
 1

Technology Guide

Power Manager – Kubernetes Operator

Authors
Philip Brownlow

Patricia Cahill

Lukasz Danilczuk

1 Introduction
In a container orchestration engine such as Kubernetes (K8s), the allocation of CPU
resources from a pool of platforms is based solely on availability. There is no consideration for
individual capabilities such as Intel® Speed Select Technology (Intel® SST), Intel® Advanced
Vector Extensions (Intel® AVX), Intel® QuickAssist Technology (Intel® QAT), or Intel®
Advanced Encryption Standard New Instructions (Intel® AES-NI).

This document describes the Kubernetes Power Manager, a Kubernetes operator developed
using the Operator SDK, designed to expose and use Intel-specific power management
technologies in a Kubernetes environment.

Intel SST is a powerful collection of features that offers more granular control over CPU
performance and power consumption on a per-core basis. However, as a workload
orchestrator, Kubernetes is intentionally designed to provide a layer of abstraction between
the workload and such hardware capabilities. This presents a challenge to Kubernetes users
running performance-critical workloads with specific requirements that are dependent on
hardware capabilities.

The Kubernetes Power Manager bridges the gap between the container orchestration layer
and hardware features enablement, specifically Intel SST, by allowing the user to tune the
frequencies and set the priority level of the cores chosen by the Kubernetes Native CPU
Manager.

This document is intended for customers and engineers looking to optimize performance
and power efficiency on the latest Intel® Xeon® Scalable processors in the K8s cluster.

This document is part of the Network Transformation Experience Kits.

NOTE: The general information contained within this document applies to both the 3rd Gen
Intel® Xeon® Scalable processor and the Intel® Xeon® D processor. However, please note
that the performance, configurations, and feature set in this document apply specifically to
the 3rd Gen Intel® Xeon® Scalable processor and may vary for the Intel® Xeon® D processor.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Power Manager – Kubernetes Operator

 2

Table of Contents
1 Introduction .. 1

1.1 Terminology ..4
1.2 Reference Documentation ...4

2 Overview ... 5
2.1 Challenges Addressed ... 5
2.2 Use Cases .. 5
2.3 Technology Description .. 5

2.3.1 Intel Power Optimization Library ... 5
2.3.2 Node Agent .. 5

3 Kubernetes Power Manager Components ... 5
3.1 Kubernetes Power Manager Controller ... 5

3.1.1 PowerConfig Controller .. 6
3.2 Power Node Agent ... 6

3.2.1 PowerProfile Controller .. 6
3.2.2 PowerWorkload Controller ... 7
3.2.3 PowerNode Controller ... 9

3.3 Pod Controller .. 10
3.4 Power PodSpec ... 10

4 Functionality ... 13
4.1 Intel Speed Select Technology – Base Frequency (Intel SST-BF) ... 13
4.2 Intel Speed Select Technology – Core Power (Intel SST-CP) .. 13
4.3 Frequency Tuning .. 13
4.4 C-states ... 13

4.4.1 C-state Management .. 14
4.5 P-state Governor Functionality ... 14
4.6 Time of Day Functionality ... 14

4.6.1 CR Example ... 15

5 Deployments .. 15
5.1 Running the Kubernetes Power Manager ... 17

5.1.1 Apply the Manager ... 18
5.1.2 PowerConfig ... 18
5.1.3 Shared PowerProfile ... 19
5.1.4 Shared PowerWorkload ... 19
5.1.5 Performance Pod .. 20
5.1.6 Delete Pods ... 20

5.2 Extended Resources ... 21
5.3 Recommended Approach for Use with CPU Manager ... 21

6 Result ... 21
6.1 Shared Pool ... 21
6.2 Exclusive Allocated CPUs ... 21

7 Summary .. 21

Figures
Figure 1. Profile Created with Intel Power Optimization Library .. 7
Figure 2. PowerWorkload Spec Example ... 9
Figure 3. PodSpec Example Workflow .. 11
Figure 4. Execution Flow Diagram .. 12
Figure 5. P-state Drive Functionality Flowchart.. 14
Figure 6. Example Time of Day Functionality .. 15
Figure 7. CRD Example ... 15

Technology Guide | Power Manager – Kubernetes Operator

 3

Tables
Table 1. Terminology ... 4
Table 2. Reference Documents .. 4
Table 3. C-state Ranges and Core C-states .. 13

Document Revision History

Revision Date Description
001 October 2021 Initial release.

002 February 2022 Added a note regarding Intel® Xeon® D processor in the Introduction section. Updated information
regarding Base PowerProfile in Section 3.4.

003 October 2022

An updated version of the Kubernetes Power Manager v2 was released in August 2022. The latest
release introduces the newly developed Intel® Power Optimization Library as a replacement for the
previously used AppQoS suite. Also, the new release has the addition of C-state, P-state governor,
and Time of Day functionality.

Technology Guide | Power Manager – Kubernetes Operator

 4

1.1 Terminology

Table 1. Terminology

Abbreviation Description
ACPI Advanced Configuration and Power Interface

API Application Programming Interface

CR Custom Resource

CRD Custom Resource Definition

EPP Energy Performance Preference is the value that associates a core with a priority level when using Intel® Speed
Select Technology – Core Power (Intel® SST-CP).

Exclusive CPU An entire physical core dedicated exclusively to the requesting container, which means no other container has
access to the core. Assigned by the exclusive pool within CPU Manager for Kubernetes.

Exclusive Pool A group of isolated, exclusive CPUs where a container is exclusively allocated the requested number of CPUs,
meaning only that container can run on that CPU.

Intel® SST-BF Intel® Speed Select Technology – Base Frequency (Intel® SST-BF)

Intel® SST-CP Intel® Speed Select Technology – Core Power (Intel® SST-CP)

Intel® SST-TF Intel® Speed Select Technology – Turbo Frequencies (Intel® SST-TF)

K8s Kubernetes

NFV Network Function Virtualization

OVS Open vSwitch

PCU Power Control Unit

Pool CPU Manager for Kubernetes uses a Kubernetes config-map to represent the cores available on the system.
The items in this config-map are defined as pool. A pool, in this context, is a named group of CPU lists.

RBAC Role-Based Access Control

SDK Software Development Kit

Shared Pool A group of isolated, shared CPUs where a requesting container can run on any CPU in this pool with no
guaranteed exclusivity.

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
Kubernetes Power Manager Repository https://github.com/intel/kubernetes-power-manager

Red Hat: What is a Kubernetes Operator? https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-
operator

Extending Kubernetes https://kubernetes.io/docs/concepts/extend-kubernetes/

Operator Pattern https://kubernetes.io/docs/concepts/extend-kubernetes/operator

Kubebuilder https://book.kubebuilder.io/

Operator Framework https://operatorframework.io/

OperatorHub.io https://operatorhub.io/

CommsPowerManagement https://github.com/intel/CommsPowerManagement

Intel® Speed Select Technology – Base Frequency (Intel®
SST-BF) with Kubernetes Application Note

https://builders.intel.com/docs/networkbuilders/intel-speed-select-
technology-base-frequency-with-kubernetes-application-note.pdf

Kubernetes Operators – Automated Lifecycle Management
Technology Guide

https://networkbuilders.intel.com/solutionslibrary/kubernetes-operators-
automated-lifecycle-management-technology-guide

Intel® Power Optimization Library https://github.com/intel/power-optimization-library

Power Management – Technology Overview Technology
Guide

https://builders.intel.com/docs/networkbuilders/power-management-
technology-overview-technology-guide.pdf

https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://book.kubebuilder.io/
https://operatorframework.io/
https://operatorhub.io/
https://github.com/intel/CommsPowerManagement
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-with-kubernetes-application-note.pdf
https://networkbuilders.intel.com/solutionslibrary/kubernetes-operators-automated-lifecycle-management-technology-guide
https://networkbuilders.intel.com/solutionslibrary/kubernetes-operators-automated-lifecycle-management-technology-guide
https://github.com/intel/power-optimization-library
https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/power-management-technology-overview-technology-guide.pdf

Technology Guide | Power Manager – Kubernetes Operator

 5

2 Overview
2.1 Challenges Addressed

Today’s diverse range of workloads with varying usage and performance demands has outgrown standard CPU capabilities. This
presents a challenge to Kubernetes’s users running performance-critical workloads with specific requirements dependent on
hardware capabilities. The Kubernetes Power Manager, as a workload orchestrator, is intentionally designed to provide a layer of
abstraction between the workload and such hardware capabilities.

2.2 Use Cases

Among the use cases that the Kubernetes Power Manager addresses the following are just a few:
 NFV infrastructure containers such as Open vSwitch (OVS)

Ensure priority CPUs (i.e., CPUs that can operate at a guaranteed higher frequency) are used for packet processing activity.
 Frequency bound workloads such as software-based crypto

Software-based crypto applications require high frequency cores to ensure predictable performance. Dynamic CPU
frequency tuning can help ensure that these workloads meet performance SLAs.

 Data center power consumption optimization
Scale up and down CPU frequencies and power usage based on workload demand, dynamically accommodating usage
spikes and lulls due to varying demand over time. The user may want to preschedule nodes to move to a performance
PowerProfile during peak times to minimize spin up. At times during off-peak, the user may also want to move to a power-
saving PowerProfile.

 Unpredictable machine use
May use machine learning through monitoring to determine PowerProfiles that predict a peak need for compute, to spin up
ahead of time.

 Power optimization over performance
A cloud-based system may be interested in fast response time, but not in maximal response time, so may choose to spin up
cores on demand, and only those cores, but want to remain in power-saving mode the rest of the time.

2.3 Technology Description

The Kubernetes Power Manager follows the Kubernetes operator pattern that is now commonplace for system configuration
and application deployment in the K8s ecosystem. For a general overview of the operator pattern in K8s, refer to Kubernetes
Operators – Automated Lifecycle Management Technology Guide.

2.3.1 Intel Power Optimization Library

The Intel Power Optimization Library is an open-source library that takes the desired configuration of the user to tune the
frequencies and set the priority level of the cores.

The Intel Power Optimization Library takes the desired configuration for the cores associated with Exclusive Pods and tunes
them based on the requested Power Profile. The Intel Power Optimization Library also facilitates the use of the Intel SST suite
(Intel SST-BF, Intel SST-CP, and Intel SST-TF). The Intel Power Optimization Library also facilitates C-state enablement,
allowing the user to have more granular control over “sleep state” in the system.

2.3.2 Node Agent

The node agent is a containerized application deployed by the Kubernetes Power Manager in a DaemonSet. The primary
function of the node agent is to communicate with the node’s Kubelet PodResources endpoint to discover the exact CPUs that
are allocated per container. The node agent watches for pods that are created in the cluster, examines them to determine which
PowerProfile they have requested, and then sets off the chain of events that tunes the frequencies of the cores designated to
the pod.

3 Kubernetes Power Manager Components
The Kubernetes Power Manager has two main components, the Overarching Operator and the Power Node Agent.

The Overarching Operator is responsible for the configuration and deployment of the Power Node Agent, while the Power Node
Agent is responsible for the tuning of the cores as requested by the user by communicating with the Intel Power Optimization
Library.

3.1 Kubernetes Power Manager Controller

It is the function of the Kubernetes Power Manager controller to compare the desired state of the cluster and its actual state. If
the desired state and the actual state do not match, it is the job of the controller to act and amend the problem.

https://networkbuilders.intel.com/solutionslibrary/kubernetes-operators-automated-lifecycle-management-technology-guide
https://networkbuilders.intel.com/solutionslibrary/kubernetes-operators-automated-lifecycle-management-technology-guide
https://github.com/intel/CommsPowerManagement/tree/073f27100a86190ff4258684a99f6b331a209ceb

Technology Guide | Power Manager – Kubernetes Operator

 6

3.1.1 PowerConfig Controller

The PowerConfig Controller waits for the PowerConfig to be created by the user, in which the desired PowerProfiles are
specified. The PowerConfig holds different values: What nodes the user wants to place the node agent on, and what
PowerProfiles are required.
 powerNodeSelector: A key/value map used to define a list of node labels that a node must satisfy for the operator’s node

agent to be deployed.
 powerProfiles: The list of PowerProfiles that the user wants available on the nodes.

After the PowerConfig Controller sees that the PowerConfig is created, it reads the values and then deploys the Power Node
Agent onto each of the nodes that are specified using a DaemonSet. Then it creates the PowerProfiles and Extended Resources.
Extended Resources are resources created in the cluster that can be requested in the PodSpec. The Kubelet keeps track of
these requests. Extended Resources are important to use as they can specify how many cores on the system can be run at a
higher frequency before hitting the heat threshold.

The PowerConfig status represents the nodes that match the powerNodeSelector and, as such, have the Power Node Agent
deployed.

The following is a PowerConfig example. Only one PowerConfig object is permitted per cluster. The PowerConfig Controller
does not allow a second configuration to be applied.

apiVersion: power.intel.com/v1
kind: PowerConfig
metadata:
 name: power-config
 namespace: intel-power
spec:
 powerNodeSelector:
 # Add labels here for the Nodes you want the PowerNodeAgent to be applied to
 feature.node.kubernetes.io/power-node: "true"
 powerProfiles:
 # Add wanted PowerProfiles here; valid entries are as follows:
 # performance
 # balance-performance
 # balance-power
 - "performance"

3.2 Power Node Agent

The Power Node Agent is deployed to each of the nodes requested by the user in the PowerConfig. Each pod contains a
container to host the Power Node Agent controllers.

The Power Node Agent holds the following components: PowerProfile Controller, PowerWorkload Controller, PowerNode
Controller, and Pod Controller

3.2.1 PowerProfile Controller

The PowerProfile custom resource (CR) holds values for specific Intel SST settings that are then applied to CPUs at host level
by the operator as requested. PowerProfiles are advertised as Extended Resources and can be requested via the PodSpec. A
PowerProfile is created in the cluster, which the PowerProfile controller uses to create an instance of in the Intel Power
Optimization Library in the form of a Profile. Three default PowerProfiles can be created via the PowerConfig: "performance,"
"balance-performance," and "balance-power." These PowerProfiles are not given a Max or Min value. Instead, those values are
calculated by the PowerProfile controller upon creation, which means the values vary across nodes in a cluster. A user may also
create a PowerProfile, but the Max and Min values must be provided, and they also must not be outside of the CPU's capacity.
The following show PowerProfile examples. A PowerProfile is requested via the PodSpec.

PowerProfile
apiVersion: power.intel.com/v1
kind: PowerProfile
metadata:
 name: example-power-profile
 Namespace: intel-power
spec:
 name: "example-power-profile"
 maxFrequency: 2800
 minFrequency: 2600
 epp: "performance"

Technology Guide | Power Manager – Kubernetes Operator

 7

Shared PowerProfile (created by user)
apiVersion: power.intel.com/v1
kind: PowerProfile
metadata:
 name: shared
 Namespace: intel-power
spec:
 name: "shared"
 maxFrequency: 1100
 minFrequency: 1100
 epp: "power"

The following figure shows an example of a PowerProfile workflow, from creation at the cluster level to the PowerProfile
controller creating a profile in the Intel Power Optimization Library.

Figure 1. Profile Created with Intel Power Optimization Library

3.2.2 PowerWorkload Controller

The PowerWorkload is the object used to define the lists of CPUs configured with a particular PowerProfile. A PowerWorkload is
created for each PowerProfile on each Node with the Power Node Agent deployed.

PowerWorkload objects are created automatically by the PowerProfile Controller. This action is undertaken by the Power Node
Agent when a PowerProfile is created.

A PowerWorkload is represented in the Intel Power Optimization Library by a Pool. The Pools hold the values of the PowerProfile
used, their frequencies, and the CPUs that need to be configured. The creation of the Pool – and any additions to the Pool – then
carries out the changes.

PowerWorkload objects also can be created directly by the user via the PowerWorkload spec. The user creates a
PowerWorkload in the instance of a shared PowerWorkload.

3.2.2.1 PowerWorkload Created Directly by User

PowerWorkload objects can be created directly by the user via the PowerWorkload spec. This is only recommended for
configuring the Native CPU Manager’s shared pool.

It is not recommended to directly configure PowerWorkloads with specific nodes and CPU IDs. Instead, directly configuring
PowerWorkloads should be done by using the powerNodeSelector and reservedCPUs options, as shown in the following
example.

Technology Guide | Power Manager – Kubernetes Operator

 8

apiVersion: power.intel.com/v1
kind: PowerWorkload
metadata:
 # Replace <NODE_NAME> with the Node you intend this PowerWorkload to be associated with
 name: shared-<NODE_NAME>-workload
 namespace: intel-power
spec:
 # Replace <NODE_NAME> with the Node you intend this PowerWorkload to be associated with
 name: "shared-<NODE_NAME>-workload"
 # The ‘allCores: true’ option signifies to the PowerWorkload Controller that this is a
 # Shared PowerWorkload
 allCores: true
 reservedCPUs:
 # IMPORTANT: The CPUs in reservedCPUs should match the value of the reserved system CPUs in
your Kubelet config file
 - 0
 powerNodeSelector:
 # The label must be as below, as this workload will be specific to the Node
 kubernetes.io/hostname: <NODE_NAME>
 # Replace this value with the intended shared PowerProfile
 powerProfile: "shared"

This PowerWorkload assigns the shared PowerProfile to all CPUs in the Native CPU Manager’s shared pool (minus those
specified in the reservedCPUs field) on nodes that match the powerNodeSelector labels.

The reservedCPUs option is used to represent the list of CPUs that have been reserved by the Kubelet. With this option the user
only needs to configure CPUs that are exclusively allocatable (i.e., shared pool – reserved CPUs) to containers with a given
PowerProfile. This allows the reserved CPUs to continue with default settings, exempt from any PowerProfile.

If powerNodeSelector is specified and a node list is also specified, powerNodeSelector takes precedence and the specified
nodes list is redundant.

Note: A PowerWorkload can satisfy only one node in the user’s cluster, so when specifying labels for the powerNodeSelector
you should be as specific as possible. For example, use the kubernetes.io/hostname=<NODE_NAME> label, as this can
be matched only by a single node. If a shared PowerProfile is to be used by multiple nodes in the cluster, a separate
PowerWorkload should be created for each node using the same PowerProfile.

The following example workload assigns the performance PowerProfile to cores 5, 6 on node1 and cores 10, 12 on node2.

Technology Guide | Power Manager – Kubernetes Operator

 9

Figure 2. PowerWorkload Spec Example

3.2.3 PowerNode Controller

A PowerNode is created for each node in the cluster that matches the powerNodeSelector labels in the PowerConfig object.
The purpose of this object is to allow the user to view which PowerProfiles are being used, what cores are being used, and the
containers to which they are assigned. The two shared pools can be the default pool or the shared pool. If there is no shared
PowerWorkload associated with the node, then the default pool holds all the cores in the cluster’s ‘shared pool’, none of which
will have their frequencies tuned to a lower value. If a shared PowerWorkload is associated with the node, then the cores in the
shared pool are those in the cluster’s ‘shared pool’ – excluding cores reserved for Kubernetes processes (reservedCPUs).

Each PowerNode object is named according to its corresponding node.

Use the following command to list all PowerNodes on the cluster.
kubectl get powernodes -A

Use the following command to display a specific PowerNode, such as the example above.
kubectl describe powernode worker-node-1 –n intel-power

The following example displays the PowerNode for worker-node-1.
name: worker-node-1
namespace: intel-power
apiVersion: power.intel.com/v1
kind: PowerNode
spec:
 nodeName: worker-node-1

 Power Profiles:
 shared: 1000000 || 1000000 || power
 performance: 3000000 || 2800000 || performance
 balance-performance: 2450000 || 2250000 || balance_performance
 balance-power: 1900000 || 1700000 || balance_power
 Shared Pool: shared || 1000000 || 1000000 || 1-86

Unaffected Cores: 0 The following example shows a PowerWorkload.

Name: performance-<NODE_NAME>
Namespace: intel-power
API Version: power.intel.com/v1
Kind: PowerWorkload
 Manager: nodeagent
Spec:
 Name: performance-<NODE_NAME>

Technology Guide | Power Manager – Kubernetes Operator

 10

 Power Profile: performance
 Workload Nodes:
 Containers:
 Exclusive Cpus:
 1
 2
 3
 4
 49
 50
 51
 52
 Id: containerd://XXX.XXXXX.XXXXX
 Name: example-performance-container
 Pod: example-performance-pod
 Power Profile: performance
 Exclusive Cpus:
 1
 2
 3
 4
 49
 50
 51
 52
 Id: containerd://XXX.XXXX.XXXXX
 Name: example-performance-container
 Pod: example-performance-pod
 Power Profile: performance
 Cpu Ids:
 1
 2
 3
 4
 49
 50
 51
 52
 Name: <NODE_NAME>

3.3 Pod Controller

The Pod Controller watches for pods. When a pod comes along, the Pod Controller checks if the pod is in the Guaranteed Quality
of Service class (using exclusive cores), in which case it takes a core out of the shared pool. It is the only option in Kubernetes
that can do this operation. Then it examines the pod’s containers to determine which PowerProfile has been requested and
creates or updates the appropriate PowerWorkload.

Note: The pod’s requests and the limits must have a matching number of cores and PowerProfiles. Only one PowerProfile can
be used in a single pod. If two are selected, the pod is created but no frequency tuning occurs.

3.4 Power PodSpec

Figure 3 shows that four CPUs are being requested with a performance PowerProfile attached.

Technology Guide | Power Manager – Kubernetes Operator

 11

Figure 3. PodSpec Example Workflow

Figure 4 illustrates the execution workflow.

Technology Guide | Power Manager – Kubernetes Operator

 12

Figure 4. Execution Flow Diagram

The following describes each workflow step in Figure 4.
 The PowerConfig Controller sees that the user created PowerConfig CRD and determines the desired nodes for the

Kubernetes Power Manager.

 The PowerConfig Controller updates the node status for each of these nodes in the Kubernetes API.

 The PowerConfig Controller publishes the PodSpec to the Kubernetes API for the Power Node Agent.

 The Kubelet creates the pods for the agent on the desired nodes.

 The PowerConfig Controller creates the PowerProfile CRDs that were requested in the PowerConfig Controller.

 The PowerProfile Controller sees the created PowerProfile CRDs and creates the corresponding Profile in the Intel
Power Optimization Library, along with a PowerWorkload for that specific Node.

 The user creates a shared PowerProfile along with a shared PowerWorkload for the nodes in the cluster. The
PowerWorkload Controller recognizes this workload as shared and tunes the cores in the shared pool of each
appropriate node.

 The user deploys a pod that requests a PowerProfile.

 The Pod Controller sees this pod, determines the PowerProfile it wants to use, then updates the corresponding
PowerWorkload CRD in the Kubernetes API.

 The PowerWorkload Controller sees the updated PowerWorkload CRD and updates the corresponding pool object in
the Intel Power Optimization Library on the appropriate node.

 The Intel Power Optimization Library tunes the frequency of the required cores on its nodes.

Technology Guide | Power Manager – Kubernetes Operator

 13

4 Functionality
In-depth information about the following features is in the Experience Kits on Intel Network Builder: Network Transformation
Experience Kits, Container Experience Kits, and 3rd Gen Intel® Xeon® Scalable processors Experience Kits.

4.1 Intel Speed Select Technology – Base Frequency (Intel SST-BF)

Intel SST-BF can control the base frequency of certain cores. The base frequency is designed for a guaranteed level of
performance on the CPU (a CPU never goes below its base frequency). Priority cores can be set to a higher base frequency than
a majority of the other cores on the system to which the user can apply their critical workload for a more guaranteed
performance.1

4.2 Intel Speed Select Technology – Core Power (Intel SST-CP)

Intel SST-CP can group cores into levels of priority. When there is power to spare on the system, it can be distributed among the
cores based on their priority level. There are four levels of priority available:
 Performance
 Balance Performance
 Balance Power
 Power

The priority level for a core is defined using its energy performance preference (EPP) value, which is one of the options in the
PowerProfile CRD. If not all of the power is used on the CPU, the CPU can put the higher priority cores up to turbo frequency,
which allows the CPUs to run faster.

4.3 Frequency Tuning

Frequency tuning allows the individual cores on the system to be sped up or slowed down by changing their frequency. This
tuning is done via the Intel Power Optimization Library. The min and max values for a core are defined in the PowerProfile CRD,
and the tuning is done after the core has been assigned by the Native CPU Manager. The frequency of a core is changed by
writing the new frequency value to the /sys/devices/system/cpu/cpuN/cpufreq/scaling_max|min_freq file for the
given core.

4.4 C-states

C-states are power states that a CPU can use to reduce power consumption on a per-core level, or on a CPU package level, by
powering down portions of the core, package, or both. Disabling portions of the core allows for large power savings but prevents
the core from executing instructions.

Table 3. C-state Ranges and Core C-states

C-state Description
C0 Operating State

C1 Halt

C1E Enhanced Halt

C2 Stop Grant

C2E Extended Stop Grant

C3 Deep Sleep

C4 Deeper Sleep

C4E/C5 Enhanced Deeper Sleep

C6 Deep Power Down

 C0 is the active state where instructions are executed. No instructions are executed in other Core C-states.
 C-states range from C0 to Cn. C0 indicates an active state. All other C-states (C1-Cn) represent idle sleep states where the

processor clock is inactive (cannot execute instructions) and different parts of the processor are powered down. As the C-
states get deeper, the exit latency duration becomes longer (the time to transition to C0) and the power savings becomes
greater.

 Lower C-states (C6 being the lowest) are power optimized, resulting in greater power savings and higher exit latency.
 If a core reaches C6, the L1 and L2 Caches are flushed to L3 Cache and data may need to be reloaded into cache after the

core exits the power-optimized state.

1 For workloads and configurations visit Performance Index. Results may vary.

https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/intel-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/intel-technologies/container-experience-kits
https://networkbuilders.intel.com/intel-technologies/3rd-gen-intel-xeon-scalable-processors-experience-kits
http://www.intel.com/PerformanceIndex

Technology Guide | Power Manager – Kubernetes Operator

 14

4.4.1 C-state Management

Hardware: In certain configurations, the Power Control Unit (PCU) in the CPU is responsible for autonomously coordinating
core and package C-states while BIOS configuration allows you to limit the C-states available to the platform, ensuring it never
goes below your required C-state. Alternatively, intel_idle and the Linux scheduler govern C-states.

Operating System: Core C-states are controlled by the OS as defined by the ACPI Specification. The OS can tell the threads in a
core to go to a particular C-state using the MWAIT and MONITOR instructions. In supported CPUs, application software can use
the waitpkg instructions to request power-optimized states C0.1 and C0.2.

4.5 P-state Governor Functionality

The P-state governor feature allows the user to check if the P-state driver is enabled on the system. If the P-state driver is
enabled while using the Kubernetes Power Manger, users may select a P-state governor per core, which are described as
"performance" and "powersave" governors in the Power Profiles.
 Performance governor - The CPUfreq governor "performance" sets the CPU statically to the highest frequency within the

borders of scaling_min_freq and scaling_max_freq.
 Powersave governor - The CPUfreq governor "powersave" sets the CPU statically to the lowest frequency within the

borders of scaling_min_freq and scaling_max_freq.

The flow diagram in Figure 5 indicates the steps that a user invokes to use the P-state driver functionality on a system.

The user first checks that the P-state driver is available on the system. If available, the user then has the option to select the
desired governor, either “Powersave” or “Performance”.

Figure 5. P-state Drive Functionality Flowchart

4.6 Time of Day Functionality

Time of Day is designed to allow the user to select a specific time of day that they can put all their unused CPUs into “sleep” state
and then another time to return to “active” state.

Technology Guide | Power Manager – Kubernetes Operator

 15

Figure 6. Example Time of Day Functionality

4.6.1 CR Example

The CR example in Figure 7 is called peak-time. In this configuration, it is possible to configure the sleep and active time for the
namespace. The outcome of this CR is that the system puts the cores into active state on weekdays at 7:00 AM and into a sleep
state at 7:00 PM.

Figure 7. CRD Example

5 Deployments
The Kubernetes Power Manager is responsible for the following tasks.2
 Deploying the Power Node agent DaemonSets
 Managing all associated custom resources
 Discovering and advertising PowerProfile extended resources
 Setting up the Kubernetes Power Manager

Use the following steps to set up the Kubernetes Power Manager.
1. Clone Kubernetes Power Manager from https://github.com/intel/kubernetes-power-manager.
2. CD into kubernetes-power-manager.
3. Apply the namespace and the role-based access control (RBAC) rules for the operator.

Run the command: kubectl apply –f config/rbac/namespace.yaml

This command creates the namespace for the Kubernetes Power Manager.
apiVersion: v1

2 For workloads and configurations visit Performance Index. Results may vary.

https://github.com/intel/kubernetes-power-manager
https://github.com/intel/kubernetes-power-manager
http://www.intel.com/PerformanceIndex

Technology Guide | Power Manager – Kubernetes Operator

 16

kind: Namespace
metadata:
 labels:
 control-plane: controller-manager
 name: intel-power

4. Run the command: kubectl apply –f config/rbac/rbac.yaml

This creates the following RBAC rules for the Kubernetes Power Manager service account.
apiVersion: v1
kind: ServiceAccount
metadata:
 name: intel-power-operator
 namespace: intel-power

apiVersion: v1
kind: ServiceAccount
metadata:
 name: intel-power-node-agent
 namespace: intel-power

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: operator-custom-resource-definitions-role
 namespace: intel-power
rules:
- apiGroups: ["", "power.intel.com", "apps", "coordination.k8s.io"]
 resources: ["powerconfigs", "powerconfigs/status", "powerprofiles", "powerprofiles/status",
"events", "daemonsets", "configmaps", "configmaps/status", "leases"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: operator-custom-resource-definitions-role-binding
 namespace: intel-power
subjects:
- kind: ServiceAccount
 name: intel-power-operator
 namespace: intel-power
roleRef:
 kind: Role
 name: operator-custom-resource-definitions-role
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: operator-nodes
rules:
- apiGroups: ["", "power.intel.com", "apps"]

Technology Guide | Power Manager – Kubernetes Operator

 17

 resources: ["nodes", "nodes/status", "configmaps", "configmaps/status", "powerconfigs",
"powerconfigs/status", "powerprofiles", "powerprofiles/status", "powerworkloads",
"powerworkloads/status", "powernodes", "powernodes/status", "events", "daemonsets"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: operator-nodes-binding
subjects:
- kind: ServiceAccount
 name: intel-power-operator
 namespace: intel-power
roleRef:
 kind: ClusterRole
 name: operator-nodes
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: node-agent-cluster-resources
rules:
- apiGroups: ["", "power.intel.com"]
 resources: ["nodes", "nodes/status", "pods", "pods/status", "powerprofiles",
"powerprofiles/status", "powerworkloads", "powerworkloads/status", "powernodes",
"powernodes/status", "cstates", "cstates/status"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: node-agent-cluster-resources-binding
subjects:
- kind: ServiceAccount
 name: intel-power-node-agent
 namespace: intel-power
roleRef:
 kind: ClusterRole
 name: node-agent-cluster-resources
 apiGroup: rbac.authorization.k8s.io

The above commands allow a pod to run with all the CRDs as a service account. They allow the service account to read

configmaps and update the status.
5. Generate the CRD templates, create the Custom Resource Definitions, and install the CRDs:

make

Note: Docker images will be pulled from Intel’s public Docker Hub and are labeled intel/power-operator:tag and
intel/power-node-agent:tag.

5.1 Running the Kubernetes Power Manager

The following describes how to set up and deploy the Kubernetes Power Manager.

Technology Guide | Power Manager – Kubernetes Operator

 18

5.1.1 Apply the Manager

Run the command: kubectl apply -f config/manager/manager.yaml

The following code creates the controller-manager-xxxx-xxxx pod.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: controller-manager
 namespace: intel-power
 labels:
 control-plane: controller-manager
spec:
 selector:
 matchLabels:
 control-plane: controller-manager
 replicas: 1
 template:
 metadata:
 labels:
 control-plane: controller-manager
 spec:
 serviceAccountName: intel-power-operator
 containers:
 - command:
 - /manager
 args:
 - --enable-leader-election
 imagePullPolicy: Always
 image: intel/power-operator:TAG
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [“ALL”]
 name: manager
 resources:
 limits:
 cpu: 100m
 memory: 30Mi
 requests:
 cpu: 100m
 memory: 20Mi
 volumeMounts:
 - mountPath: /sys/fs
 name: cgroup
 mountPropagation: HostToContainer
 readOnly: true
 terminationGracePeriodSeconds: 10
 volumes:
 - name: cgroup
 hostPath:
 path: /sys/fs

5.1.2 PowerConfig

Run the command: kubectl apply -f examples/powerconfig.yaml

This command runs the following code and creates the power-node-agent DaemonSet that manages the Power Node Agent
pods.

apiVersion: power.intel.com/v1
kind: PowerConfig
metadata:
 name: power-config
 namespace: intel-power
spec:
 powerNodeSelector:
 # Add labels here for the Nodes you want the PowerNodeAgent to be applied to
 feature.node.kubernetes.io/power-node: "true"
 powerProfiles:

Technology Guide | Power Manager – Kubernetes Operator

 19

 # Add wanted PowerProfiles here; valid entries are as follows:
 # performance
 # balance-performance
 # balance-power
 - "performance"
 - "balance-performance"

After PowerConfig is deployed, the controller-manager pod sees it via the PowerConfig Controller and creates a Node Agent
instance on nodes specified with the feature.node.kubernetes.io/power-node: "true” label.

5.1.3 Shared PowerProfile

The example shared PowerProfile in examples/example-shared-profile.yaml contains the following PowerProfile spec.3
apiVersion: power.intel.com/v1
kind: PowerProfile
metadata:
 name: shared
 Namespace: intel-power
spec:
 name: "shared"
 max: 1000
 min: 1000
 epp: "power"

Run the following to apply the PowerProfile.
kubectl apply -f examples/example-shared-profile.yaml

For the PowerProfile controller to recognize a PowerProfile as Shared, its epp value must be set to power.

5.1.4 Shared PowerWorkload

The example shared PowerWorkload in examples/example-shared-workload.yaml contains the following PowerWorkload
spec.

Run the command: kubectl apply -f examples/example-shared-workload.yaml

This command runs the following code.

Note: Replace all placeholder values with your corresponding cluster values.

apiVersion: power.intel.com/v1alpha1
kind: PowerWorkload
metadata:
 name: shared- <NODE_NAME>- workload
 Namespace: intel-power
spec:
 name: "shared- <NODE_NAME>- workload"
 allCores: true
 reservedCPUs:
 - 0
 - 1
 powerNodeSelector:
 kubernetes.io/hostname: <NODE_NAME>
 powerProfile: "shared"

The shared workload is the only workload that must be manually created. The shared PowerWorkload created by the user is
determined by the PowerWorkload controller to be the designated shared based on the value of allCores in the spec. The
reserved CPUs on the node must also be specified, as these are not considered for frequency tuning by the controller since they
are always being used by Kubernetes’ processes. It is important that the value of reservedCPUs directly corresponds to the
value of reservedCPUs in the user’s Kubelet config to keep them consistent. The user determines the node for this
PowerWorkload using the PowerNodeSelector to match the labels on the node. The user then specifies the requested
PowerProfile to use.

After the shared workload is created, the PowerWorkload controller creates the corresponding pool in the Intel Power
Optimization Library. Then all cores on the system except for the reservedCPUs are brought down to this lower frequency level.

3 For workloads and configurations visit Performance Index. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Power Manager – Kubernetes Operator

 20

A shared PowerWorkload that does not begin with shared- is rejected and deleted by the PowerWorkload controller. The
shared PowerWorkload powerNodeSelector must also select a unique node, so it is recommended that the
kubernetes.io/hostname label be used. A shared PowerProfile can be used for multiple shared PowerWorkloads.

If a shared PowerWorkload is created while another shared PowerWorkload exists on that specific Node, the newly created
shared PowerWorkload will be rejected and deleted by the PowerWorkload controller. The shared PowerWorkload’s
powerNodeSelector must also be a unique Node, and it is recommended that you use the kubernetes.io/hostname in its
configuration. A single shared PowerProfile can be used for multiple Shared PowerWorkloads.

5.1.5 Performance Pod

The example pod in examples/example-pod.yaml contains the following PodSpec:
apiVersion: v1
kind: Pod
metadata:
 name: example-power-pod
spec:
 containers:
 - name: example-power-container
 image: ubuntu
 command: ["/bin/sh"]
 args: ["-c", "sleep 15000"]
 resources:
 requests:
 memory: "200Mi"
 cpu: "4"
 # Replace <POWER_PROFILE> with the PowerProfile you wish to request
 # IMPORTANT: The number of requested PowerProfiles must match the number of requested CPUs
 # IMPORTANT: If they do not match, the Pod will be successfully scheduled, but the
PowerWorkload for the Pod will not be created
 power.intel.com/<POWER_PROFILE>: "4"
 limits:
 memory: "200Mi"
 cpu: "4"
 # Replace <POWER_PROFILE> with the PowerProfile you wish to request
 # IMPORTANT: The number of requested PowerProfiles must match the number of requested CPUs
 # IMPORTANT: If they do not match, the Pod will be successfully scheduled, but the
PowerWorkload for the Pod will not be created
 power.intel.com/<POWER_PROFILE>: "4"

Replace the placeholder values with the PowerProfile you require and apply the PodSpec:
kubectl apply -f examples/example-pod.yaml

At this point, if only the performance PowerProfile was selected in the PowerConfig, the user’s cluster contains three
PowerProfiles and two PowerWorkloads.

kubectl get powerprofiles –n intel-power

Example result:
NAME AGE
performance 59m
performance-<NODE_NAME> 58m
shared-<NODE_NAME> 60m

kubectl get powerworkloads –n intel-power

Example result:
NAME AGE
performance-<NODE_NAME>-workload 63m
shared-<NODE_NAME>-workload 61m

5.1.6 Delete Pods

Run the following to check for pods and delete them.
kubectl get pods
kubectl delete pods <name>

The PowerWorkload associated with the pod is deleted. If other pods are using it, it is updated and not deleted.

The Intel Power Optimization Library instance pool for the associated workload is also deleted. The cores that were returned
from that pool are returned to the shared frequencies.

Technology Guide | Power Manager – Kubernetes Operator

 21

5.2 Extended Resources

PowerProfiles are advertised as extended resources on all nodes that match the PowerConfig.PowerNodeSelector labels.

The extended resources give the Kubelet control over the number of PowerProfiles a given frequency level can have, making
sure that the board is not overcommitted with higher frequency cores that could potentially overheat it.

The number of extended resources is determined by the name of the PowerProfile, of which there can be four. Each
PowerProfile can have a percentage of the overall number of cores on the node, as follows.

• Performance – 40%
• Balance-performance – 60%
• Balance-power – 80%
• Power – 100%

For example, an Intel SST-capable node with a capacity of 72 CPU resources advertises 28 sst.intel.com/performance
resources (72 x 40% = 28):

Capacity:
 cpu: 72
 power.intel.com/performance: 28
Allocatable:
 cpu: 70
 power.intel.com/performance: 28

This is an example of a node’s resources, requestable via the PodSpec’s container resource requests.

It is essential that you request CPU and sst.intel.com/performance resources in equal amounts.

5.3 Recommended Approach for Use with CPU Manager
It is recommended that nodes to be governed by the Kubernetes Power Manager (i.e., nodes that match the
powerNodeSelector labels in the PowerConfig) be designated exclusively to containers that require CPUs with optimized Intel
SST settings.

After these nodes are labeled and tainted as such, the operator can work harmoniously with the node’s CPU Manager to (a)
configure the shared pool with a power-saving PowerProfile, and (b) configure exclusively allocated CPUs with performance-
enhancing PowerProfiles as requested.

Intel SST capabilities must be enabled on the node for Kubernetes to expose the capabilities. Without it enabled, PowerProfiles
in the Kubernetes Power Manager cannot function correctly.

6 Result
6.1 Shared Pool

The reserved CPUs on all intel.power.node nodes continue to run with the default configuration and are not impacted by any
PowerProfile. The allocatable CPUs (shared pool – reserved CPUs) on all intel.power.node nodes are configured with the
standard performance PowerProfile.4

6.2 Exclusive Allocated CPUs
The high performance pod is scheduled to a designated intel.power.node node. The high-performance pod’s container is
allocated three exclusive CPUs by the CPU Manager. The Kubernetes Power Manager configures these three CPUs with the
settings of the high-performance PowerProfile.

7 Summary
Kubernetes operators are used extensively within the open-source community. The Kubernetes Power Manager uses Intel-
specific power management technologies. This reduces the number of CPUs active on a system at any given time, which then
reduces the power consumption. By reducing power consumption, the user helps the environment and reduces operating and
overhead costs.

This benefits a user greatly when the time affects the load on their server, ramping the frequencies of cores down during off-
peak hours and powering them up when high-priority workloads are scheduled. This can also be hugely beneficial for NFV

4 For workloads and configurations visit Performance Index. Results may vary.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#example-use-cases
http://www.intel.com/PerformanceIndex

Technology Guide | Power Manager – Kubernetes Operator

 22

infrastructure containers, for example Open vSwitch as it ensures that the high-priority containers running the packet
processing activities run on cores that are configured for optimal frequencies, guaranteeing a level of performance.

Performance varies by use, configuration and other factors. Learn more at Performance Index.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 1022/DN/WIPRO/PDF 647910-003US

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Challenges Addressed
	2.2 Use Cases
	2.3 Technology Description
	2.3.1 Intel Power Optimization Library
	2.3.2 Node Agent

	3 Kubernetes Power Manager Components
	3.1 Kubernetes Power Manager Controller
	3.1.1 PowerConfig Controller

	3.2 Power Node Agent
	3.2.1 PowerProfile Controller
	3.2.2 PowerWorkload Controller
	3.2.2.1 PowerWorkload Created Directly by User

	3.2.3 PowerNode Controller

	3.3 Pod Controller
	3.4 Power PodSpec

	4 Functionality
	4.1 Intel Speed Select Technology – Base Frequency (Intel SST-BF)
	4.2 Intel Speed Select Technology – Core Power (Intel SST-CP)
	4.3 Frequency Tuning
	4.4 C-states
	4.4.1 C-state Management

	4.5 P-state Governor Functionality
	4.6 Time of Day Functionality
	4.6.1 CR Example

	5 Deployments
	5.1 Running the Kubernetes Power Manager
	5.1.1 Apply the Manager
	5.1.2 PowerConfig
	5.1.3 Shared PowerProfile
	5.1.4 Shared PowerWorkload
	5.1.5 Performance Pod
	5.1.6 Delete Pods

	5.2 Extended Resources
	5.3 Recommended Approach for Use with CPU Manager

	6 Result
	6.1 Shared Pool
	6.2 Exclusive Allocated CPUs

	7 Summary

