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1   Executive Summary 
A 5G base station must have the capability to decode polar codes to receive the data 
in the control channels. Polar codes introduce a new approach to the construction 
and decoding of the error correcting mechanisms that are widely used in wireless 
systems. This new approach requires a unique decoding procedure that is not 
well suited to highly parallel hardware architectures. Each control message must 
be decoded with a short latency. Highly parallel architectures sacrifice latency for 
decoding many messages concurrently to achieve high throughputs.

The codes used in the 3G and 4G control channels do not use polar codes and are 
decoded as part of the software stack in Intel® Xeon® processors, without using 
hardware accelerators. There is a strong motivation for the 5G control-channels to 
follow the same all-software scheme. A high performance polar list decoder that 
meets both the low latency and error-correction requirements has been achieved 
using Intel Xeon processors and the Intel® Advanced Vector Extensions 512 (Intel® 
AVX-512) instruction set.

Intel’s FlexRAN 5GNR reference design software has been optimized for the Intel 
Xeon processor and contains a library of polar decoders that fulfill the 3GPP 
requirements for list decoding of polar codes of all lengths. Using this reference 
design, operators can take advantage of these libraries to decode polar codes and 
reduce their overall development schedule while accelerating time to deployment for 
5G virtualized base stations.

1.1   Background

Polar codes, discovered in 2008 by Erdal Arikan, have been selected by 3GPP 
for use in the 5G Wireless Standard. Polar codes form a class of error correcting 
channel codes that are used to transform the message data into a codeword that 
is longer than the message itself. Using the extra data in the codeword, special 
hardware or software can recover the message that was transmitted from the 
received data—data that has been corrupted by noise and interference.

Techniques for decoding polar codes have been developed that demonstrate their 
superiority over the methods used in the 3G and 4G Wireless Standards. Using 
advanced techniques such as list decoding, the polar codes used for the messages 
in the control channels are able to correct errors in noisier environments, thus  
improving the sensitivity of the wireless receivers and increasing the data throughput.

The list decoding required for polar codes is a form of recursive tree search with a 
low level of exploitable parallelism that is defined by the list size. The list sizes are 
small—in the region of 8,16 or 32—and so the usefulness of massive parallelism is 
limited. However, the Intel Xeon processor with Intel AVX-512 instruction set, which 
offers vector data types of lengths 64,32,16, and 8, is an excellent match for list 
decoding and the 5G control channels can still be decoded as part of the wireless 
software stack with no additional hardware acceleration or specialized processor 
architectures.

Recursive tree search allows a very compact description of the decoder software, 
but this can hide some important issues. In particular, the decoder is best thought 
of as a bit-by-bit estimation process, and each bit depends on the previous bits. 
A massively parallel machine is not a good match for a polar code as these data 
dependencies lead to sequential decoding steps. 
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2   Document Summary
This document describes the structure and performance of a fast recursive polar list decoder implemented using the Intel 
AVX-512 instruction set. This work was motivated by the requirement to conduct control channel decoding for 5GNR in 
software, maintaining equivalence to the 3G and 4G wireless control channels.

Polar codes are implicitly recursive in their conception and structure. In turn, a recursive decoder structure is a compact way 
to describe and write code for a polar decoder. In the example described in this document, the recursion was achieved using 
templated meta-programming with the Intel® C++ Compiler.

Due to the recursive nature of successive cancellation polar decoding, there is a strong data dependency between each 
recursion. This data dependency makes Intel Xeon processors an ideal fit for performing the decoding, since they possess 
advanced features that permit the efficient execution of the code. These features include out-of-order execution, branch 
prediction, register renaming, and an efficient cache structure. In addition, the Intel AVX-512 instruction naturally enables 
SIMD (Single Instruction Multiple Data) processing of a polar list decoder.

New instructions introduced in the third generation Intel Xeon Scalable processors accelerate the list decoding even further.

By exploiting the features of the Intel Xeon processors, fast 3GPP-compliant Simplified Successive Cancellation List decoders 
have been written, ensuring that control messages in the 5GNR standard may be decoded in software as they can for 3G and 
4G. A parity-check (PC) version has also been proven for very short messages in the 3GPP 5GNR standard.

2.1   Terminology

Table 2 1: Terminology. 

Table 2 1: Reference Documents

Term Description

CRC Cyclic Redundancy Check

LLR Log Likelihood Ratio

SC Successive Cancellation

SIMD Single Instruction Multiple Data

SSC Simplified Successive Cancellation

Reference Document Document 
No./Location

[1]

A Brief Introduction to Polar Codes

Notes for Introduction to Error-Correcting Codes

Henry D. Pfister

October 8th, 2017

polar_pdf

[2] 3GPP TS 38.212v15.0.0 TS38_212_v15

[3] Intel Intrinsics Guide Intel Intrinsics Guide

[4] Fast List Decoders for Polar Codes: Sarkis, Vardy, 
Thibeault, and Gross

IEEE Journal On Selected Areas in 
Communications, vol. 34, no. 2, Feb 2016

2.2   Reference Documents
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http://pfister.ee.duke.edu/courses/ecen655/polar.pdf
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3   Simplified Successive Cancellation List Decoding using Recursion

3.1   Introduction and Code Outline

Polar List Decoding can be encoded in a compact way using recursions. The recursive approach is efficient when implemented 
on Intel Xeon processors, as they have features that are beneficial for handling data dependencies, such as out-of-order 
execution, register renaming, and branch prediction.

Even in Intel processors, it is advantageous to avoid branches and conditional code as much as possible. When a list decoder 
is initialized, it starts with an empty list of candidate partial codewords. After the first binary decision, the list contains two 
entries (the “true” and “false” decisions), and four entries after the second decision, etc. The list would grow exponentially 
without pruning to some maximum list depth. In the decoder example discussed here, the list is pruned to 8 entries.

Using Intel’s AVX-512 instruction set, the list LLRs and previous binary decisions can be stored in fixed-length vectors. It is 
advantageous, then, to arrange the decoder so that it operates on a list depth of 8 at all times with some special handling of 
the first three decisions. After these first three decisions, the decoder then runs unconditionally using Intel AVX-512 vectors to 
represent the list LLRs and list decisions.

An outline of the recursive list decoder is contained in Table 3 1. This outline is written in MATLAB®, which is the tool that was 
used for the test benching and development of the C++ code.

Table 3-1: Polar-SC-List-8 Recursion in MATLAB 

global maxListDepth;
maxListDepth = 8;
global accumMetric;
global decisionStep;

function [s, list] = recurseNodeNatural8(llr, f)
% llr = input LLRs (8-by-CODEWORD_SIZE. If the input LLRs are (1-by-CODEWORD_SIZE) then use repmat(llrs, 8, 1)
% f = array indicating frozen bits. f(n)==1 to indicate that bit#n is frozen.
% s = output msg
% l = output LLRs.
%Stop recursions at node#0 (length-1)
N = size(llr, 2);
if (N==1)
    if (f == 0)
        %-ve LLR -> 1, +ve LLR -> 0
        %Decisions with no metric growth
        st = (llr <= 0);
        %metric for correct decision
        mt = zeros(size(llr));
        %Decisions with some metric growth
        sf = (llr > 0);
        %metric for forced error
        mf = abs(llr);
        %These if-elses need to be extended for list 16, 32, etc.
        %This example is for list 8.
        %This builds up all possible decisions in the first 3 unfrozen
        %branches, to fill up the list depth of 8.
        if (decisionStep == 0)
            s = [st(1:4); sf(5:8);];
            accumMetric = accumMetric + [mt(1:4); mf(5:8);];
            decisionStep = 1;
            list = 1:maxListDepth;
        elseif (decisionStep == 1)
            s = [st(1:2); sf(3:4); st(5:6); sf(7:8);];
            accumMetric = accumMetric + [mt(1:2); mf(3:4); mt(5:6); mf(7:8);];
            decisionStep = 2;
            list = 1:maxListDepth;
        elseif (decisionStep == 2)
            s = [st(1); sf(2); st(3); sf(4); st(5); sf(6); st(7); sf(8);];
            accumMetric = accumMetric + [mt(1); mf(2); mt(3); mf(4); mt(5); mf(6); mt(7); mf(8);];
            decisionStep = 3;
            list = 1:maxListDepth;
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        else
            tmp = [accumMetric+mt; accumMetric+mf;];
            %Call the pruning function
            idx = medianMetricPrune(tmp);
            %assemble the possible symbols
            tmps = [st; sf;];
            s = tmps(idx);
            %Accumulate the metric
            accumMetric = tmp(idx);
            %Maintain a metric of zero at the top of the list
            accumMetric = accumMetric - min(accumMetric);
            %Update the list of which paths were followed.
            list = idx;
            %From the structure of tmp, entry (Z+maxListDepth) is path#Z,
            %etc.
            list(list > maxListDepth) = list(list > maxListDepth) - maxListDepth;
        end
    else
        %Frozen bit
        s = zeros(size(llr));
        %Update the metrics. The frozen bit is known to be 0 (-ve LLR)
        %so increase the metric where the LLR is +ve
        accumMetric = accumMetric + abs(llr) .* (llrs <= 0);
        %No list pruning necessary
        list = 1:maxListDepth;
    end
else
    %Compute prior-LLRs backwards (no knowledge of bits)
    idx1 = 1:N/2;
    idx2 = idx1 + N/2;
    llr1 = llr_prior(llr(:, idx1), llr(:, idx2));
    %Upper (left) branch
    [s1, list1] = recurseNodeNatural8(llr1, f(1:(N/2)), metricPruneHandle, metricHandle);
    %Got the decisions, so update LLRs based on these
    llr2 = llr_posterior(s1, llr(list1, idx1), llr(list1, idx2) );
    %lower (right) branch
    [s2, list2] = recurseNodeNatural8(llr2, f((N/2+1):end), metricPruneHandle, metricHandle);
    %These decisions go back up one node.
    list = list1(list2);
    %Modulo-2 (EXOR) addition
    s = [mod(s1(list2,:) + s2, 2) s2];
end

function z = llr_prior(w1,w2)
global maxListDepth;
for n=1:maxListDepth
    z(n,:) = sign(w1(n,:).*w2(n,:)) .* min(abs([w1(n,:); w2(n,:);]), [], 1);
end
 
function z = llr_posterior(s, w1, w2)
global maxListDepth;
for n=1:maxListDepth
    z(n,:) = (1-2*s(n,:)).*w1(n,:) + w2(n,:);
end

%Metric prune function: median threshold is equivalent to "best-N"
function idx = medianMetricPrune(metricsIn)
global maxListDepth;
%Sort for best metrics
[~, idx] = sort(metricsIn, 'ascend');
medianThresh = 0.5*(metricsIn(idx(maxListDepth)) + metricsIn(idx(maxListDepth+1)));
idx = find(metricsIn <= medianThresh, maxListDepth, 'first');
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3.2   Preparation of Inputs for Intel AVX-512 Vectorization

The code is vectorized, meaning that the LLR vector llr is of dimension 8×NLLR for list-8 decoders. Using the Intel AVX-512 
instruction set, the SIMD-8 LLR vectors will be efficiently handled using native data types.

In both the MATLAB and the C++ code, the input LLRs are repeated 8 times. This means that, in a length-4 example, the input 
LLRs are repeated in this way:

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

Each row in this table corresponds to a different list being decoded and each column corresponds to the set of LLRS for one  
message bit position. This is the initial input condition for SIMD-8/list-8 operation, and the purpose is to prepare the decoder  
inputs so that it can begin execution with list-8 style operation, allowing the C++ code to be specialized for all-list-8 processing.

3.3   C++ Code Using Recursive Template Meta-Programming

The C++ code is based on recursive meta templates. This allows the compiler to flatten code and unroll loops using the 
compile-time information provided. The basic C++ structure is replicated below in Table 3-2.

Table 3-2: Polar-SC-List-8 Recursion in C++

// Recursive Polar List Decoder Outline Code

// Recursions, with AVX512 specialization
template<unsigned NUM_LLRS>
struct PolarListRecursiveInt16
{
  // Bifurcation of the decoding tree
  static constexpr unsigned halfLlrs = NUM_LLRS / 2;
  // List handling class is returned
  static ListStructure
  Recurse(const __m128i* __restrict llrs_in, const SimdBitset<NUM_LLRS>& frozenSequence,
          BitList* __restrict message, BitList* __restrict codeword, Is16vec8& ref_metric,
          unsigned& ref_decision)
  {
    __m128i llrBuffer[halfLlrs];

    LlrPriorMinProdInt16<halfLlrs * 8>(llrs_in, llrs_in + halfLlrs, llrBuffer);

    ListStructure list1(IndexList::Default(), 0);

    if (frozenSequence.Lower().frozen())
    {
      // Call the frozen bit handling function
      list1 = FrozenNodeInt16(*llrBuffer, ref_metric);
    }
    else if (frozenSequence.Lower().unfrozen())
    {
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      // Call the un-frozen bit handling function
      list1 = UnFrozenNodeInt16(*llrBuffer, message, codeword, ref_metric, ref_decision);
      // Prune the metrics
      PruneMetricsInt32(lowerMetric, upperMetric);
    }
    else
    {
      // Recurse again down one level
      list1 = PolarListRecursiveInt16<halfLlrs, ISA>::Recurse(llrBuffer, frozenUpper, message,
        codeword, ref_metric, ref_decision);
    }

    LlrPosteriorInt16<halfLlrs * 8>(codeword, llrs_in, llrs_in + halfLlrs, list1.list, llrBuffer);

    if (frozenSequence.Upper().frozen())
    {
      // Call the frozen bit handling function
      list2 = FrozenNodeInt16(*llrBuffer, ref_metric);
    }
    else if (frozenSequence.Upper().unfrozen())
    {
      // Call the un-frozen bit handling function
      list2 = UnFrozenNodeInt16(*llrBuffer, message + list1.msg_len, codeword + halfLlrs, ref_metric,
        ref_decision);
    }
    else
    {
      // Recurse again down one level
      list2 = PolarListRecursiveInt16<halfLlrs, ISA>::Recurse(llrBuffer, frozenLower,
        message + list1.msg_len, codeword + halfLlrs, ref_metric, ref_decision);
    }
    // Done the upper & lower for this branch: Polar Transform and merge lists
    // XOR for Polar Transform of List Entries
    XorInPlaceInt16<halfLlrs * 8>(codeword, codeword + halfLlrs, list2.list);
    // Merging of Lists
    MergeInPlaceInt16(message, list2.list, list1.msg_len);
    // Total message length in this pass comes from Upper+Lower
    return ListStructure(IndexList::ReorderIndexes(list1.list, list2.list),
                         list1.msg_len + list2.msg_len);
  }
};

// Instantiations
void
Int16Decoder(const Polar::DecoderRequest *request, Polar::DecoderResponse *response)
{
  const unsigned numLlrs = (unsigned) (1 << request->order);

  // Set-Up input LLRs and Frozen Bits

  // Instantiate each Recursive Template
  switch (numLlrs)
  {
  // Could include other sizes
  case 128:
    listOut = PolarListRecursiveInt16<128 >::Recurse(simdLlrs, SimdBitset<128>(*(const __m128i*)rawFrozenBits),
      messageLists, codewordLists, accumulatedMetric, decisionStage);
    break;
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  case 256:
    listOut = PolarListRecursiveInt16<256 >::Recurse(simdLlrs, SimdBitset<256>(*(const __m256i*)rawFrozenBits),
      messageLists, codewordLists, accumulatedMetric, decisionStage);
    break;
  case 512:
    listOut = PolarListRecursiveInt16<512 >::Recurse(simdLlrs, SimdBitset<512>((const __m256i*)rawFrozenBits),
      messageLists, codewordLists, accumulatedMetric, decisionStage);
    break;
  case 1024:
    listOut = PolarListRecursiveInt16<1024 >::Recurse(simdLlrs, SimdBitset<1024>((const __m256i*)rawFrozenBits),
      messageLists, codewordLists, accumulatedMetric, decisionStage);
    break;

  default:
    throw std::runtime_error("Unhandled code word size: " + std::to_string(numLlrs));
  }
}

        if (decisionStep == 0)
            s = [st(1:4); sf(5:8);];
            accumMetric = accumMetric + [mt(1:4); mf(5:8);];
            decisionStep = 1;
            list = 1:maxListDepth;
        elseif (decisionStep == 1)

elseif (decisionStep == 1)
            s = [st(1:2); sf(3:4); st(5:6); sf(7:8);];
            accumMetric = accumMetric + [mt(1:2); mf(3:4); mt(5:6); mf(7:8);];
            decisionStep = 2;
            list = 1:maxListDepth;
        elseif (decisionStep == 2)

        elseif (decisionStep == 2)
            s = [st(1); sf(2); st(3); sf(4); st(5); sf(6); st(7); sf(8);];
            accumMetric = accumMetric + [mt(1); mf(2); mt(3); mf(4); mt(5); mf(6); mt(7); mf(8);];
            decisionStep = 3;
            list = 1:maxListDepth;
        else

3.4   List Initialization

The MATLAB code around the if (decisionStep == 0)… else lines are used to initialize the list. Briefly, the code operates 
using a list depth of 8 at all times. For the first three non-frozen bit decisions, this special handling ensures that the list is filled 
with all 8 possible bit patterns and their metrics.
So, for the first non-frozen position, the following code executes:

This fills the candidate list with the bit patterns: [st st st st sf sf sf sf], where st and sf are the “correct” and “incorrect” 
bit-decisions. The list does not yet need pruning, so the returned list seqence is [1,2,3,4,5,6,7,8].
For the second non-frozen position, the following code executes:

This fills the candidate list with the bit patterns: [st st sf sf st st sf sf]. The list does not yet need pruning, so the 
returned list seqence is [1,2,3,4,5,6,7,8].
For the third non-frozen position, the following code executes:

7
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This fills the candidate list with the bit patterns: [st sf st sf st sf st sf]. The list does not yet need pruning, so the 
returned list seqence is [1,2,3,4,5,6,7,8].
This 3-step procedure ensures that at the fourth bit decision, the list is primed with the values:

st st st st sf sf sf sf
st st sf sf st st sf sf
st sf st sf st sf st sf

    __m256i mt[4];
    mt[0] = _mm256_blend_epi32(mt_zero, mf, 0xF0);
    mt[1] = _mm256_blend_epi32(mt_zero, mf, 0xCC);
    mt[2] = _mm256_blend_epi32(mt_zero, mf, 0xAA);
    mt[3] = mt_zero;

    __m256i sT_t[4];
    sT_t[0] = _mm256_blend_epi32(sT, sF, 0xF0);
    sT_t[1] = _mm256_blend_epi32(sT, sF, 0xCC);
    sT_t[2] = _mm256_blend_epi32(sT, sF, 0xAA);
    sT_t[3] = sT;
    sT = sT_t[ref_decision];

This ensures that list pruning may commence with all eight possible 3-bit sequences as a starting point.

This procedure would need to be extended to 4 steps for list-16, etc.

Metrics are updated whenever an sf “symbol-false” value is inserted, as no metric growth occurs for a true decision, st or 
“symbol true”.
This procedure is handled efficiently using blend instructions in C++:

3.5   List Merging

In the MATLAB code, the list merging is performed in the line: list = list1(list2);
In this code, list is a length 8 vector that contains values in the range [1…8] (or [0…7] in C++). For example, if list contained the 
values [1, 1, 2, 2, 3, 4, 4, 5] then this means that the returned bit patterns were obtained from the previous recursion’s list at 
positions [1,1,2,2,3,4,4,5]. This is described in the diagram below.

Figure 3-1: List Indexing

1 1 0 1 0

1 1 0 1 1

0 1 0 1 1

0 1 0 1 0

0 1 0 1 1

0 0 0 1 1
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x x x x

x x x x

x x x x
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Initialize LLRs: Replicate By List-Depth 

LLR K -1
LLR K -1
LLR K -1
LLR K -1
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List
Depth 

List
Depth 

The MATLAB code above generates list1 for the left/upper leaves of the search tree and list2 for the right/lower branches 
of the search tree. When traversing back up the tree, these two lists must be merged. This is the purpose of the line: list = 
list1(list2);. In C++ this is handled by the function: MergeInPlaceInt16(message, list2.list, list1.msg_len);
This list merging procedure is illustrated in Figure 3-2.

This list merging procedure performs the following steps:

   • List#4 (at leaf#U4 in Figure 3-2): [1,1,2,2,3,4,4,5] 

   • List#5 (at leaf#U5 in Figure 3-2): [1,2,2,3,4,5,5,6]

   •  Combined list propagated up: list#45 = List4(list5) = [List#4(1) List#4(2) List#4(2) List#4(3) List#4(4) List#4(5) List#4(5) 
list#4(6)] = [1 1 1 2 2 3 3 4]

The bit decisions are merged in the following MATLAB line: s = [mod(s1(list2,:) + s2, 2) s2]; which is the C++ function  
XorInPlaceInt16<halfLlrs*8>(codeword, codeword + halfLlrs, list2.list);

Figure 3-2: List Merging and Initial Decision Handling
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%Metric prune function: mean threshold
function idx = integerMeanMetricPrune(metricsIn, varargin)
global maxListDepth;
 
if nargin==2
    meanDepth = varargin{1};
else
    meanDepth = [2:(2+maxListDepth)];
end
%Take the mean from position 2 to position 2+maxListDepth
%The lowest metric will always be the first one and the ones above this
%range will tend to be highly skewed. This way, the mean is closer to the
%median.
threshold = floor(mean(metricsIn(meanDepth)));
%threshold = mean(metricsIn(2:(1+maxListDepth))); This also works!
low_idx = find( metricsIn < threshold);
hi_idx = find( metricsIn >= threshold);
 
idx = [low_idx; hi_idx;];
idx = idx(1:maxListDepth);

This code returns the selected list indices that indicate which 
indices remain in the survivor list. The survivor list is, in fact, 
the value returned by this function modulo 8 (+1 for MATLAB 
indexing).

This code is represented by the function 
PruneMetricsInt32(lowerMetric, upperMetric) in C++.
These functions take the mean of the metrics from metric 
positions [2,3,4,5,6,7,8,9,10] ([1,2,3,4,5,6,7,8,9] in C++ 
indexing). A justification for this is included in Figure 3-3, 
below.

Briefly, this method partially exploits the fact that the first 
8 metrics will always be partially ordered. Values below the 
mean of these entries will likely be good candidates.

In the C++ code, it is necessary to take the array of metrics 
and iteratively search through the list to find all the values 
less than the mean and store their indexes in the survivor 
list. 3rd generation Intel® Xeon® processors, and beyond, will 
have additional Intel AVX-512 instructions that compress 
vectors. The compress instruction allows a single compare 
operation to be applied across the entire vector (i.e., is the 
element lower than the mean), returning a gap-less vector 
containing the element values that satisfied the test. 

The  _mm512_mask_compress_epi16 (__m512i src, __
mmask32 k, __m512i a) intrinsic is well suited to this, and 
details of this instruction can be found in [3].
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Figure 3-3: Justification of Mean Metric Pruning

3.6   List Pruning

Within the processing of all of the node types except Rate0 Nodes, multiple new candidates are produced for each input 
candidate. In each of these nodes, the candidates must be pruned back to the best 8 candidates (in list-8 processing).

The optimum method for doing this is to select the eight candidates with the lowest metrics. However, to do this requires a 
partial sorting and this adds an unacceptable number of instruction cycles to the decoding. 

An alternative is to use a suboptimal mean. The MATLAB code is below:
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3.7   Simplified Successive Cancellation Nodes

The C++ and MATLAB code can be modified so that the recursions stop at the node types identified in [4]. This so-called 
Simplified Successive Cancellation List decoder executes in fewer steps, as the recursions need not always progress to each 
leaf node. Instead, groups of leaf nodes may be processed in a near maximum likelihood way.
In the example below, the frozen nodes u₀…u₆  and unfrozen node u₇ match the pattern that is called a repetition node, while 
nodes u₈…u₁₅ match the pattern associated with a Single Parity Check Node.

16 LLRs Down,
16 Symbols Up

Node#0

8 LLRs Down,
8 Symbols Up 

Node#1

4 LLRs Down,
4 Symbols Up

Node#2

2 LLRs Down,
2 Symbols Up 

Node#3

2 LLRs Down,
2 Symbols Up 

Node#4:
Radix-2 Node

Radix-2
Stages

‘right’ decision: LLR = 2*atanh(∏tanh(…))
‘left’ decision: LLR = (+/-)LLR0+LLR1

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

Order-3 SPC NodeOrder-3 Repetition Node

Figure 3-4: Simplified Successive Interference Cancellation

4   BLER vs SINR Performance Results
Execution time performance can be obtained from the FlexRAN SDK Performance report. However, execution time alone does 
not validate the usefulness of the decoder for 3GPP 5NGR applications. The probability of decoding error is the key metric for 
wireless performance. The FlexRAN SDK polar list decoder has been placed within a MATLAB MEX wrapper, allowing it to be 
used in MATLAB simulations. 
The BLER performance was measured using this MATLAB model, and the probability of a block error was computed after at 
least 50 error events.
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BLER vs SINR: Intel AVX-512 SSC-List8-CRC Decoder
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4.1   Example BLER-vs-SINR Curves for the SSC-List8-CRC decoder

Figure 4-1 shows the SINR vs BLER performance of the Simplified Successive Cancellation List-8 CRC-Aided decoder, 
implemented using the Intel AVX-512 instruction set.
The selection of the codeword size, k, and the message size (excluding the 3GPP length-11 CRC), E, was taken from the 
FlexRAN SDK version 20.08 unit tests.

Figure 4 1: BLER-vs-SINR Performance of the SSC-List8-CRC Decoder (3GPP 5GNR Polar Construction)
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