
5G Technology
Radio Access Networks

1 Executive Summary
A 5G base station must have the capability to decode polar codes to receive the data
in the control channels. Polar codes introduce a new approach to the construction
and decoding of the error correcting mechanisms that are widely used in wireless
systems. This new approach requires a unique decoding procedure that is not
well suited to highly parallel hardware architectures. Each control message must
be decoded with a short latency. Highly parallel architectures sacrifice latency for
decoding many messages concurrently to achieve high throughputs.

The codes used in the 3G and 4G control channels do not use polar codes and are
decoded as part of the software stack in Intel® Xeon® processors, without using
hardware accelerators. There is a strong motivation for the 5G control-channels to
follow the same all-software scheme. A high performance polar list decoder that
meets both the low latency and error-correction requirements has been achieved
using Intel Xeon processors and the Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) instruction set.

Intel’s FlexRAN 5GNR reference design software has been optimized for the Intel
Xeon processor and contains a library of polar decoders that fulfill the 3GPP
requirements for list decoding of polar codes of all lengths. Using this reference
design, operators can take advantage of these libraries to decode polar codes and
reduce their overall development schedule while accelerating time to deployment for
5G virtualized base stations.

1.1 Background

Polar codes, discovered in 2008 by Erdal Arikan, have been selected by 3GPP
for use in the 5G Wireless Standard. Polar codes form a class of error correcting
channel codes that are used to transform the message data into a codeword that
is longer than the message itself. Using the extra data in the codeword, special
hardware or software can recover the message that was transmitted from the
received data—data that has been corrupted by noise and interference.

Techniques for decoding polar codes have been developed that demonstrate their
superiority over the methods used in the 3G and 4G Wireless Standards. Using
advanced techniques such as list decoding, the polar codes used for the messages
in the control channels are able to correct errors in noisier environments, thus
improving the sensitivity of the wireless receivers and increasing the data throughput.

The list decoding required for polar codes is a form of recursive tree search with a
low level of exploitable parallelism that is defined by the list size. The list sizes are
small—in the region of 8,16 or 32—and so the usefulness of massive parallelism is
limited. However, the Intel Xeon processor with Intel AVX-512 instruction set, which
offers vector data types of lengths 64,32,16, and 8, is an excellent match for list
decoding and the 5G control channels can still be decoded as part of the wireless
software stack with no additional hardware acceleration or specialized processor
architectures.

Recursive tree search allows a very compact description of the decoder software,
but this can hide some important issues. In particular, the decoder is best thought
of as a bit-by-bit estimation process, and each bit depends on the previous bits.
A massively parallel machine is not a good match for a polar code as these data
dependencies lead to sequential decoding steps.

Polar Decoder White Paper

Table of Contents

1 Executive Summary 1

 1.1 Background . 1

2 Document Summary 2

 2.1 Terminology 2

 2.2 Reference Documents 2

3 Simplified Successive
 Cancellation List Decoding
 using Recursion . 3

 3.1 Introduction and
 Code Outline 3

 3.2 Preparation of Inputs for Intel
 AVX-512 Vectorization 5

 3.3 C++ Code Using
 Recursive Template
 Meta-Programming 5

 3.4 List Initialization 7

 3.5 List Merging 8

 3.6 List Pruning 10

 3.7 Simplified Successive
 Cancellation Nodes 11

4 BLER vs SINR
 Performance Results 11

 4.1 Example BLER-vs-SINR
 Curves for the
 SSC-List8-CRC decoder 12

White Paper

https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html

White Paper | Polar Decoder Whitepaper

2 Document Summary
This document describes the structure and performance of a fast recursive polar list decoder implemented using the Intel
AVX-512 instruction set. This work was motivated by the requirement to conduct control channel decoding for 5GNR in
software, maintaining equivalence to the 3G and 4G wireless control channels.

Polar codes are implicitly recursive in their conception and structure. In turn, a recursive decoder structure is a compact way
to describe and write code for a polar decoder. In the example described in this document, the recursion was achieved using
templated meta-programming with the Intel® C++ Compiler.

Due to the recursive nature of successive cancellation polar decoding, there is a strong data dependency between each
recursion. This data dependency makes Intel Xeon processors an ideal fit for performing the decoding, since they possess
advanced features that permit the efficient execution of the code. These features include out-of-order execution, branch
prediction, register renaming, and an efficient cache structure. In addition, the Intel AVX-512 instruction naturally enables
SIMD (Single Instruction Multiple Data) processing of a polar list decoder.

New instructions introduced in the third generation Intel Xeon Scalable processors accelerate the list decoding even further.

By exploiting the features of the Intel Xeon processors, fast 3GPP-compliant Simplified Successive Cancellation List decoders
have been written, ensuring that control messages in the 5GNR standard may be decoded in software as they can for 3G and
4G. A parity-check (PC) version has also been proven for very short messages in the 3GPP 5GNR standard.

2.1 Terminology

Table 2 1: Terminology.

Table 2 1: Reference Documents

Term Description

CRC Cyclic Redundancy Check

LLR Log Likelihood Ratio

SC Successive Cancellation

SIMD Single Instruction Multiple Data

SSC Simplified Successive Cancellation

Reference Document Document
No./Location

[1]

A Brief Introduction to Polar Codes

Notes for Introduction to Error-Correcting Codes

Henry D. Pfister

October 8th, 2017

polar_pdf

[2] 3GPP TS 38.212v15.0.0 TS38_212_v15

[3] Intel Intrinsics Guide Intel Intrinsics Guide

[4] Fast List Decoders for Polar Codes: Sarkis, Vardy,
Thibeault, and Gross

IEEE Journal On Selected Areas in
Communications, vol. 34, no. 2, Feb 2016

2.2 Reference Documents

2

http://pfister.ee.duke.edu/courses/ecen655/polar.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3214
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

White Paper | Polar Decoder Whitepaper

3 Simplified Successive Cancellation List Decoding using Recursion

3.1 Introduction and Code Outline

Polar List Decoding can be encoded in a compact way using recursions. The recursive approach is efficient when implemented
on Intel Xeon processors, as they have features that are beneficial for handling data dependencies, such as out-of-order
execution, register renaming, and branch prediction.

Even in Intel processors, it is advantageous to avoid branches and conditional code as much as possible. When a list decoder
is initialized, it starts with an empty list of candidate partial codewords. After the first binary decision, the list contains two
entries (the “true” and “false” decisions), and four entries after the second decision, etc. The list would grow exponentially
without pruning to some maximum list depth. In the decoder example discussed here, the list is pruned to 8 entries.

Using Intel’s AVX-512 instruction set, the list LLRs and previous binary decisions can be stored in fixed-length vectors. It is
advantageous, then, to arrange the decoder so that it operates on a list depth of 8 at all times with some special handling of
the first three decisions. After these first three decisions, the decoder then runs unconditionally using Intel AVX-512 vectors to
represent the list LLRs and list decisions.

An outline of the recursive list decoder is contained in Table 3 1. This outline is written in MATLAB®, which is the tool that was
used for the test benching and development of the C++ code.

Table 3-1: Polar-SC-List-8 Recursion in MATLAB

global maxListDepth;
maxListDepth = 8;
global accumMetric;
global decisionStep;

function [s, list] = recurseNodeNatural8(llr, f)
% llr = input LLRs (8-by-CODEWORD_SIZE. If the input LLRs are (1-by-CODEWORD_SIZE) then use repmat(llrs, 8, 1)
% f = array indicating frozen bits. f(n)==1 to indicate that bit#n is frozen.
% s = output msg
% l = output LLRs.
%Stop recursions at node#0 (length-1)
N = size(llr, 2);
if (N==1)
 if (f == 0)
 %-ve LLR -> 1, +ve LLR -> 0
 %Decisions with no metric growth
 st = (llr <= 0);
 %metric for correct decision
 mt = zeros(size(llr));
 %Decisions with some metric growth
 sf = (llr > 0);
 %metric for forced error
 mf = abs(llr);
 %These if-elses need to be extended for list 16, 32, etc.
 %This example is for list 8.
 %This builds up all possible decisions in the first 3 unfrozen
 %branches, to fill up the list depth of 8.
 if (decisionStep == 0)
 s = [st(1:4); sf(5:8);];
 accumMetric = accumMetric + [mt(1:4); mf(5:8);];
 decisionStep = 1;
 list = 1:maxListDepth;
 elseif (decisionStep == 1)
 s = [st(1:2); sf(3:4); st(5:6); sf(7:8);];
 accumMetric = accumMetric + [mt(1:2); mf(3:4); mt(5:6); mf(7:8);];
 decisionStep = 2;
 list = 1:maxListDepth;
 elseif (decisionStep == 2)
 s = [st(1); sf(2); st(3); sf(4); st(5); sf(6); st(7); sf(8);];
 accumMetric = accumMetric + [mt(1); mf(2); mt(3); mf(4); mt(5); mf(6); mt(7); mf(8);];
 decisionStep = 3;
 list = 1:maxListDepth;

3

White Paper | Polar Decoder Whitepaper

 else
 tmp = [accumMetric+mt; accumMetric+mf;];
 %Call the pruning function
 idx = medianMetricPrune(tmp);
 %assemble the possible symbols
 tmps = [st; sf;];
 s = tmps(idx);
 %Accumulate the metric
 accumMetric = tmp(idx);
 %Maintain a metric of zero at the top of the list
 accumMetric = accumMetric - min(accumMetric);
 %Update the list of which paths were followed.
 list = idx;
 %From the structure of tmp, entry (Z+maxListDepth) is path#Z,
 %etc.
 list(list > maxListDepth) = list(list > maxListDepth) - maxListDepth;
 end
 else
 %Frozen bit
 s = zeros(size(llr));
 %Update the metrics. The frozen bit is known to be 0 (-ve LLR)
 %so increase the metric where the LLR is +ve
 accumMetric = accumMetric + abs(llr) .* (llrs <= 0);
 %No list pruning necessary
 list = 1:maxListDepth;
 end
else
 %Compute prior-LLRs backwards (no knowledge of bits)
 idx1 = 1:N/2;
 idx2 = idx1 + N/2;
 llr1 = llr_prior(llr(:, idx1), llr(:, idx2));
 %Upper (left) branch
 [s1, list1] = recurseNodeNatural8(llr1, f(1:(N/2)), metricPruneHandle, metricHandle);
 %Got the decisions, so update LLRs based on these
 llr2 = llr_posterior(s1, llr(list1, idx1), llr(list1, idx2));
 %lower (right) branch
 [s2, list2] = recurseNodeNatural8(llr2, f((N/2+1):end), metricPruneHandle, metricHandle);
 %These decisions go back up one node.
 list = list1(list2);
 %Modulo-2 (EXOR) addition
 s = [mod(s1(list2,:) + s2, 2) s2];
end

function z = llr_prior(w1,w2)
global maxListDepth;
for n=1:maxListDepth
 z(n,:) = sign(w1(n,:).*w2(n,:)) .* min(abs([w1(n,:); w2(n,:);]), [], 1);
end

function z = llr_posterior(s, w1, w2)
global maxListDepth;
for n=1:maxListDepth
 z(n,:) = (1-2*s(n,:)).*w1(n,:) + w2(n,:);
end

%Metric prune function: median threshold is equivalent to "best-N"
function idx = medianMetricPrune(metricsIn)
global maxListDepth;
%Sort for best metrics
[~, idx] = sort(metricsIn, 'ascend');
medianThresh = 0.5*(metricsIn(idx(maxListDepth)) + metricsIn(idx(maxListDepth+1)));
idx = find(metricsIn <= medianThresh, maxListDepth, 'first');

4

White Paper | Polar Decoder Whitepaper

3.2 Preparation of Inputs for Intel AVX-512 Vectorization

The code is vectorized, meaning that the LLR vector llr is of dimension 8×NLLR for list-8 decoders. Using the Intel AVX-512
instruction set, the SIMD-8 LLR vectors will be efficiently handled using native data types.

In both the MATLAB and the C++ code, the input LLRs are repeated 8 times. This means that, in a length-4 example, the input
LLRs are repeated in this way:

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

llr₀ llr₁ llr₂ llr₃

Each row in this table corresponds to a different list being decoded and each column corresponds to the set of LLRS for one
message bit position. This is the initial input condition for SIMD-8/list-8 operation, and the purpose is to prepare the decoder
inputs so that it can begin execution with list-8 style operation, allowing the C++ code to be specialized for all-list-8 processing.

3.3 C++ Code Using Recursive Template Meta-Programming

The C++ code is based on recursive meta templates. This allows the compiler to flatten code and unroll loops using the
compile-time information provided. The basic C++ structure is replicated below in Table 3-2.

Table 3-2: Polar-SC-List-8 Recursion in C++

// Recursive Polar List Decoder Outline Code

// Recursions, with AVX512 specialization
template<unsigned NUM_LLRS>
struct PolarListRecursiveInt16
{
 // Bifurcation of the decoding tree
 static constexpr unsigned halfLlrs = NUM_LLRS / 2;
 // List handling class is returned
 static ListStructure
 Recurse(const __m128i* __restrict llrs_in, const SimdBitset<NUM_LLRS>& frozenSequence,
 BitList* __restrict message, BitList* __restrict codeword, Is16vec8& ref_metric,
 unsigned& ref_decision)
 {
 __m128i llrBuffer[halfLlrs];

 LlrPriorMinProdInt16<halfLlrs * 8>(llrs_in, llrs_in + halfLlrs, llrBuffer);

 ListStructure list1(IndexList::Default(), 0);

 if (frozenSequence.Lower().frozen())
 {
 // Call the frozen bit handling function
 list1 = FrozenNodeInt16(*llrBuffer, ref_metric);
 }
 else if (frozenSequence.Lower().unfrozen())
 {

5

White Paper | Polar Decoder Whitepaper

 // Call the un-frozen bit handling function
 list1 = UnFrozenNodeInt16(*llrBuffer, message, codeword, ref_metric, ref_decision);
 // Prune the metrics
 PruneMetricsInt32(lowerMetric, upperMetric);
 }
 else
 {
 // Recurse again down one level
 list1 = PolarListRecursiveInt16<halfLlrs, ISA>::Recurse(llrBuffer, frozenUpper, message,
 codeword, ref_metric, ref_decision);
 }

 LlrPosteriorInt16<halfLlrs * 8>(codeword, llrs_in, llrs_in + halfLlrs, list1.list, llrBuffer);

 if (frozenSequence.Upper().frozen())
 {
 // Call the frozen bit handling function
 list2 = FrozenNodeInt16(*llrBuffer, ref_metric);
 }
 else if (frozenSequence.Upper().unfrozen())
 {
 // Call the un-frozen bit handling function
 list2 = UnFrozenNodeInt16(*llrBuffer, message + list1.msg_len, codeword + halfLlrs, ref_metric,
 ref_decision);
 }
 else
 {
 // Recurse again down one level
 list2 = PolarListRecursiveInt16<halfLlrs, ISA>::Recurse(llrBuffer, frozenLower,
 message + list1.msg_len, codeword + halfLlrs, ref_metric, ref_decision);
 }
 // Done the upper & lower for this branch: Polar Transform and merge lists
 // XOR for Polar Transform of List Entries
 XorInPlaceInt16<halfLlrs * 8>(codeword, codeword + halfLlrs, list2.list);
 // Merging of Lists
 MergeInPlaceInt16(message, list2.list, list1.msg_len);
 // Total message length in this pass comes from Upper+Lower
 return ListStructure(IndexList::ReorderIndexes(list1.list, list2.list),
 list1.msg_len + list2.msg_len);
 }
};

// Instantiations
void
Int16Decoder(const Polar::DecoderRequest *request, Polar::DecoderResponse *response)
{
 const unsigned numLlrs = (unsigned) (1 << request->order);

 // Set-Up input LLRs and Frozen Bits

 // Instantiate each Recursive Template
 switch (numLlrs)
 {
 // Could include other sizes
 case 128:
 listOut = PolarListRecursiveInt16<128 >::Recurse(simdLlrs, SimdBitset<128>(*(const __m128i*)rawFrozenBits),
 messageLists, codewordLists, accumulatedMetric, decisionStage);
 break;

6

White Paper | Polar Decoder Whitepaper

 case 256:
 listOut = PolarListRecursiveInt16<256 >::Recurse(simdLlrs, SimdBitset<256>(*(const __m256i*)rawFrozenBits),
 messageLists, codewordLists, accumulatedMetric, decisionStage);
 break;
 case 512:
 listOut = PolarListRecursiveInt16<512 >::Recurse(simdLlrs, SimdBitset<512>((const __m256i*)rawFrozenBits),
 messageLists, codewordLists, accumulatedMetric, decisionStage);
 break;
 case 1024:
 listOut = PolarListRecursiveInt16<1024 >::Recurse(simdLlrs, SimdBitset<1024>((const __m256i*)rawFrozenBits),
 messageLists, codewordLists, accumulatedMetric, decisionStage);
 break;

 default:
 throw std::runtime_error("Unhandled code word size: " + std::to_string(numLlrs));
 }
}

 if (decisionStep == 0)
 s = [st(1:4); sf(5:8);];
 accumMetric = accumMetric + [mt(1:4); mf(5:8);];
 decisionStep = 1;
 list = 1:maxListDepth;
 elseif (decisionStep == 1)

elseif (decisionStep == 1)
 s = [st(1:2); sf(3:4); st(5:6); sf(7:8);];
 accumMetric = accumMetric + [mt(1:2); mf(3:4); mt(5:6); mf(7:8);];
 decisionStep = 2;
 list = 1:maxListDepth;
 elseif (decisionStep == 2)

 elseif (decisionStep == 2)
 s = [st(1); sf(2); st(3); sf(4); st(5); sf(6); st(7); sf(8);];
 accumMetric = accumMetric + [mt(1); mf(2); mt(3); mf(4); mt(5); mf(6); mt(7); mf(8);];
 decisionStep = 3;
 list = 1:maxListDepth;
 else

3.4 List Initialization

The MATLAB code around the if (decisionStep == 0)… else lines are used to initialize the list. Briefly, the code operates
using a list depth of 8 at all times. For the first three non-frozen bit decisions, this special handling ensures that the list is filled
with all 8 possible bit patterns and their metrics.
So, for the first non-frozen position, the following code executes:

This fills the candidate list with the bit patterns: [st st st st sf sf sf sf], where st and sf are the “correct” and “incorrect”
bit-decisions. The list does not yet need pruning, so the returned list seqence is [1,2,3,4,5,6,7,8].
For the second non-frozen position, the following code executes:

This fills the candidate list with the bit patterns: [st st sf sf st st sf sf]. The list does not yet need pruning, so the
returned list seqence is [1,2,3,4,5,6,7,8].
For the third non-frozen position, the following code executes:

7

White Paper | Polar Decoder Whitepaper

This fills the candidate list with the bit patterns: [st sf st sf st sf st sf]. The list does not yet need pruning, so the
returned list seqence is [1,2,3,4,5,6,7,8].
This 3-step procedure ensures that at the fourth bit decision, the list is primed with the values:

st st st st sf sf sf sf
st st sf sf st st sf sf
st sf st sf st sf st sf

 __m256i mt[4];
 mt[0] = _mm256_blend_epi32(mt_zero, mf, 0xF0);
 mt[1] = _mm256_blend_epi32(mt_zero, mf, 0xCC);
 mt[2] = _mm256_blend_epi32(mt_zero, mf, 0xAA);
 mt[3] = mt_zero;

 __m256i sT_t[4];
 sT_t[0] = _mm256_blend_epi32(sT, sF, 0xF0);
 sT_t[1] = _mm256_blend_epi32(sT, sF, 0xCC);
 sT_t[2] = _mm256_blend_epi32(sT, sF, 0xAA);
 sT_t[3] = sT;
 sT = sT_t[ref_decision];

This ensures that list pruning may commence with all eight possible 3-bit sequences as a starting point.

This procedure would need to be extended to 4 steps for list-16, etc.

Metrics are updated whenever an sf “symbol-false” value is inserted, as no metric growth occurs for a true decision, st or
“symbol true”.
This procedure is handled efficiently using blend instructions in C++:

3.5 List Merging

In the MATLAB code, the list merging is performed in the line: list = list1(list2);
In this code, list is a length 8 vector that contains values in the range [1…8] (or [0…7] in C++). For example, if list contained the
values [1, 1, 2, 2, 3, 4, 4, 5] then this means that the returned bit patterns were obtained from the previous recursion’s list at
positions [1,1,2,2,3,4,4,5]. This is described in the diagram below.

Figure 3-1: List Indexing

1 1 0 1 0

1 1 0 1 1

0 1 0 1 1

0 1 0 1 0

0 1 0 1 1

0 0 0 1 1

0 1 1 1 0

0 1 1 1 1

0 0 1 1 0

1 1 0 1

0 1 0 1

0 0 0 1

0 1 1 1

0 0 1 1

x x x x

x x x x

x x x x

1
2
3
4
5
6
7
8

Initial List
Positions

New List
Positions

Current List Entries
(4 decisions so far)

Surviving
bit decisions

Survivors came
from list entries:
1, 1, 2, 2, 3, 4, 4, 5

1 1 0 1 0

1 1 0 1 1

0 1 0 1 1

0 1 0 1 0

0 1 0 1 1

0 0 0 1 1

0 1 1 1 0

0 1 1 1 1

0 0 1 1 0

1
2
3
4
5
6
7
8

Current List Entries
(5 decisions so far)

8

White Paper | Polar Decoder Whitepaper

U2 U3 U4F0 F1 U5 U6 U7
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

First Three Unfrozen Steps Cover all Possible 8
Lists: Accumulate Metrics

First Frozen Positions

List#0
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

List#1 List#2
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

List#3 List#4
0
0
0
0
0
0
0
0

Metrics
for’0’

0
1
2
3
4
5
6
7

List#5

Use LLRs(List#1)
for Posterior LLR

XOR {s0, s1}:
{U4(List#2) + U5, U5}

New List:
List#45-> List#4(List#5)

Use LLRs(List#45)
for Posterior LLR Propagate Up

List#67

Propagate Up
List#4567->List#45(List#67)

0
1
1
1
0
1
1
0

2
1
2
3
4
6
1
7

Paths and
Decisions
with the
Lowest
Metrics

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Metrics
for’1’

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 ...
LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 ...
LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 ...
LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 ...

LLR0 LLR1 LLR2 LLR3 LLR4 LLR5 LLR6 ...
...

Initialize LLRs: Replicate By List-Depth

LLR K -1
LLR K -1
LLR K -1
LLR K -1

LLR K -1

List
Depth

List
Depth

The MATLAB code above generates list1 for the left/upper leaves of the search tree and list2 for the right/lower branches
of the search tree. When traversing back up the tree, these two lists must be merged. This is the purpose of the line: list =
list1(list2);. In C++ this is handled by the function: MergeInPlaceInt16(message, list2.list, list1.msg_len);
This list merging procedure is illustrated in Figure 3-2.

This list merging procedure performs the following steps:

 • List#4 (at leaf#U4 in Figure 3-2): [1,1,2,2,3,4,4,5]

 • List#5 (at leaf#U5 in Figure 3-2): [1,2,2,3,4,5,5,6]

 • Combined list propagated up: list#45 = List4(list5) = [List#4(1) List#4(2) List#4(2) List#4(3) List#4(4) List#4(5) List#4(5)
list#4(6)] = [1 1 1 2 2 3 3 4]

The bit decisions are merged in the following MATLAB line: s = [mod(s1(list2,:) + s2, 2) s2]; which is the C++ function
XorInPlaceInt16<halfLlrs*8>(codeword, codeword + halfLlrs, list2.list);

Figure 3-2: List Merging and Initial Decision Handling

9

White Paper | Polar Decoder Whitepaper

%Metric prune function: mean threshold
function idx = integerMeanMetricPrune(metricsIn, varargin)
global maxListDepth;

if nargin==2
 meanDepth = varargin{1};
else
 meanDepth = [2:(2+maxListDepth)];
end
%Take the mean from position 2 to position 2+maxListDepth
%The lowest metric will always be the first one and the ones above this
%range will tend to be highly skewed. This way, the mean is closer to the
%median.
threshold = floor(mean(metricsIn(meanDepth)));
%threshold = mean(metricsIn(2:(1+maxListDepth))); This also works!
low_idx = find(metricsIn < threshold);
hi_idx = find(metricsIn >= threshold);

idx = [low_idx; hi_idx;];
idx = idx(1:maxListDepth);

This code returns the selected list indices that indicate which
indices remain in the survivor list. The survivor list is, in fact,
the value returned by this function modulo 8 (+1 for MATLAB
indexing).

This code is represented by the function
PruneMetricsInt32(lowerMetric, upperMetric) in C++.
These functions take the mean of the metrics from metric
positions [2,3,4,5,6,7,8,9,10] ([1,2,3,4,5,6,7,8,9] in C++
indexing). A justification for this is included in Figure 3-3,
below.

Briefly, this method partially exploits the fact that the first
8 metrics will always be partially ordered. Values below the
mean of these entries will likely be good candidates.

In the C++ code, it is necessary to take the array of metrics
and iteratively search through the list to find all the values
less than the mean and store their indexes in the survivor
list. 3rd generation Intel® Xeon® processors, and beyond, will
have additional Intel AVX-512 instructions that compress
vectors. The compress instruction allows a single compare
operation to be applied across the entire vector (i.e., is the
element lower than the mean), returning a gap-less vector
containing the element values that satisfied the test.

The _mm512_mask_compress_epi16 (__m512i src, __
mmask32 k, __m512i a) intrinsic is well suited to this, and
details of this instruction can be found in [3].

“true” decision: no metric growth

“false” decision: metric growth

8 metric states
after the 3rd
bit decision

1

2

3 4

5

6 7

8 9

10 11 12

14

16

18 19

21

23 24

26 27

29 30 31

13

15

17

20

22

25

28

32

8 Metrics->
Horizontal Sum

Mean over 9 entries,
captures most

low-weight metrics

16 metric states after the
4th bit decision: before pruning to 8

Usually the lowest
metric, but frozen nodes

will cause small
increments: can be

removed from the list!

1

1

2

1

2

2

3

1

2

2

2

3

3

4

0

Weights

3

Figure 3-3: Justification of Mean Metric Pruning

3.6 List Pruning

Within the processing of all of the node types except Rate0 Nodes, multiple new candidates are produced for each input
candidate. In each of these nodes, the candidates must be pruned back to the best 8 candidates (in list-8 processing).

The optimum method for doing this is to select the eight candidates with the lowest metrics. However, to do this requires a
partial sorting and this adds an unacceptable number of instruction cycles to the decoding.

An alternative is to use a suboptimal mean. The MATLAB code is below:

10

White Paper | Polar Decoder Whitepaper

3.7 Simplified Successive Cancellation Nodes

The C++ and MATLAB code can be modified so that the recursions stop at the node types identified in [4]. This so-called
Simplified Successive Cancellation List decoder executes in fewer steps, as the recursions need not always progress to each
leaf node. Instead, groups of leaf nodes may be processed in a near maximum likelihood way.
In the example below, the frozen nodes u₀…u₆ and unfrozen node u₇ match the pattern that is called a repetition node, while
nodes u₈…u₁₅ match the pattern associated with a Single Parity Check Node.

16 LLRs Down,
16 Symbols Up

Node#0

8 LLRs Down,
8 Symbols Up

Node#1

4 LLRs Down,
4 Symbols Up

Node#2

2 LLRs Down,
2 Symbols Up

Node#3

2 LLRs Down,
2 Symbols Up

Node#4:
Radix-2 Node

Radix-2
Stages

‘right’ decision: LLR = 2*atanh(∏tanh(…))
‘left’ decision: LLR = (+/-)LLR0+LLR1

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

Order-3 SPC NodeOrder-3 Repetition Node

Figure 3-4: Simplified Successive Interference Cancellation

4 BLER vs SINR Performance Results
Execution time performance can be obtained from the FlexRAN SDK Performance report. However, execution time alone does
not validate the usefulness of the decoder for 3GPP 5NGR applications. The probability of decoding error is the key metric for
wireless performance. The FlexRAN SDK polar list decoder has been placed within a MATLAB MEX wrapper, allowing it to be
used in MATLAB simulations.
The BLER performance was measured using this MATLAB model, and the probability of a block error was computed after at
least 50 error events.

11

White Paper | Polar Decoder Whitepaper

100

10-1

10-2

10-3

BLER vs SINR: Intel AVX-512 SSC-List8-CRC Decoder

-6 -4 -2 0 2

SINR in dB (QPSK)

4 6 8

k=128, E=34
k=128, E=96
k=256, E=68
k=256, E=192
k=512, E=136
k=512, E=384
k=1024, E=501

4.1 Example BLER-vs-SINR Curves for the SSC-List8-CRC decoder

Figure 4-1 shows the SINR vs BLER performance of the Simplified Successive Cancellation List-8 CRC-Aided decoder,
implemented using the Intel AVX-512 instruction set.
The selection of the codeword size, k, and the message size (excluding the 3GPP length-11 CRC), E, was taken from the
FlexRAN SDK version 20.08 unit tests.

Figure 4 1: BLER-vs-SINR Performance of the SSC-List8-CRC Decoder (3GPP 5GNR Polar Construction)

 Intel technologies may require enabled hardware, software or service activation.
 No product or component can be absolutely secure.
 Your costs and results may vary.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
 MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
 0721/BR/MESH/347214-001US

	1 Executive Summary
	Background

	2 Document Summary
	2.1 Terminology
	2.2 Reference Documents

	3 Simplified Successive Cancellation List Decoding using Recursion
	3.1 Introduction and Code Outline
	3.2 Preparation of Inputs for AVX512 Vectorisation
	3.3 C++ Code Using Recursive Template Meta-Programming
	3.4 List Initialization
	3.5 List Merging
	3.6 List Pruning
	3.7 Simplified Successive Cancellation Nodes

	4 BLER vs SINR Performance Results
	4.1 Example BLER-vs-SINR Curves for the SSC-List8-CRC decoder

