2. Install MySQL database.

yum install mariadb mariadb-server MySQL-python
3. Edit the /etc/my.cnf.d/mariadb_openstack.cnf file.

[mysqgld]

bind-address = 10.34.249.201
[mysqld]

default-storage-engine = innodb
innodb file per table
collation-server = utf8 general ci
init-connect = 'SET NAMES utf8'
character-set-server = utfs8

max connections=1000
4. Run MySQL database and secure it.

systemctl enable mariadb.service
systemctl start mariadb.service

mysgl_ secure installation

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

5. Install RabbitMQ.
yum install rabbitmg-server
6. Run RabbitMQ service.

systemctl enable rabbitmg-server.service

systemctl start rabbitmg-server.service
7. Create user and set permissions.

rabbitmgctl add user openstack intel

rabbitmgctl set permissions openstack ".x" " X" " v
8. Create databases for OpenStack services and grant permissions for OpenStack services.

mysgl -u root -p

CREATE DATABASE keystone;

CREATE DATABASE glance;

CREATE DATABASE nova;

CREATE DATABASE neutron;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'S$' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'$' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \

IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'$' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' \
IDENTIFIED BY 'intel';

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'$' \
IDENTIFIED BY 'intel';

9. Install Keystone packages.

yum install openstack-keystone httpd mod wsgi python-openstackclient memcached python-memcached
systemctl enable memcached.service

systemctl start memcached.service
10. Edit the /etc/keystone/keystone.conf file.

[DEFAULT]

admin token = intel

verbose = True

[database]

connection = mysqgl://keystone:intel@10.34.249.201/keystone
[memcache]

servers = localhost:11211

[revoke]

driver = keystone.contrib.revoke.backends.sqgl.Revoke
[token]

provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.memcache.Token

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

11. Export the configuration to the database.

12. Edit the /etc/httpd/conf/httpd.conf file by adding following line.

13. Edit the /etc/httpd/conf.d/wsgi-keystone.conf file.

14. Create the Keystone directory.

15. Download files.

16. Set permissions.

17. Run the httpd service.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

18. Create Keystone endpoints.

export OS
export 0OS

openstack

TOKEN=intel
URL=http://10.34.249.201:35357/v2.0

service create \

--name keystone --description "OpenStack Identity" identity

openstack

endpoint create \

--publicurl http://10.34.249.201:5000/v2.0 \
--internalurl http://10.34.249.201:5000/v2.0 \
--adminurl http://10.34.249.201:35357/v2.0 \

--region RegionOne \

identity

19. Create OpenStack users and projects.

openstack
openstack
openstack
openstack
openstack
openstack
openstack

openstack

O . S S S

openstack

project create --description "Admin Project" admin
user create --password-prompt admin

role create admin

role add --project admin --user admin admin

project create --description "Service Project" service
project create --description "Demo Project" demo

user create --password-prompt demo

role create user

role add --project demo --user demo user

20. Create admin-openrc.sh file with following content.

export OS PROJECT DOMAIN ID=default

export OS USER DOMAIN ID=default

export OS_PROJECT NAME=admin

export OS_TENANT NAME=admin

export OS USERNAME=admin

export OS PASSWORD= intel

export OS_AUTH URL=http://10.34.249.201:35357/v3

21. Execute the commands in the file created.

source admin-openrc.sh

22. Create Glance user and endpoints.

openstack
openstack

openstack

user create --password-prompt glance
role add --project service --user glance admin

service create --name glance \

--description "OpenStack Image service" image

openstack

endpoint create \

-—publicurl http://10.34.249.201:9292 \
--internalurl http://10.34.249.201:9292 \
-—adminurl http://10.34.249.201:9292 \

--region RegionOne \

image

23. Install Glance packages.

yum install openstack-glance python-glance python-glanceclient

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

24. Edit the /etc/glance/glance-api.conf file.

[DEFAULT]

verbose=True

notification driver = noop

[database]

connection = mysqgl://glance:intel@10.34.249.201/glance
[keystone authtoken]

auth uri = http://10.34.249.201:5000
auth url = http://10.34.249.201:35357
auth plugin = password

project domain id = default

user domain id = default

project name = service

username = glance

password = intel

[paste deploy]

flavor=keystone

[glance store]

default store=file

filesystem store datadir=/var/lib/glance/images/
25. Edit the /etc/glance/glance-registry.conf file.

[DEFAULT]

verbose=True

notification_driver = noop

[database]
connection=mysqgl://glance:intel@10.34.249.201/glance
[keystone authtoken]

auth uri = http://10.34.249.201:5000
auth url = http://10.34.249.201:35357
auth plugin = password

project domain id = default

user domain id = default

project name = service

username = glance

password = intel
26. Synchronize database.

su -s /bin/sh -c "glance-manage db sync" glance
27. Run Glance services.

systemctl enable openstack-glance-api.service openstack-glance-registry.service

systemctl start openstack-glance-api.service openstack-glance-registry.service
28. Create Nova user and endpoints.

openstack user create --password-prompt nova
openstack role add --project service --user nova admin
openstack service create --name nova \
--description "OpenStack Compute" compute

openstack endpoint create \
—-publicurl http://10.34.249.201:8774/v2/%\ (tenant id\)s \
—--internalurl http://10.34.249.201:8774/v2/%\ (tenant_id\)s \
--adminurl http://10.34.249.201:8774/v2/%\ (tenant_id\)s \
--region RegionOne \

compute

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

29. Install Nova packages.

30. Edit the /etc/nova/nova.conf file.

31. Synchronize database.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

32. Run Nova services.

systemctl enable openstack-nova-api.service openstack-nova-cert.service \
openstack-nova-consoleauth.service openstack-nova-scheduler.service \
openstack-nova-conductor.service openstack-nova-novncproxy.service

systemctl start openstack-nova-api.service openstack-nova-cert.service \
openstack-nova-consoleauth.service openstack-nova-scheduler.service \
openstack-nova-conductor.service openstack-nova-novncproxy.service

systemctl enable openstack-nova-console.service

systemctl start openstack-nova-console.service

systemctl enable openstack-nova-xvpvncproxy.service

systemctl restart openstack-nova-xvpvncproxy.service

33. Create Neutron user and endpoints.

openstack user create --password-prompt neutron
openstack role add --project service --user neutron admin
openstack service create --name neutron \
—--description "OpenStack Networking" network
openstack endpoint create \
--publicurl http://10.34.249.201:9696 \
--adminurl http://10.34.249.201:9696 \
--internalurl http://10.34.249.201:9696 \
--region RegionOne \

network
34. Edit the /etc/sysctl.conf file.

net.ipvd.ip forward=1
net.ipvd.conf.all.rp filter=0
net.ipvé4.conf.default.rp filter=0

35. Apply changes.
sysctl -p
36. Install Neutron packages.

yum install openstack-neutron openstack-neutron-ml2 python-neutronclient \

which openstack-neutron-openvswitch
37. Edit the /etc/neutron/neutron.conf file.

[DEFAULT]

verbose = True

core plugin = ml2

service plugins = router

auth strategy = keystone
allow_overlapping ips = True

notify nova on port status changes = True
notify nova on port data changes = True
nova url = http://10.34.249.201:8774/v2
rpc_backend=rabbit

[matchmaker redis]
[matchmaker ring]
[quotas]
[agent]
[keystone authtoken]

auth uri = http://10.34.249.201:5000
auth url = http://10.34.249.201:35357

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

38. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file.

39. Edit the /etc/neutron/l3_agent.ini file.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

40. Edit the /etc/neutron/dhcp_agent.ini file.

[DEFAULT]

verbose = True

interface driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp driver = neutron.agent.linux.dhcp.Dnsmasq

dnsmasq_config file = /etc/neutron/dnsmasg-neutron.conf

dhcp delete namespaces = True

41.Create the /etc/neutron/dnsmasq-neutron.conf file.
dhcp-option-force=26,1454

42. Edit the /etc/neutron/metadata_agent.ini file.

[DEFAULT]

verbose = True

auth uri = http://10.34.249.201:5000
auth url = http://10.34.249.201:35357
auth region = RegionOne

auth plugin = password

project domain id = default

user domain id = default

project name = service

username = neutron

password = intel

nova_metadata ip = 10.34.249.201

metadata proxy shared secret = intel
43. Execute following commands.

1n -s /etc/neutron/plugins/ml2/ml2 conf.ini /etc/neutron/plugin.ini
su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf \

—--config-file /etc/neutron/plugins/ml2/ml2 conf.ini upgrade head" neutron
44, Restart Nova services and run Neutron services.

systemctl restart openstack-nova-api.service openstack-nova-scheduler.service \
openstack-nova-conductor.service

1In -s /etc/neutron/plugins/ml2/ml2 conf.ini /etc/neutron/plugin.ini

cp /usr/lib/systemd/system/neutron-openvswitch-agent.service \
/usr/lib/systemd/system/neutron-openvswitch-agent.service.orig

sed -1 's,plugins/openvswitch/ovs neutron plugin.ini,plugin.ini,g' \
/usr/lib/systemd/system/neutron-openvswitch-agent.service

systemctl enable neutron-server.service neutron-openvswitch-agent.service \
neutron-13-agent.service neutron-dhcp-agent.service \
neutron-metadata-agent.service neutron-ovs-cleanup.service openvswitch.service

systemctl start neutron-server.service neutron-openvswitch-agent.service \
neutron-13-agent.service neutron-dhcp-agent.service \

neutron-metadata-agent.service openvswitch.service
45. Create and configure br-vlan and br-ex bridges.

ovs-vsctl add-br br-ex

ovs-vsctl add-port br-ex EXT NET_ IFACE NAME
ip 1 s br-ex up

ip a f EXT NET IFACE NAME

ip a a 10.34.249.201/24 dev br-ex

ip r a default via 10.34.249.1

ovs-vsctl add-br br-vlan

ovs-vsctl add-port br-vlan eno4

#

ip 1 s br-vlan up

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

46. Restart Neutron Open vSwitch agent.

47. Install Horizon packages.

48. In the /etc/openstack-dashboard/local_settings file set the following:

49. Set permissions.

50. Restart Apache and memcached.

3.4 Compute Node Configuration

1. Install OpenStack Kilo.

2. Install Nova packages.

3. Edit the /etc/nova/nova.conf file.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

4. Run libvirt and Nova services.

5. Apply configuration.

6. Edit the /etc/neutron/neutron.conf file.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

rabbit userid = openstack

rabbit password = intel

[m12]

type drivers = flat,vlan,vxlan

tenant network types = vlan,vxlan
mechanism drivers = ovsdpdk

[ml2 type flat]

flat_networks = external

[ml2 type vlan]

network vlan ranges = physnetl:10:15
[ml2 type vxlan]

vni ranges = 1:1000

[securitygroup]

enable security group = True

enable ipset = True

firewall driver = neutron.agent.firewall.NoopFirewallDriver
[agent]

tunnel types = vxlan

[ovs]

local ip = 172.16.111.3

bridge mappings = external:br-ex,physnetl:br-vlan

3.5 Enable the networking-ovs-dpdk Plug-In

3.5.1 Prepare the OpenStack Nodes

Perform the following steps on the controller node.

1. Install missing packages.

yum install openstack-neutron openstack-neutron-ml2 python-neutronclient openstack-neutron-openvswitch

Note: The packages mentioned above may already be installed by Packstack.

2. Edit the following parameters in the /etc/sysctl.conf file as presented below.

net.ipv4.ip forward=1
net.ipv4.conf.all.rp filter=0
net.ipvd.conf.default.rp filter=0

3. Commit the changes.

sysctl -p

4. Recreate the MySQL* database for the OpenStack Networking services. Enter the MySQL shell.
mysql -u root —p

Execute the following set of MySQL commands.

DROP DATABASE neutron;

CREATE DATABASE neutron;

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED BY 'intel';
GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'$' IDENTIFIED BY 'intel';

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

5. Edit the following parameters in the /etc/neutron/plugins/ml2/ml2_conf.ini file as presented below.

[m12]

type drivers = flat,vlan,gre,vxlan
tenant network types = vxlan, vlan

mechanism drivers = openvswitch
[m12_ type flat]

flat networks = external

[ml12 type vlan]

vlan ranges = physnetl:2:1000
[ml2 type vxlan]

vni_ranges = 1001:2000

[securitygroup]

enable security group = True
firewall driver = neutron.agent.linux.iptables firewall.OVSHybridIptablesFirewallDriver

enable ipset = True
[ovs]

local ip = 172.16.111.2

bridge mappings = external:br-ex, physnetl:br-vlan
[agent]

tunnel types = vxlan

6. Create a symbolic link.

1n -s /etc/neutron/plugins/ml2/ml2 conf.ini /etc/neutron/plugin.ini
7. Restart all the OpenStack Networking services.

systemctl daemon-reload

systemctl restart neutron*

3.5.2 Clone the Required Repositories

1. Clone the networking-ovs-dpdk git repository on both the compute and controller nodes.

git clone https://github.com/openstack/networking-ovs-dpdk.git
cd networking-ovs-dpdk
git checkout kilo-eol

2. Clone the dpdk repository only on the compute nodes.

git clone http://dpdk.org/git/dpdk
cd dpdk
git checkout v2.2.0

Note: You can check out the v16.04 tag of dpdk repository to enable some of the performance optimizations. Refer to the
section 4.1.3 for more information.

http://dpdk.org/git/dpdk

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 21

3.

#
#
#

Clone the ovs repository only on compute nodes.

git clone https://github.com/openvswitch/ovs.git
cd ovs
git checkout v2.5.0

Note: You can check out a newer Open vSwitch version to enable additional performance optimizations. Refer to the section
4.1.3 for more information and detailed instructions.

3.5.3 Install the OVS-DPDK

1.

Change the directory to the DPDK directory, and then edit the following lines in the config/common_linuxapp file.

CONFIG RTE BUILD COMBINE LIBS=y
CONFIG RTE LIBRTE VHOST=y

2.Build the DPDK.

#
#

N OTHEOE = %= W

HH

#

export RTE TARGET=x86_ 64-native-linuxapp-gcc
make install T=SRTE_TARGET DESTDIR=install

. Change the directory to the Open vSwitch directory, and then build the Open vSwitch with DPDK.

./boot.sh
. /configure --with-dpdk=<DPDK DIR>/<TARGET> --prefix=/usr --with-rundir=/var/run/openvswitch
make CFLAGS=’-03 -march-native’

make install

. Change the directory to the networking-ovs-dpdk directory, and install the ovs-dpdk agent.

yum install python-pip
python setup.py install

. Stop the native openvswitch service.

systemctl stop openvswitch

6 Stop the native neutron-openvswitch-agent.service.

#

7.

#
#
#

8.

systemctl stop neutron-openvswitch-agent.service
Change the directory to the networking-ovs-dpdk directory, and then copy the files as shown below.

cd ~/networking-ovs-dpdk
cp devstack/ovs-dpdk/ovs-dpdk-init /etc/init.d/ovs-dpdk
cp devstack/ovs-dpdk/ovs-dpdk-conf /etc/default/ovs-dpdk

Edit the /etc/default/ovs-dpdk file to match your environment. Use the content below as an example, and adjust paths, huge

pages, and other settings.

RTE_SDK=/root/source/dpdk
RTE_TARGET=x86_ 64-native-linuxapp-gcc

OVS_ INSTALL DIR=/usr
OVS_DB_CONF_DIR=/etc/openvswitch
OVS_DB_SOCKET DIR=/var/run/openvswitch
OVS_DB_CONF=/etc/openvswitch/conf.db

OVS DB SOCKET=/var/run/openvswitch/db.sock

OVS_SOCKET MEM=2048
OVS_MEM CHANNELS=4
OVS_CORE_MASK=2
OVS_PMD CORE MASK=C

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

9. Create a backup of the gemu-kvm executable file.

10. Create a new gemu-kvm executable script that includes support for DPDK vhost-user ports for newly created VMs on this
node. To do so, create a new gemu-kvm file.

Open the newly created /usr/bin/gemu-kvm file, paste the following code, and then save it.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

shift
if [[$1 =~ "memory-backend-file" 1]
then

args[i1]1=${1}, ${SHARE}

((i++))

shift

fi

args[i]="$1"

((i4+))
shift ;;
esac
done
if [-e /usr/local/bin/gemu-system-x86 64]; then

exec /usr/local/bin/gemu-system-x86 64 "S${args[@]}"
elif [-e /usr/libexec/gemu-kvm.orig]; then

exec /usr/libexec/gemu-kvm.orig "S${args[@]}"
fi

11. Add execution permissions to the gemu-kvm file and the networking-ovs-dpdk plug-in executable files.

chmod +x /usr/bin/gemu-kvm

chmod +x /usr/bin/networking-ovs-dpdk-agent

12. Edit the OpenStack Networking neutron ml2 agent settings.
On the compute node, open the /etc/neutron/plugins/ml2/ml2_conf.ini file, and then edit the mechanism_drivers parameter
as shown below.

[DEFAULT]
mechanism drivers = ovsdpdk
[securitygroup]

firewall driver = neutron.agent.firewall.NoopFirewallDriver

On the controller node, open the /etc/neutron/plugins/ml2/ml2_conf.ini file, and then add the ovsdpdk entry to the
mechanism_drivers parameter as shown below.

[DEFAULT]
mechanism drivers = openvswitch, ovsdpdk
[securitygroup]

firewall driver = neutron.agent.firewall.NoopFirewallDriver
In the same file on both the compute and controller nodes, configure the VxLAN tunnel settings.

[ovs]
local ip = IP_OF THE INTERFACE USED FOR TUNNEL
[agent]

tunnel types = vxlan

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 24

13. Edit the /etc/libvirt/gemu.conf file, and then change the user and group parameters to gemu.

user = "gemu"

group = "gemu"
Set the hugetlbfs_mount location to match your system settings.
hugetlbfs mount = "/mnt/huge"

14. Due to errors in the ovs-dpdk script, edit the /etc/init.d/ovs-dpdk file.
At line 191, change:

sudo ip link $nic 0 down
to:
sudo ip link set dev $nic down

At line 376, change:

while [! $(grep "unix.*connected" ${OVS LOG DIR}/ovs-vswitchd.log)]; do
to:
while [! "$(grep 'unix.*connected' ${OVS_LOG DIR}/ovs-vswitchd.log)"]; do

Insert the following lines after line 410:

echo "vhostuser sockets cleanup"
rm -f $OVS_DB_SOCKET DIR/vhu*

Save the file, and then exit.
15. Initialize the ovs-dpdk service.

At this point, it is recommended that you remove and manually recreate the Open vSwitch database file conf.db to avoid any
issues with configuration of the Open vSwitch in the next steps.

Kill any Open vSwitch-related process running in your system, such as ovs-vswitchd and ovsdb-server.

rm /usr/local/etc/openvswitch/conf.db
ovsdb-tool create /etc/openvswitch/conf.db \

/usr/share/openvswitch/vswitch.ovsschema

Run the service initialization, enable DPDK support and set masks according to your preference:

service ovs-dpdk init
ovs-vsctl --no-wait set Open vSwitch . other config:dpdk-init=true
ovs-vsctl --no-wait set Open vSwitch . other config:dpdk-lcore-mask="10000000"

ovs-vsctl --no-wait set Open vSwitch . other config:pmd-cpu-mask="20000000"Run the ovs-dpdk service.

HH FH H H H

service ovs-dpdk start

Note: To identify possible issues, pay attention to the output of this command, and check also the ovs-vswitchd logs located in
the /etc/default/ovs-dpdk directory.

Check the status of the ovs-dpdk with the following command.
systemctl status ovs-dpdk

Note: Automatic binding of igb_uio to the interfaces by the ovs-dpdk service was not fully tested and might not be working.
If this happens, a solution is to disable this feature by commenting out the following parts of the /etc/init.d/ovs-dpdk script.

319 # bind nics

focoll

403 #if uio diver is not loaded load

404 # echo "loading OVS_INTERFACE DRIVER diver"

405 # if [["SOVS_ INTERFACE DRIVER" == "igb uio"]]; then
406 # load igb uio module

407 # elif [["SOVS_ INTERFACE DRIVER" == "vfio-pci"]]; then

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

408 # load vfio_pci module

409 # fi

locoll

427 # echo "binding nics to linux dirver"

428 # unbind_nics

429 #

430 # echo "unloading OVS_INTERFACE_ DRIVER"

431 # if [["$OVS INTERFACE DRIVER" == "igb uio"]]; then
432 i remove igb uio_module

433 # elif [["$OVS_ INTERFACE DRIVER" =~ "vfio-pci"]]; then
434 # remove vfio pci module

435 # fi

16. Bind the DPDK interfaces to the igb_uio driver, and manually create the Open vSwitch bridges for these interfaces.

Execute the following commands to bind the interface to the igb_uio driver.

modprobe uio
modprobe cuse

modprobe fuse
Change the directory to the DPDK directory, and then load the DPDK igb_uio driver.

insmod x86 64-native-linuxapp-gcc/kmod/igb uio.ko

Note: For a different DPDK target, replace the x86_64-native-linuxapp-gcc in the above command with the respective one.

17.Execute the following command to check the current binding status of all the interfaces.
./tools/dpdk nic bind.py --status

18. Bind the interfaces to the DPDK driver if needed. The interfaces must be in down status; otherwise, binding will fail.
To bring the interfaces down execute the following command.

ip 1 s dev <Interface-Name> down

The following command brings down the eno4 interface.

ip 1 s dev eno4 down

To bind the interface to the DPDK driver, execute the command below.

/root/dpdk/dpdk-nic-bind.py -b igb iuo \
<PCI_ADDRESS OF NIC TO BIND>
/root/dpdk/tools/dpdk nic bind.py -b igb uio 0000:04:00.0

To bind the interface back to the regular Linux driver, execute the command below.

/root/dpdk/tools/dpdk-nic-bind.py -b <DRIVER NAME> \
<PCI_ADDRESS OF NIC TO BIND>

20. Run the ovs-dpdk service.

service ovs-dpdk start

25

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 26

3.6 Post-Installation Configuration

To create the Open vSwitch bridges with DPDK interfaces use the following commands. Table 5 shows the mapping
of DPDK interfaces.

ovs-vsctl add-br br-ex -- set bridge br-ex datapath type=netdev

ovs-vsctl add-port br-ex dpdk0 -- set Interface dpdk0 type=dpdk

ovs-vsctl add-br br-vxlan -- set bridge br-vxlan datapath type=netdev
ovs-vsctl add-port br-vxlan dpdkl -- set Interface dpdkl type=dpdk

ovs-vsctl add-br br-vlan -- set bridge br-vlan datapath type=netdev

#

ovs-vsctl add-port br-vlan dpdk2 -- set Interface dpdk2 type=dpdk

DPDK Interface Name Previous Name Purpose

dpdkO eno’ External network
dpdk1 eno3 VXLAN network
dpdk2 eno4 VLAN network

Table 5. Mapping of DPDK interfaces

Note: The DPDK interfaces are sorted by the Peripheral Component Interconnect* (PCI*) address—the higher value of a PCI
address results in a higher interface number. Check the status of the Open vSwitch.

ovs-vsctl show

If there are issues with adding the DPDK port to the bridge, restart the ovs-dpdk service after binding the DPDK interfaces
using the command below.

systemctl restart ovs-dpdk
Check the status of the Open vSwitch.
ovs-vsctl show

If there are issues with adding the DPDK port to the bridge, restart the ovs-dpdk service after binding the DPDK interfaces
using the command below.

systemctl restart ovs-dpdk

2. Set the administrative status to up on all the Open vSwitch bridges except for the br-int.
Note: This step may be required after creating new Open vSwitch bridges and restarting the ovs-dpdk service.

The following sample command brings the br-vlan bridge up.

ip link set dev br-vlan up

Use the following commands to assign an IP address to the VXLAN bridge.

ip address add 172.16.111.3/24 dev br-vxlan

3. Once all the bridges are created and configured, start the networking-ovs-dpdk-agent.

screen /usr/bin/networking-ovs-dpdk-agent \
--config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/plugins/ml2/ml2 conf.ini

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 27

4.1t is recommended that you run networking-ovs-dpdk-agent in the nohup, screen (as provided in the example above), or
tmux session.

5. Restart the openstack-nova-compute service on the compute nodes.

systemctl restart openstack-nova-compute

6. On the controller node, restart all the OpenStack Networking services.

systemctl restart neutron*

7. On the controller node, check whether all of the OpenStack Networking and Compute services are running.

neutron agent-list
cd /root

source keystonerc admin

HH= H H

openstack-status

There might also be an old Open vSwitch agent visible on the compute nodes. Make sure to manually delete all the entries
with the agent_type as Open vSwitch agent. To delete the old agent, execute the following command.

neutron agent-delete <id-of-the-non-dpdk-agent>

8. On the controller node, create flavors and set the extra-spec parameters. These flavors will be used for all OpenStack VMs.
See Section 5.2 for a script to create flavors and setup extra-spec parameters.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 28

4.0 Performance Optimizations
This chapter provides the optimization instructions that enable the NFVI to operate with optimal performance.

4.1 Optimize the Host

4.1.1 Isolate CPU Cores

First, isolate the CPU cores from the Linux scheduler so that the OS cannot use it for housekeeping or other OS-related tasks.
These isolated cores can then be dedicated to the Open vSwitch, DPDK poll mode drivers (PMDs), and OpenStack VMs.

Optimal performance is achieved when CPU cores that are isolated and assigned to the Open vSwitch, PMD threads, OpenStack
VMs, memory banks, and the NIC, are connected to the same NUMA node. This helps avoid the usage of costly cross-NUMA node
links and therefore boosts the performance. To check what NUMA node the NIC is connected to, execute the following command.

cat /sys/class/net/<interface name>/device/numa node

Example:

lspci |grep Ether

86:00.0 Ethernet controller: Intel Corporation Ethernet Controller X710 for 10GbE SFP+ (rev 01)
86:00.1 Ethernet controller: Intel Corporation Ethernet Controller X710 for 10GbE SFP+ (rev 01)

cat /sys/bus/pci/devices/0000\:86\:00.0/numa_node
1
cat /sys/bus/pci/devices/0000\:86\:00.1/numa node
1

The output of this command indicates the NUMA node number, O or 1, in case of a two-socket system. To list the associations
between the CPU cores and NUMA nodes, execute the following commands.

yum install numactl
numactl -hardware
available: 2 nodes (0-1)

node 0 cpus: 0 1 2 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
node 0 size: 192128 MB
node 0 free: 135829 MB
node 1 cpus: 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 84 85 86 87
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
node 1 size: 193503 MB
node 1 free: 143541 MB
node distances:
node 0 1
0: 10 21
1: 21 10

All the NICs used in this solution setup are connected to the NUMA node 1. Hence, the CPU cores belonging to the NUMA node
1 are assigned to the Open vSwitch, DPDK PMD threads, and VMs. Table 6 shows the assignment of the CPU cores from NUMA
node 1. Intel® HT Technology, when enabled, increases the number of independent instructions in the CPU pipeline because
every single physical CPU core appears as two virtual processors in the OS. These virtual processors are referred to as
hyperthreaded or logical cores (LCs). Two logical cores that belong to the same physical core are called sibling cores. In this
setup, there is an offset of 56 between each of the sibling cores. For example, in a 28-core Intel Xeon Platinum 8180 processor
with the Intel HT Technology turned on in the BIOS (default setting), cores 0 and 56 are siblings on NUMA node 0, and cores 28
and 84 are siblings on NUMA node 1.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 29

CPU Cores Assigned To Configuration Settings

4-27,56-83 Housekeeping Set the parameters below in the /etc/default/grub file on the
compute node to isolate cores 28-55 and their siblings 84-111,
from the kernel scheduler and hence dedicate them to OVS-DPDK
PMD threads and OpenStack* VMs. Cores 4-27 and 56-83 are used
by the kernel, hypervisor and other host processes.
GRUB_CMDLINE LINUX="rd.lvm.lv=fedora-server/root rd.lvm.
lv=fedora-server/swap rhgb quiet isolcpus=28-55,84-111
hugepagesz=1G hugepages=96 default hugepagesz=1G"

29-38 OVS-DPDK PMD threads Execute the following command (mask and cores depends on
scenario).
ovs-vsctl set Open vSwitch . other config:pmd-cpu-
mask=0x7FE0000000

40-55,96-111 OpenStack* VMs Set the CPU core numbers for guest VMs in the /etc/nova/nova.
conf file.

vcpu _pin set = 40-55,96-111

Table 6. Sample usage of CPU cores.

Intel HT Technology, when enabled, increases the number of independent instructions in the CPU pipeline because every
single physical CPU core appears as two virtual processors in the OS. These virtual processors are referred to as hyper
threaded or logical cores (LCs). Two logical cores that belong to the same physical core are called sibling cores. In this setup,
there is an offset of 56 between each of the sibling cores. For example, in a 28-core Intel Xeon Platinum 8180 processor with
the Intel HT Technology turned on in the BIOS (default setting), cores 0 and 56 are siblings on NUMA node 0, and cores 28 and
84 are siblings on NUMA node 1.

cat /sys/devices/system/cpu/cpul/topology/thread siblings list
1,57
cat /sys/devices/system/cpu/cpul/topology/thread siblings list
0,56

To achieve the optimal performance of DPDK PMD threads, several CPU pinning alternatives were tested (see Chapter 6).

4.1.2 Enable 1 GB Huge Pages

1 GB huge pages were used for OpenStack VMs to reduce translation lookaside buffer (TLB) miZwing steps on all the compute
nodes.

1. Add the following line to the /etc/libvirt/gemu.conf file.
hugetlbfs mount="/mnt/huge”

2. Add the following line in the /etc/fstab file.

hugetlbfs /mnt/huge hugetlbfs defaults 0 0

3. Create the mount directory for huge pages.

mkdir -p /mnt/huge

4. Add the following line to the /etc/sysctl.conf file.
vm.nr_hugepages = 96

5. Edit the /etc/default/grub file to set the huge pages.

GRUB_CMDLINE LINUX=".. hugepagesz=1G hugepages=96 default hugepagesz=1G”

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 30

6. Update the GRUB2 configuration.

grub2-mkconfig -o /boot/grub2/grub.cfg

Note: The grub.cfg file location may vary. You can use the following command to locate it.
locate grub.cfg

7. Reboot the host machine.

reboot

8. Verify the settings.

cat /proc/meminfo | grep Huge

AnonHugePages: 12288 kB
HugePages Total: 96
HugePages Free: 96
HugePages Rsvd: 0
HugePages_ Surp: 0
Hugepagesize: 1048576 kB

dmesg | grep -o “isolcpus.*”

default hugepagesz=1G

isolcpus=28-55,84-111 hugepagesz=1G hugepages=96 default hugepagesz=1G
isolcpus=28-55,84-111 hugepagesz=1G hugepages=96 default hugepagesz=1G

4.1.3 Enable TCP Segmentation Offload in OVS-DPDK

A patch was implemented to enable TCP segmentation offload (TSO) support in OVS-DPDK. The patch enables successful
feature negotiation of TSO (and implicitly, transmit checksum offloading) between the hypervisor and the OVS-DPDK
vHost-user back end. This allows TSO to be enabled on a per-port basis in the VM using the standard Linux ethtool* utility.
Furthermore, the patch also increases the maximum permitted frame length for OVS-DPDK-netdevs to 64 KB (to receive
oversized frames) and introduces the support for handling “offload” frames.

Note that the TSO feature in OVS-DPDK is experimental. It is only validated on OpenStack-deployed flat and VLAN networks.
The guest may only take advantage of TSO if OVS is connected to a NIC that supports that functionality. The mechanism by
which offloading was achieved works as follows: When OVS dequeues a frame from a TSO-enabled guest port using the DPDK
vHost library, the library sets specific offload flags in the metadata that DPDK uses to represent a frame (known as ‘mbuf’).
Upon receipt of an offload mbuf, Open vSwitch sets additional offload flags and attribute values in the mbuf before passing it
to the DPDK NIC driver for transmission. The driver examines and interprets the mbuf's offload flags and the corresponding
attributes to facilitate Transmission Control Protocol (TCP) segmentation on the NIC.

With the enablement of TSO for OVS-DPDK-netdevs in Open vSwitch, the segmentation of guest-originated, oversized TCP
frames moves from the guest operating system’s software TCP/IP stack to the NIC hardware. The benefits of this approach
are many. First, offloading segmentation of a guest's TCP frames to hardware significantly reduces the compute burden on the
VM's virtual CPU. Consequently, when the guest does not need to segment frames itself, its virtual CPU can take advantage of
the additionally available computational cycles to perform more meaningful work. Second, with TSO enabled, Open vSwitch
does not need to receive, process, and transmit a large number of smaller frame segments, but rather a smaller amount of
significantly larger frames. In other words, the same amount of data can be handled with significantly reduced overhead.
Finally, decreasing the number of small packets which are sent to the NIC for transmission, results in the reduction of PCI
bandwidth usage. The cumulative effect of these enhancements is a massive improvement in TCP throughput for DPDK-
accelerated Open vSwitch. To enable TSO in OVS-DPDK, execute the following steps:

1. Stop the ovs-dpdk service.
service ovs-dpdk stop
2. Unload the igb_uio module.

rmmod igb uio

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

3. Change the directory to the source directory of Open vSwitch.

cd ~/ovs

4. Check out the TSO patch with a compatible commit.

git checkout cae7529c16e312524bc6b76182e080c97428e2e0

Note: This will change the Open vSwitch version to 2.5.90.

5.Download the TCP segmentation patch from the ovs-dev mailing list at https://mail.openvswitch.org/pipermail/ovs-
dev/2016-June/316414.html, and apply the patch.

git am 000l1-netdev-dpdk-add-TSO-support-for-vhostuser-ports.patch
Alternatively, use the command below.

git apply 000l-netdev-dpdk-add-TSO-support-for-vhostuser-ports.patch
6. Check out DPDK v16.04, which is required to use the TSO feature.

cd ~/dpdk
git checkout v16.04

7. Recompile the DPDK libraries.
make install T=x86 64-native-linuxapp-gcc DESTDIR=install
8. Recompile, and then reinstall the Open vSwitch.

cd ~/ovs

./boot.sh

./configure --with-dpdk=<DPDK DIR>/<TARGET> --prefix=/usr --with-rundir=/var/run/openvswitch CFLAGS='-03
-march-native’

make

make install
9. Load the igb_uio driver.
insmod ~/dpdk/x86 64-native-linuxapp-gcc/kmod/igb uio.ko

10. Bind the network interfaces to the igb_uio driver as described in section 3.5.3.
11. Restart the ovs-dpdk service, and run the networking-ovs-dpdk agent.

service ovs-dpdk restart
screen /usr/bin/networking-ovs-dpdk-agent \
--config-file /etc/neutron/neutron.conf \

--config-file /etc/neutron/plugins/ml2/ml2 conf.ini
12. Enable the offload features in gemu-kvm wrapper. Edit the /usr/bin/gemu-kvm file, and change the following line
VIRTIO OPTIONS="csum=off,gso=off,guest tsod4=off,guest tso6=off,guest ecn=off,guest ufo=off"
with the line below.

VIRTIO OPTIONS="csum=on,gso=on,guest tsod4=on,guest tso6=on,guest ecn=on,guest ufo=on"

31

https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 32

4.1.4 Enable the Multiqueue Feature for vHost-user and Physical DPDK Interfaces

1.Enable multiple queues in the gemu-kvm wrapper. Edit the /usr/bin/gemu-kvm file on the compute node. Add multiqueue
settings in the following lines.

QUEUES=10

if [SQUEUES -gt 1]
VIRTIO OPTIONS="...,mg=on,vectors=$ ((2+2*$QUEUES))"
VHOST FORCE="..., queues=$QUEUES"

Note: The value of vectors parameter must be equal to 2 x queues + 2.

4.1.5 Enable Core Pinning and NUMA Awareness in the OpenStack Compute

1. On all of the compute nodes, edit the /etc/nova/nova.conf file, and update the vcpu_pin_set setting.
vcpu pin set=40-55,96-111

2. Restart the openstack-nova-compute.service.

systemctl restart openstack-nova-compute.service

3. On the controller node, create the optimized NUMA-aware OpenStack flavor by specifying the number of CPU cores,
memory size, and storage capacity, and set extra_specs to use the EPA resources from the selected NUMA node. Refer to the
script in section 5.2.1 that was run on the controller node to create flavors and add extra-spec parameters.

extra_specs Parameter Value Notes

hw:cpu_policy dedicated Guest virtual CPUs will be strictly pinned to a set of host physical CPUs.
hw:mem_page_size large Guest will use 1 GB huge pages.

hw:numa_mempolicy strict The memory for the NUMA node in the guest must come from the

corresponding NUMA node specified in hw:numa_nodes.

hw:numa_mem.O 4096 Mapping memory size to the NUMA node 0 inside the VM.
hw:numa_nodes 1 Number of NUMA nodes to expose to the guest.

hw_numa_cpus.0 0,1,2,3 Mapping of virtual CPUs list to the NUMA node O inside the VM.
hw:cpu_threads_policy prefer If the host has threads, the virtual CPU will be placed on the same core

as a sibling core.

Table 7. The EPA extra_specs settings for OpenStack Compute flavors.

4.2 Optimize the Guest

4.2.1 Enhanced Platform Awareness (EPA) features—'extra_specs’ Properties for
OpenStack VMs

To make use of EPA features like CPU affinity, huge pages, and single NUMA node topology in VMs, we use the flavors created
which also set the ‘extra_specs’ properties applicable to OpenStack Compute* flavors to create optimized VMs on the compute
node. Table 7 shows examples of some of the extra_specs parameters that were used in the script in section 5.2.1 to instantiate
VMs in this setup.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 33

4.2.2 Enable Multiqueue for VirtlO Interfaces

After enabling the multiqueue feature on the host machine, the same number of queues must be set inside the VM with the
command below.

ethtool -L ethO combined NR_OF QUEUES

Note: The interface name on the virtual machine may be different.

4.2.3 Upgrade the CentOS* 7 Kernel to version 4.5.5 on the Guest

1. Install dependencies.

yum install wget

yum install linux-firmware
2. Download the RPM package of the kernel.

wget http://mirrors.coreix.net/elrepo-archive-archive/kernel/el7/x86 64/RPMS/kernel-ml-4.5.4-1.el7.elrepo.
x86_ 64.rpm

3. Install the new kernel.

rpm -i kernel-ml-4.5.4-1.el7.elrepo.x86 64.rpm
4. Optionally, uninstall the old kernel.

rpm -e <kernel-package-name>

5. Reboot the VM, and then select the 4.5.4 kernel in the GRUB boot menu if more than one entry is available.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

5.0 Scripts

This section contains scripts to set up the Open vSwitch, DPDK, and VMs with EPA features, as well as to run the
performance tests.

5.1 DPDK and Open vSwitch Setup

The following script was used on the compute node to setup DPDK and Open vSwitch.

#!/bin/bash

Description: Refresh OpenStack and OVS services after host reboot

export OS PROJECT DOMAIN ID=default

export OS USER DOMAIN ID=default

export OS_PROJECT NAME=admin

export OS_TENANT NAME=admin

export OS USERNAME=admin

export OS PASSWORD=intel

export OS AUTH URL=http://10.34.249.201:35357/v3
export OS IMAGE API VERSION=2

function reinstall ovs {
echo ">> Kill all OVS-related processes and remove database..."
killall ovs-vswitchd ovsdb-server
rm -f /etc/openvswitch/conf.db

ovsdb-tool create /etc/openvswitch/conf.db /usr/share/openvswitch/vswitch.ovsschema

echo ">> Initialize OVS-DPDK..."

service ovs-dpdk init

ovs-vsctl --no-wait set Open vSwitch . other config:dpdk-init=true

ovs-vsctl --no-wait set Open vSwitch . other config:dpdk-lcore-mask="10000000" # DPDK mandatory arguments

ovs-vsctl --no-wait set Open vSwitch . other config:pmd-cpu-mask="20000000" # pmd-cpu-mask is changed for
each test case

ovs-vsctl --no-wait set Open vSwitch . other config:dpdk-socket-mem="0,4096"

service ovs-dpdk start
sleep 5
systemctl status ovs-dpdk
systemctl is-active ovs-dpdk
if [$? -eq 0]; then
echo ">> OVS-DPDK started successfully."
fi

echo -n "> Restart libvirt and Nova services... "
systemctl restart libvirtd.service openstack-nova-compute.service

echo "Done."

Prepare Compute Node

systemctl daemon-reload

echo "> Stop native OpenVSwitch service..."

systemctl stop openvswitch

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

echo "> Stop and disable native Neutron services..."
systemctl stop neutron-*

systemctl disable neutron-*

echo "> Kill all OVS-related processes..."

reinstall ovs

echo "> Load DPDK igb uio driver and needed kernel modules”
modprobe uio
modprobe fuse

insmod /root/dpdk/x86 64-native-linuxapp-gcc/kmod/igb uio.ko

echo "> Current binding status of all the interfaces:"
/root/dpdk/tools/dpdk nic bind.py -s

echo "> Bind VXLAN and VLAN interfaces"

ip 1 set dev eno3 down

ip a flush eno3

ip 1 set dev eno4 down

ip a flush eno4

/root/dpdk/tools/dpdk nic bind.py -b igb uio 0000:86:00.0
/root/dpdk/tools/dpdk nic bind.py -b igb uio 0000:86:00.1

echo "> Current binding status of all the interfaces:"

/root/dpdk/tools/dpdk nic bind.py -s

service ovs-dpdk restart

sleep 5

ovs-vsctl --no-wait set open vswitch . other config:dpdk-lcore-mask="10000000"
ovs-vsctl --no-wait set open vswitch . other config:dpdk-socket-mem="0,4096"
ovs-vsctl --no-wait set open vswitch . other config:pmd-core-mask="20000000"

Post-installation configuration

ovs-vsctl show
echo "> Create OVS bridges"

ovs-vsctl add-br br-ex -- set bridge br-ex datapath type=netdev
ovs-vsctl add-br br-vxlan -- set bridge br-vxlan datapath type=netdev
ovs-vsctl add-br br-vlan -- set bridge br-vlan datapath type=netdev
ovs-vsctl add-br br-tun -- set bridge br-tun datapath type=netdev

Restart ovs-dpdk service to avoid issues with adding DPDK port to the bridge
systemctl restart ovs-dpdk

sleep 2
ovs-vsctl add-port br-vxlan dpdk0 -- set Interface dpdkO type=dpdk
ovs-vsctl add-port br-vlan dpdkl -- set Interface dpdkl type=dpdk

echo "> Set administrative status to up on all the OVS bridges (except br-int)"
ip 1 set dev br-vlan up
ip 1 set dev br-ex up

ip 1 set dev br-vxlan up

echo "> Assign an IP address to the VxLAN bridge"
ip address add 172.16.111.3/24 dev br-vxlan

35

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 36

/usr/bin/networking-ovs-dpdk-agent --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugins/ml2/
ml2 conf.ini

ovs-vsctl set bridge br-int datapath type=netdev

screen /usr/bin/networking-ovs-dpdk-agent --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/

plugins/ml2/ml2 conf.ini
systemctl restart openstack-nova-compute

echo "> Finished."

exit O

5.2 VM Setup and Performance Measurements

The following scripts are run on the controller node. They remotely create and delete VMs on the compute node, set up EPA
features, run iPerf3 server and client instances, generate benchmark results, and copy the results from the compute node to
the controller node.

5.2.1 VM Flavors and EPA Features

The following script was used to create flavors and setup extra-specs parameters to take advantage of EPA features

nova flavor-create Name ID Memory MB Disk(in GB) vCPUs
nova flavor-create dpdk.small 11 1024 20 1
nova flavor-create dpdk.medium 12 2048 20 2
nova flavor-create dpdk.large 13 4096 20 4
nova flavor-create dpdk.xlarge 14 8192 20 8
nova flavor-create dpdk.xxlarge 15 16384 20 10

for i in “seq 11 15°; do nova flavor-key $i set hw:mem page size="large"; done

for i in “seq 11 15°; do nova flavor-key $i set hw:cpu policy="dedicated"; done

for i in 'seqg 11 15°; do nova flavor-key $i set hw:numa mempolicy="strict"; done

for i in “seq 11 15°; do nova flavor-key $i set hw:numa nodes=1; done

for i in “seq 11 15°; do nova flavor-key $i set hw:cpu threads policy="prefer"; done
nova flavor-key 11 set hw:numa mem.0=1024

nova flavor-key 12 set hw:numa mem.0=2048

nova flavor-key 13 set hw:numa mem.0=4096

nova flavor-key 14 set hw:numa mem.0=8192

nova flavor-key 15 set hw:numa mem.0=16384

nova flavor-key 11 set hw:numa cpus.0="0"

nova flavor-key 12 set hw:numa cpus.0="0,1"
nova flavor-key 13 set hw:numa cpus.0="0,1,2,3"
nova flavor-key 14 set hw:numa cpus.0="0,1,2,3,4,5,6,7"

nova flavor-key 15 set hw:numa cpus.0="0,1,2,3,4,5,6,7,8,9"

nova flavor-list

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 37

5.2.2 VM Setup and Performance Benchmark Tests

The following script was used on the controller node to automatically generate VMs for various flavors, setup PMD CPU masks,
enable TCP segmentation offload, enable multi-queues inside the VM, run iPerf3 and generate TCP cloud speed test results on
the compute node, and copy the results from the compute node to the controller node

#!/bin/bash

set -x

PMD masks

20000000 : core 29, single physical core

60000000 : cores 29-30 (2 physical cores)

1E0000000 : cores 29-32 (4 physical cores)

1FE0O000000 : cores 29-36 (8 physical cores)

7FE0000000 : cores 29-38 (10 physical cores)

2000000000000020000000 : cores 29,85 (1 physical core + 1 thread sibling
6000000000000060000000 : cores 29-30,85-86(2 physical cores + 2 siblings)
1E0000000000001E0000000 : cores 29-32,85-88(4 physical cores + 4 siblings)
1LFE000000000001FE0000000 : cores 29-36,85-92(8 physical cores + 8 siblings)
7FE000000000007FE0000000 : cores 29-38,85-94 (10 physical cores+ 10siblings)

0S=("centos")

PMD=("20000000"™ "60000000"™ "1E0000000" "1FEO00000Q" "7FE0000000"™ "2000000000000020000000"
"6000000000000060000000™ "1E0000000000001E0000000™ "1FEO00O000000001FE0000000"™ "7FE000000000007FE0000000")
FLAVOR= ("dpdk.small" "dpdk.medium" "dpdk.large" "dpdk.xlarge" "dpdk.xxlarge")

COMP2= ("compute")

declare -A VCPUS

VCPUS [dpdk.small]=1
VCPUS [dpdk.medium]=2
VCPUS [dpdk.large]=4
VCPUS [dpdk.xlarge]=8
VCPUS [dpdk.xxlarge]=10

QROUTER="grouter-c2efcb35-c84c-4d32-977c-e05904bc3d82"

export OS_PROJECT DOMAIN_ ID=default

export OS _USER DOMAIN ID=default

export OS PROJECT NAME=admin

export OS_TENANT NAME=admin

export OS USERNAME=admin

export OS PASSWORD=intel

export OS_AUTH URL=http://10.34.249.201:35357/v3
export OS IMAGE API VERSION=2

for os in ${0OS[@]}
do
for pmd in ${PMD[@]}
do

#recreate ports for each test case

for 1 in "seqg 1 4°; do

neutron port-list | grep "1[0-1].1[0-1]" | cut -d " " -f 2 | xargs neutron port-delete

done

portl=$ (neutron port-create vlan-10 --fixed-ip ip address=192.168.10.10 | grep " id" | sed 's/\s\s*/ /g' |
cut -d' ' -f4)

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 38

port2=$ (neutron port-create vlan-10 --fixed-ip ip address=192.168.10.11 | grep " id" | sed 's/\s\s*/ /g' |
cut -d' ' -f4)

port3=$ (neutron port-create vlan-11 --fixed-ip ip address=192.168.11.10 | grep " id" | sed 's/\s\s*/ /g' |
cut -d' ' -f4)

port4=$ (neutron port-create vlan-11 --fixed-ip ip address=192.168.11.11 | grep " id" | sed 's/\s\s*/ /g'
cut -d' ' -f4)

DPDK_PORTS= ("vhu$ {portl:0:11}" "vhu${port2:0:11}" "vhu${port3:0:11}" "vhu${portd:0:11}")
echo ${DPDK PORTS[@]}

#set pmd mask

ssh -t root@10.34.249.202 "ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=Spmd"
for comp in ${COMP2[@]}
do
for flavor in S${FLAVORI[@]}
do

ssh -t root@10.34.249.202 "sed -E \"s/QUEUES\=([0-9])*/QUEUES\=${VCPUS [$flavor]}/\" < /usr/bin/gemu-kvm > /
usr/bin/gemu-kvm-intermediate && mv -f /usr/bin/gemu-kvm-intermediate /usr/bin/gemu-kvm && chmod +x /usr/bin/
gemu-kvm"

nova delete iperf-vm-1 iperf-vm-2

sleep 1

nova boot --user-data /root/config.yaml --config-drive=true --flavor $flavor --image $os-iperf-4.5.4 --key-
name cloud --availability-zone S$comp --nic port-id=S$portl --nic port-id=$port3 iperf-vm-1

sleep 2

for 1 in "seq 1 15°; do
for port in ${DPDK PORTS[@]}; do
ssh -t root@10.34.249.202 "ovs-vsctl set Interface $Sport options:n rxq=${VCPUS[Sflavor]}"

done
sleep 1
done
nova boot --user-data /root/config.yaml --config-drive=true --flavor $flavor --image $os-iperf-4.5.4 --key-
name cloud --availability-zone S$comp —--nic port-id=$port2 --nic port-id=$portd iperf-vm-2
sleep 2

for 1 in “seq 1 15°; do
for port in ${DPDK PORTS[Q]}; do
ssh -t root@10.34.249.202 "ovs-vsctl set Interface $port options:n rxqg=${VCPUS[Sflavor]}"
done
sleep 1

done

enable TCP segmentation offload
ip netns exec $QROUTER ssh -t $0s@192.168.10.10 "sudo ethtool -K eth0 tx on"
enabling multi-queues inside the VM (performance optimization)

ip netns exec S$QROUTER ssh -t $0s@192.168.10.10 "sudo ethtool -L eth0 combined ${VCPUS|[S$flavor]}"

ip netns exec $QROUTER ssh -t $0s@192.168.10.11 "sudo ethtool -K ethO tx on"
ip netns exec $QROUTER ssh -t $0s@192.168.10.11 "sudo ethtool -L eth0 combined ${VCPUS[S$flavor]}"

ip netns exec $QROUTER ssh -t $0s@192.168.10.10 "sudo ip 1 s ethl up"
ip netns exec $QROUTER ssh -t $0s@192.168.10.11 "sudo ip 1 s ethl up"

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 39

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 40

6.0 TCP Speed Test in the Cloud—Performance Benchmarks

This section compares the performance of a TCP speed test platform with Intel Xeon Platinum 8180 processors as both
OpenStack controller and compute nodes, to the corresponding platform with an Intel Xeon processor E5-2680 v3 as

a controller node and an Intel Xeon processor E5-2680 v2 as a compute node. The traffic flow was between two VMs
deployed on the same OpenStack compute node. As part of performance testing, OpenStack VMs were tested with various
configurations of virtual resources, OVS-DPDK PMD threads, and iPerf3 streams.

Table 8 presents some of the scenario configurations tested on platforms with both generations of processors. Table 9
presents additional scenario configurations tested only on the platform with Intel Xeon Platinum 8180 processors, due to the
higher number of cores required.

The best throughput on the platform with the Intel Xeon processor E5-2680 v2 as the OpenStack compute node was achieved
when scenario configuration SC# 5 was used, namely:

« Four separate physical cores were assigned to four DPDK PMD threads.
o Fourvirtual CPUs per VM were used.
« Allvirtual CPUs belonged to the same NUMA node as the NIC.

The best throughput on the platform with the Intel Xeon Platinum 8180 processor as the OpenStack compute node was
achieved when scenario configuration SC# 9 was used, namely:

« Eight separate physical cores were assigned to eight DPDK PMD threads.

o Tenvirtual CPUs per VM were used.

o Allvirtual CPUs belonged to the same NUMA node as the NIC.

Scenario # vCPUs | Core Pinning Schema for PMD Threads Memory | # Queues
Configuration per VM (GB) per
VM
PMD Threads All PMD threads Intel® Xeon® | Intel® Xeon®
on different Processor Platinum
hysical ? E5-2680 v2 8180
Intel® Xeon® Intel® Xeon® physicat cores v
Processor
Processor Plathum 8180
E5-2680 v2 Processor
SC# 1 1 1 1 Yes 1 1 1
SC# 2 1 2 2 No 1 1 1
SC# 3 2 2 2 Yes 2 2 2
SC# 4 2 2 4 No 2 2 2
SC#5 4 2 4 Yes 4 8 4
SC#H6 4 2 8 No 4 4 4
SC#7 8 2 8 Yes 8 8 8

Table 8. Scenario configurations for platforms based on the Intel® Xeon® Platinum 8180 processor and the Intel®
Xeon® processor E5-2680 v2 as compute nodes.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 41

Scenario Configuration #vCPUs | Core Pinning Schema for PMD Threads Memory #Queues
per VM (GB) per
VM
PMD All PMD threads on
Threads different physical cores?
SC#8 8 16 No 8 8
SC#9 10 8 Yes 16 10
SC# 10 10 10 Yes 16 10
SCH# 11 10 20 No 16 10

Table 9. Scenario configurations for platform based on the Intel® Xeon® Platinum 8180 processor only.

6.1 Performance Benchmarks—VM to VM on a Single Host

The performance benchmarks show the performance of intra-host TCP traffic between VMs running on the same host. Use
case examples of this type of traffic are a web server communicating with a database engine hosted in the public cloud or the
TCP speed test server running in the virtualized environment in a communication service provider's datacenter. Multiple VMs
and VNFs running concurrently on the same host maximize the utilization of shared hardware and software resources.

The improved performance and large number of cores on the Intel Xeon Platinum 8180 processors mitigates the risk of traffic
bottlenecks in virtual networks and enable NFV environments to be ready for the 100 GbE network standards in the future.

Compute Node

iPerf 3*SpeedTest iPerf3*SpeedTest
Server Client

OVS-DPDK

Figure 2. Intra-host TCP traffic speed test configuration.

All the test configurations presented in Table 8 and Table 9, demonstrate much higher throughput with the Intel Xeon
Platinum 8180 processors (see Test Case 1 and Test Case 2). The next sections provide performance comparisons of several
scenario configurations.

6.1.1 Test Case 1: Network Throughput Scaling

Test case 1 uses corresponding test configurations for both compared platforms. The test results demonstrate significantly
higher throughput on platforms with the Intel Xeon Platinum 8180 processors than with the prior generation of the Intel Xeon
processor. This test case also shows how throughput scales on both platforms when resources are increased, by comparing
two scenario configurations presented in Table 8, namely SC# 3 and SC# 5.

Figure 3 shows that the average throughput on the platform with Intel Xeon Platinum 8180 processors as OpenStack
controller and compute nodes was up to 62% higher than the corresponding platform with an Intel Xeon processor E5-2680
v3 as a controller node and Intel Xeon processor E5-2680 v2 as a compute node. It also shows that TCP throughput improves
as VM resources increase; however, the platform based on the Intel Xeon Platinum 8180 processors processes TCP traffic
faster than the corresponding platform with the prior CPU generation, even when fewer virtual CPUs are used per single VM.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 42

Network Throughput Scaling
80
70
60
50
40
30

20

Average Throughput (Gbps)

10

SCH#3 SC# 5

Scenario configuration

B Platform based on the Intel® Xeon® processor E5-2680v2
M Platform based on the Intel® Xeon® Platinum 8180 processor

Figure 3. Average throughput at both platforms comparing corresponding scenario configurations.

6.1.2 Test Case 2: Comparison of Top Scenario Configurations

Test case 2 compares the best performing scenario configurations on both platforms, namely the SC# 5 scenario configuration
with the Intel Xeon processor E5-2680 v3 as an OpenStack controller node and Intel Xeon processor E5-2680 v2 as a compute
node, compared to the SC# 9 scenario configuration with Intel Xeon Platinum 8180 processors as both OpenStack controller and
compute nodes.

The large number of cores in the Intel Xeon Platinum 8180 processor enables assignment of a much higher number of virtual
cores per VM. In addition to the numerous architectural improvements and features added, the processor’s high core count can
be used to get a significant performance boost.

Figure 4 shows an average throughput gain of 232% when comparing the best scenario configurations of both platforms.
Using four virtual cores per VM on the Intel Xeon processor E5-2680 v2 platform and ten virtual cores per VM on the Intel
Xeon Platinum 8180 processor platform, the latter platform had 34.2% higher throughput per core. Specifically, the Intel Xeon
Platinum 8180 processor as an OpenStack compute node showed an average throughput of 15.1 Gbps per core, while the Intel
Xeon processor E5-2680 v2 as an OpenStack compute node averaged 11.2 Gbps per core.

Average Throughput Performance on Platforms with the Best Scenario
Configurations

=
(=2}
o

=
=
o

=
M
o

232%

=
o
o

Average Throughput (Gbps)
[=)]]
o o

N
o

N
(=]

o

M Platform based on the Intel® Xeon® processor E5-2680 v2 (SC#5)

M Platform based on the Intel® Xeon® Platinum 8180 processor (SCH 9)

Figure 4. Top Intel® Xeon® processor E5-2680 v2 performance with four PMD threads, four virtual cores per VM
vs. the Intel® Xeon® Platinum 8180 processor with eight PMD threads, ten virtual cores per VM.

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 43

7.0 Summary

The average and maximum TCP speed test throughput results showed significant performance improvements on the platform
with Intel Xeon Platinum 8180 processors as OpenStack controller node and compute nodes, over the platform with an Intel
Xeon processor E5-2680 v3 as an OpenStack controller node and an Intel Xeon processor E5-2680 v2 as a compute node.

In this scenario, both VMs were deployed on the same OpenStack compute node and at the same host. For example, the
percentage improvement for corresponding configurations (four virtual cores per VM and four PMD threads) reached 62%.
Comparing the top platform configurations, the average throughput improved by up to 232%.

The previous Solution Implementation Guide showed that for the platform with the Intel Xeon processor E5-2680 v2 as an
OpenStack compute node, an average throughput of 45 Gbps was achieved. With the new Intel Xeon Platinum 8180 processor
as an OpenStack compute node, the achievable average throughput increased up to 150 Gbps, which is a three times higher
throughput.

Even higher TCP throughput may be possible if more cores per VM are allocated to the TCP speed test. The reason for limiting
that number to ten cores per VM was to allow for additional workloads and VNFs on the same setup, as needed. The high core
count of the Intel Xeon Scalable processors, combined with architectural improvements, feature enhancements, and very
high memory bandwidth, is a huge performance and scalability advantage over previous Intel Xeon processor generations,
especially in today's NFV environments.

The Intel Xeon processor advisor tool suite available at this link, includes a “Transition Guide” that can be used for
recommended processor upgrade paths to Intel Xeon Scalable processors and the “Xeon processor advisor” tool for
performance, power and Total Cost of Ownership (TCO) calculations.

https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf
https://xeonprocessoradvisor.intel.com/exodus/login

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors

Appendix A: BIOS Settings

44

The following table presents the BIOS settings that were used to enable the best achieved performance on the TCP

speed test platform.

Menu BIOS Settings

Advanced > Power and Performance CPU Power and

Performance Policy

Enhanced Intel
SpeedStep Tech

Advanced > Power and Performance > CPU
P-State Control

Advanced > Power and Performance >
Hardware P States

Advanced > Power and Performance > CPU C
State Control

Package C-State

Advanced > Power and Performance > CPU Processor C6

C State Control
Advanced > Memory Configuration IMC Interleaving

Advanced > System Acoustic and Set Fan Profile

Performance Configuration

Appendix B: Hardware Details

Platform Commercial-off-the shelf (COTS)

Intel® Xeon® processor E5-2680 v2
server

2x Intel® Xeon® processor E5-2680 v2
CPU 2.80 GHz
10 physical cores per CPU

64 GB
RDIMM, DDR3
1600 MT/s

Memory

Management Network
NIC

Intel® Ethernet Server Adapter 1350-T4

External Network NIC Intel® Ethernet Server Adapter 1350-T4

Data (VXLAN)
Network NICs

Intel® Ethernet Server Adapter
X520-DA2

Intel® Ethernet Server Adapter

VLAN Network NIC X520-DA2

Hardware P States

Required Value BIOS Default

Performance Balanced Performance
Enabled Enabled
Disabled Native Mode

C0O/C1 state C6 (Retention) state

Disabled Enabled
2-Way Interleaving Auto
Performance Acoustic

Intel® Server Board S2600WFT

Intel® Xeon® Platinum 8180 processor
2.50 GHz
28 physical cores per CPU

384 GB
RDIMM, DDR4
2400 MT/s

Anker* AK-A7610011USB 3.0 to Gigabit Ethernet
Adapter

Intel® Ethernet Server Adapter 1350-T4

Intel® Ethernet Converged Network Adapter
X710-DA4

Intel® Ethernet Converged Network Adapter
X710-DA4

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 45

Appendix C: Abbreviations

Abbreviation Description

BIOS Basic Input/Output System

DHCP Dynamic Host Configuration Protocol
DPDK Data Plane Development Kit

IP Internet Protocol

LC Logical Core

netdev Network Device

NFV Network Functions Virtualization
NFVI NFV Infrastructure

NIC Network Interface Card

NUMA Non-Uniform Memory Architecture
oS Operating System

OVS-DPDK DPDK-Accelerated Open vSwitch
PCI Peripheral Component Interconnect
PMD Poll Mode Driver

QEMU Quick Emulator

TCP Transmission Control Protocol

TLB Transaction Lookaside Buffer

TSO TCP Segmentation Offload

VLAN Virtual Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VxLAN Virtual eXtensible LAN

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 46

Appendix D: References

#

IN

Reference

Anker* AK-A7610011 USB 3.0 to Gigabit
Ethernet Adapter

Implementing a TCP Broadband Speed
Test in the Cloud for Use in an NFV
Infrastructure Technical Brief

Intel® Server Board S2600WFT

Intel® Ethernet Converged Network Adapter
X710-DA4

Intel® Ethernet Server Adapter 1350-T4
Intel® Xeon® Platinum 8180 processor
Intel® Xeon® Scalable processors

TCP Broadband Speed Test Implementation

Guide

TCP Segmentation Offload Patch

Source

https://www.anker.com/products/A7610011

https://builders.intel.com/docs/networkbuilders/
implementing_a_TCP_broadband_speed_test_in_the_
cloud_for_use_in_an_NFV_infrastructure.pdf

http://ark.intel.com/products/89015/Intel-Server-
Board-S2600WFT

http://ark.intel.com/products/83965/Intel-Ethernet-
Converged-Network-Adapter-X710-DA4

http://ark.intel.com/products/84805/Intel-Ethernet-
Server-Adapter-1350-T4V?2

http://ark.intel.com/products/120496/Intel-Xeon-Plat-
inum-8180-Processor-38 5M-Cache-2_50-GHz

http://ark.intel.com/products/series/125191/Intel-
Xeon-Scalable-Processors

https://builders.intel.com/docs/networkbuilders/opti-
mizing_NFV_infrastructure_for_TCP_workloads.pdf

https://mail.openvswitch.org/pipermail/ovs-dev/2016-
June/316414.html

https://www.anker.com/products/A7610011
https://builders.intel.com/docs/networkbuilders/implementing_a_TCP_broadband_speed_test_in_the_cloud_for_use_in_an_NFV_infrastructure.pdf
https://builders.intel.com/docs/networkbuilders/implementing_a_TCP_broadband_speed_test_in_the_cloud_for_use_in_an_NFV_infrastructure.pdf
https://builders.intel.com/docs/networkbuilders/implementing_a_TCP_broadband_speed_test_in_the_cloud_for_use_in_an_NFV_infrastructure.pdf
http://ark.intel.com/products/89015/Intel-Server-Board-S2600WFT
http://ark.intel.com/products/89015/Intel-Server-Board-S2600WFT
http://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4
http://ark.intel.com/products/83965/Intel-Ethernet-Converged-Network-Adapter-X710-DA4
http://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2
http://ark.intel.com/products/84805/Intel-Ethernet-Server-Adapter-I350-T4V2
http://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
http://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
http://ark.intel.com/products/series/125191/Intel-Xeon-Scalable-Processors
http://ark.intel.com/products/series/125191/Intel-Xeon-Scalable-Processors
https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf
https://builders.intel.com/docs/networkbuilders/optimizing_NFV_infrastructure_for_TCP_workloads.pdf
https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-June/316414.html

Optimizing NFV Infrastructure for TCP Workloads with Intel® Xeon® Scalable Processors 47

Legal Information

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more information go to www.intel.com/benchmarks.

The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales
office or your distributor to obtain the latest specifications and before placing your product order.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or
service activation. Performance varies depending on system configuration. No computer system can be absolutely secure.
Check with your system manufacturer or retailer or learn more at intel.com.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost
Technology performance varies depending on hardware, software and overall system configuration. Check with your PC
manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/
technology/turboboost.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject

to change without notice. Results have been estimated or simulated using internal Intel analysis or architecture simulation or
modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration
may affect your actual performance.

Intel does not control or audit third-party web sites referenced in this document. You should visit the referenced web site and
confirm whether referenced data are accurate.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property
rights that relate to the presented subject matter. The furnishing of documents and other materials and information does
not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other
intellectual property rights.

Intel, the Intel logo, Xeon, and others are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

intel)

© 2017 Intel Corporation Printedin USA 336501-002US <3 Please Recycle = 1017/HM/ICMCSW/PDF002

http://www.intel.com/technology/turboboost
http://www.intel.com/technology/turboboost

	Table of Contents
	Tables
	Figures
	1.0 Introduction
	2.0 Solution Overview
	3.0 Installation Guide
	3.1 Enable Hardware Features
	3.2 Prepare Host Machines for the OpenStack Installation
	3.3 Install OpenStack
	3.4 Compute Node Configuration
	3.5 Enable the networking-ovs-dpdk Plug-In
	3.5.1 Prepare the OpenStack Nodes
	3.5.2 Clone the Required Repositories
	3.5.3 Install the OVS-DPDK

	3.6 Post-Installation Configuration

	4.0 Performance Optimizations
	4.1 Optimize the Host
	4.1.1 Isolate CPU Cores
	4.1.2 Enable 1 GB Huge Pages
	4.1.3 Enable TCP Segmentation Offload in OVS-DPDK
	4.1.4 Enable the Multiqueue Feature for vHost-user and Physical DPDK Interfaces
	4.1.5 Enable Core Pinning and NUMA Awareness in the OpenStack Compute

	4.2 Optimize the Guest
	4.2.1 Enhanced Platform Awareness (EPA) features—‘extra_specs’ Properties forOpenStack VMs
	4.2.2 Enable Multiqueue for VirtIO Interfaces
	4.2.3 Upgrade the CentOS* 7 Kernel to version 4.5.5 on the Guest

	5.0 Scripts
	5.1 DPDK and Open vSwitch Setup
	5.2 VM Setup and Performance Measurements
	5.2.1 VM Flavors and EPA Features
	5.2.2 VM Setup and Performance Benchmark Tests

	6.0 TCP Speed Test in the Cloud—Performance Benchmarks
	6.1 Performance Benchmarks—VM to VM on a Single Host
	6.1.1 Test Case 1: Network Throughput Scaling
	6.1.2 Test Case 2: Comparison of Top Scenario Configurations

	7.0 Summary
	Appendix A: BIOS Settings
	Appendix B: Hardware Details
	Appendix C: Abbreviations
	Appendix D: References
	Legal Information

