
1. Introduction
The mobile network operator represents a paradigm shift and delivers increased
revenues to service-oriented businesses in the managed 5G B2B services sector.
Part of this shift includes cloud-native network function (CNF), a new approach
to building complex networking solutions based on the principles of cloud-native
computing and microservices. These CNFs, running as private clouds inside
telecommunications premises, can benefit from the same technology applied to
public clouds.

One such emerging technology is confidential computing which addresses
concerns about the confidentiality and alterability of data and applications.
Confidential computing addresses threats such as malicious system administrators
or other insiders at the cloud service provider (CSP), attackers exploiting
vulnerabilities in the underlying cloud fabric, or other third parties accessing data
without the data owner’s consent.

This paper examines the performance impact of confidential computing on the
SKT 5G MEC using Intel® SGX technology, a feature available on SGX Enclave Page
Cache (EPC) models of 3rd generation Intel® Xeon® Scalable processors.

Key Object of Test

This document describes the results of testing the SKT 5G MEC software running
on Intel® architecture server boards, including benchmarking data and instructions
on how to replicate the tests. Telecom equipment manufacturers (TEMs) and
independent software vendors (ISVs) can use the implementation guidelines from
this work to optimize and further develop confidential computing solutions for
high-performance production services.

The test objectives were:

• Compare the performance of an SGX-enabled encrypted Redis container with the
original Redis container.

• Show use cases for privacy-preserving machine learning (PPML) to protect
privacy-sensitive user data, and a trained model that uses the SGX-enabled
Analytic Zoo E2E platform with ML/DL analytic frameworks.

• Validate interoperability between SGX and multiple application containers on
SKT 5G MEC.

1.1 Confidential Computing Overview
Confidential computing integrates a stack of hardware and software in a way
that mitigates some of this risk. At the base of that stack is the trusted execution
environment (TEE), also called an enclave. It is where data and code are isolated
and shielded from other software, including the operating system and the
cloud service stack. The hardware ensures that code and data cannot be viewed
or modified from outside of the TEE. Even with privileged root access, an
authorization code is required to access data or run code in the TEE.

Reference Architecture for Confidential
Computing on SKT 5G MEC

Communications Service Providers
5G Multi-Access Edge Computing

Table of Contents
1. Introduction .1
	 1.1	Confidential
 Computing Overview 1
 1.2 Overview of SKT 5G MEC 2.0 . . .2
 1.3 Key Technology 3
 1.3.1 Intel Software
 Guard Extension 3
 1.3.2 Graphene 4
 1.3.3 Analytics Zoo/
 BigDL PPML4
 1.3.4 Intel 3rd Gen Xeon
 Scalable Platform SKUs
 for Enclave Page Cache 5
2. Test Setup .5
 2.1 Device Under
 Test	Configuration 5
 2.2 Test Procedure9
 2.2.1 Redis-SGX Performance9
 2.2.2 PPML SGX Performance9
 2.2.3 SGX Integration
 with SKT 5G MEC Platform9
3. Test Result . 10
 3.1 Redis-SGX Performance 10
 3.2 PPML-SGX Performance 12
 3.3 SGX Integration with
 SKT MEC Platform 12
4. Summary . 13
5. Resources . 13
6. Glossary of Terms 13
7. Authors . 14

White Paper

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

2

This protection is accomplished through a combination of
physically encrypting a portion of memory and changing
the memory access control so that previously privileged
software (OS, hypervisor, etc.) can no longer access the data
or application code within it. Developers can use libraries and
extensions such as Intel® Software Guard Extensions (Intel®
SGX) to create applications which use these enclaves.

The mobile network operator can provide developers an
existing container application (new or existing) and run
it securely on MEC through SGX-supported confidential
nodes. Support, such as commercial confidential computing
services, confidential containers, and virtual machines, can
protect data integrity and confidentiality with hardware-
based assurances in these use cases:

• block chain, secret storage, ML-inferencing IoT,
and data integrity

• privacy-preserving machine learning and federated learning

Figure 1. SKT 5G MEC 2.0 architecture

1.2 Overview of SKT 5G MEC 2.0
Mobile edge computing (MEC) is a network architecture
concept that enables cloud computing capabilities and
an IT service environment at the edge of the mobile
telecommunication network. MEC allows applications to
run and perform related processing tasks closer to the
mobile end user. By doing so, MEC can serve as a platform
that provides services requiring low latency among the
representative use cases of 5G, such as AR/VR, cloud-
based gaming, and smart transportation. MEC platform is
designed to be implemented at cellular base stations or other
mobile edge locations and enables agile deployment of new
applications and services for customers.

SK Telecom first developed the MEC platform in 2019
based on ETSI-compliant architecture. Since then, the MEC
platform continues to evolve with the goal of being customer
friendly, cloud-native, and easy to deploy. The name of the
current MEC Platform is SKT MEC 2.0, composed as shown in
Figure 1. below.

Biz. Console

Host

MEC Orchestrator

MEPM (EdgeStack) CI/CD

MEC RouterVirtualization Infrastructure

VM
MEC
API

VM

Managed K8S Cluster
VM

MEC
API

VM
VM

MEC
API

VM

mm1 API

mm3 APIRest API Rest API

m
m

5 A
P

I/R
est A

P
I

K
8

S
 A

P
I

H
/W

 M
onitoring A

P
I

Openflow/OVSDB

autom
ation

Cluster API

Admin Portal

Compute NetworkStorage

Pully Edgetron

MECFKubevirt-CNI

OP Portal

Biz Portal

Fulfillment Mgr

Ansible

Performance Mgr

Helm Chart

Platform Mgr

Alarm Mgr

Docker Registry

Package MgrElastic Search Maria DB

KubernetesKubevirt

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

3

SKT MEC platform provides 1) MEC infrastructure function that provides a cloud computing environment; 2) the function to
connect and manage traffic between the 5G network and the MEC infrastructure; 3) the function to provide a MEC API; 4) the
function to manage infrastructure, resources, applications, and services; 5) customer-facing portal; and 6) A function that
discovers the MEC site closest to the end user (see Table 1.).

Table 1: SKT 5G MEC 2.0 Functionality

Component Main functionalities

1) MEPM (Edgestack)

• VM, Container, Managed K8S life cycle management

• High-performance, security-enhanced cloud networking

• VMware, public CSP infrastructure interworking

2) MEC Router

• Multi-access (LTE, 5G, WiFi) traffic control and management

• GTP traffic encapsulation/decapsulation

• Traffic offloading rule, load balancing, NAT, etc.

• Providing per-application statistics, billing, and QoS information

3) MEC-as-a-Service
• SKT-specific MEC API: bearer-as-a-service, radio network information, location, security, etc.

• Cloud-native IaaS/PaaS/SaaS: volume storage, load balancer, application monitoring, etc.

4) MEC Orchestrator

• Multi MEC site operation, management, and monitoring (FCAPS)

• Public CSP resource management

• Operational portal

5) Biz. Console

• MEC IaaS/PaaS/SaaS product offering

• Customer-facing service portal and marketplace

• Global MEC federation

6) MEC Director
• A function that discovers the MEC site closest to the end user

• Management of additional services to distinguish MEC users

1.3 Key Technology

1.3.1 Intel Software Guard Extension

Intel Software Guard Extensions (Intel SGX) is a set of
instructions that increases the security of application code
and data. Developers can partition security-sensitive code
and data into an “SGX Enclave” that is executed in a CPU-
protected region.

Intel SGX offers the following enclave protections from
known hardware and software attacks:

• OS or hypervisor, Intel management engine (ME),
BIOS,firmware, drivers, System management module (Ring
2) can not read, access enclave.

• Enclave memory cannot be read or written from outside
the enclave regardless of the current privilege level and
CPU mode.

• Production enclaves cannot be debugged by software or
hardware debuggers.

• The enclave environment cannot be entered through
classic function calls, jumps, register manipulation, or stack
manipulation. The only way to call an enclave function is
through a new instruction that performs several protection
checks.

• Enclave memory is encrypted using industry-standard
encryption algorithms with replay protection. Tapping
the memory or connecting the DRAM modules to another
system will yield only encrypted data.

• The memory encryption key randomly changes every power
cycle. The key is stored within the CPU and is not accessible.

• Data isolated within enclaves can only be accessed by code
that shares the enclave.

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

4

Figure 2 shows that the attack surface can be largely reduced
after applying Intel SGX.

1.3.2 Graphene

Graphene is a lightweight library OS designed to run a single
application with minimal host requirements. Figure 3 is
a functional diagram of the Graphene library running
with Intel SGX support (Graphene-SGX). Graphene can
run applications in an isolated environment with benefits
comparable to running a complete OS in a virtual machine,
including guest customization, ease of porting to different
operating systems, and process migration. Graphene
supports native, unmodified Linux binaries on any platform.
Currently, Graphene runs on Linux and Intel SGX enclaves on
Linux platforms. In untrusted cloud and edge deployments,
there is a strong desire to shield the whole application from
the rest of the infrastructure. Graphene supports this “lift
and shift” paradigm for bringing unmodified applications into
Confidential Computing with Intel SGX. Graphene can protect
applications from a malicious system stack with minimal
porting effort. It is easy to port the Graphene solution to a
new OS or platform.

 Graphene-SGX turns an unmodified application into an
enclave application with these features:

• Application-specific signature authenticates all binaries

• Syscalls are implemented inside enclaves

• Untrusted OS inputs are narrowed, redefined, and checked
for validity

When enclaved applications communicate with untrusted
services, they must perform OCalls as shown above in
Figure 3. For example, network and file system OCalls must
copy network packets and files to or from the enclave.
This involves several sources of overhead that need to

Figure 2. Intel SGX Security Model Figure 3. Intel SGX -Graphene Library OS

Linux System Call
API Functions

Host ABI
Functions

SGX OCalls

System Calls
User

Kernel

SGX Enclave
SECURE ENCLAVES

OPERATING SYSTEM

VIRTUAL MACHINE MANAGER

HARDWARE

APPX XAPP

INTEL® SGX

Redis Excutable

Shared Libs(glibc)

Untrusted PAL

Host OS (Linux)

Library OS

Trusted Platform Adaptation Layer

be resolved. So for that, Exitless(Switchless) feature that
require additional CPU core on modern SGX-enabled Intel
processors can reduce overhead challenge and, recommend
to use Exitless only for single threaded applications like a
redis. Latency can be prioritized over throughput by using
core pinning with taskset, by isolating cores with isolcpus, or
by disabling interrupts on cores via nohz_full.

1.3.3 Analytics Zoo/BigDL PPML

Analytics Zoo/BigDL, as shown in Figure 4 below, is a unified
data analytics and AI platform for distributed TensorFlow,
Keras, PyTorch, and Apache Spark/Flink and Ray. With
Analytics Zoo/BigDL, the analytics frameworks (such as
Spark, Flink, Ray), ML/DL frameworks (such as TensorFlow,
PyTorch, OpenVINO etc.) and Python libraries (such as
NumPy, Pandas, etc.) can run as integrated pieces in the
LibOS (e.g, Graphene) in a protected manner. Analytics Zoo/
BigDL also provides security features such as secure data
access, secure gradient, and parameter management, which
helps enable more privacy-preserving machine learning use
cases such as federated learning.

With the Analytics Zoo/BigDL PPML platform, users can
build a secure, end-to-end, distributed inference service
pipeline, as shown in Figure 5. The inference service pipeline
is constructed with Analytics Zoo/BigDL Cluster Serving,
which is a lightweight distributed, real-time serving solution
that supports a wide range of deep learning models (such
as TensorFlow, PyTorch, Caffe, BigDL and OpenVINOTM
models). As shown below, Analytics Zoo/BigDL Cluster
Serving components include a web front end, Redis, an
inference engine (e.g., TensorFlow or OpenVINOTM), and
distributed streaming frameworks (e.g., Apache Flink). The
inference engine, streaming frameworks, web front end and
Redis run on top of Graphene and inside Intel SGX enclaves,
meanwhile web front end and Redis are also TLS-protected
or encrypted, protecting the user data and model in the
inference pipeline when in-store, in-transit or in-use.

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

5

Analytics Zoo/BigDL

Figure 4. Analytics Zoo/BigDL PPML

Figure 5. Analytics Zoo/BigDL PPML – Trusted Cluster Serving with SGX

ML / DL Frameworks
(TensorFlow, PyTorch, OpenVINO)

Python Libs
(NumPy, Pandas)

Analytics Frameworks
(Spark, Flink, Ray)

Secure Data Access
Secure alignment / Secure

aggregation
Secure gradient & parameter sync

End-to-end Big Data + AI Pipelines

Intel® SGX Trusted Execution Environment

LibOS

FSI HLS Cloud OthersApplications

Frameworks

Security
Technology

Analytics Zoo/BigDL
E2E Platform

1.3.4 Intel 3rd Gen Xeon Scalable Platform SKUs for
Enclave Page Cache

The 3rd Gen Intel® Xeon® Scalable Platform (SP) SKUs listed
below set the maximum Enclave Page Cache (EPC) sizes as
shown below. The BIOS configures the desired EPC size in
powers of 2 (e.g., 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, etc.) up to the
maximum capacity setting. Non-EPC memory space must be
equal or larger than allocated EPC space.

• Platinum 83XX (2S) SKU Max EPC (Enclave Page Cache) =
512 GB + 512 GB= 1 TB Total

• Gold 63XX (2S) SKU Max EPC (Enclave Page Cache) = 64 GB
+ 64 GB = 128 GB Total

• Silver 43XX (2S) SKU Max EPC (Enclave Page Cache) = 8 GB
+ 8 GB = 16 GB Total

2. Test Setup

2.1 Device Under Test Configuration
Table 2. shows the overall hardware and software
composition of the device under test (DUT) and the
application container configuration. It was configured to
use SGX for each Redis test pod (Redis, memtier), PPML test
pod (Flink JobManager, Flink TaskManager, JobMaster) by
installing the SGX device plugin as a Kubernetes daemon
set. SGX can then be discovered from nodes through node-
feature-discovery (NFD). The SGX device plugin daemon set
will be deployed to the nodes where SGX is discovered as
separate namespaces. The SGX enclave was configured to
use 256 GB total (128 GB + 128 GB) when the BIOS Processor
Reserved Memory (PRM) was set up. The kernel was built
with the configuration shown in Table 2.

intel
SGX

intel
SGX

user inputs

Cluster Serving

model
response

intel
SGX

redis Flink

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

6

Table 2: DUT Configuration

Category Description

Processor

Product Intel® Xeon® Gold 8352S Processor

Frequency 2.2 to 3.4 GHz

Cores per processor 32 cores, 64 hyper-threads

Memory

DIMM slots per processor 8 channels per processor

Capacity 512 GB DRAM (32 GB x16 DIMM)

Memory speed 3200 MHz (MT/s), DDR4

SGX EPC 256 GB, 128 GB per socket

Network Number of ports 2-port X550-T

Storage Vendor
1x Intel S4610 960 GB SSD

INTEL_SSDSC2KG96

2RU server Vendor Intel M50CYP WHITLEY

Host OS Vendor/version Ubuntu 20.04 LTS with Linux 5.13.4 x86_6

BIOS Vendor/version

Intel Corporation

Version: SE5C6200.86B.0022.D64.2105220049

Release Date: 05/22/2021

Microcode Vendor/version
Intel Corporation

microcode: 0xd0002b1

Kubernetes Vendor/version Opensource, v1.22.1 (client & server)

SGX device plugin Vendor/version
Intel, v0.21.0

https://github.com/intel/intel-device-plugins-for-kubernetes.git

Redis test pod Vendor/version Opensource, Redis v=6.0.5 on Ubuntu 18.04 LTS

Library OS Vendor/version
Opensource, Graphene v1.2-rc1

https://github.com/oscarlab/graphene.git

PPML test pod Vendor/version

Oracle Java 1.8.0_192

Opensource

Python 3.6.9

Redis 6.0.5

Apache Flink 1.11.3

Analytics Zoo/BigDL 0.12 snapshot

OpenVINO 2020.3.2

https://github.com/gramineproject/graphene

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

7

Kernel

Graphene-
ExitlessGrapheneGraphene

PAL
(Loader)

PAL
(Loader)

PAL
(Loader)

SGX Enclave

SGX-Exitless

SGX Enclave

SGX

DB Exposed!

Direct

DB Protected!

DB/CLI Exposed!

Origin

Redis CLI

Figures 6 and 7 show the overall structure of the system
architecture and Redis encryption with SGX to validate
various SGX-enabled confidential computing services on
top of SKT MEC. In order to isolate any inconsistency that
occurred in each of the test results, separate CPU cores were
assigned to each Redis and PPML pod.

Figure 6. Systems Architectures

Figure 7. Redis Encryption with SGX

A Redis container was used to measure SGX overhead by
GET/SET OPS (operations per second) results through the
memtier benchmark tool. Two vCPUs each with 2 GB memory
were assigned for Redis Origin and Redis Direct. Two vCPUs
each with 2 GB memory and SGX EPC were allocated for the
SGX and SGX-exitless containers. Four memtier containers
were deployed to make a corresponding Redis pair as shown
below. Two vCPUs each with 1 GB memory were assigned to
each memtier pod as well (see Listing 1).

Redis
Origin

Redis
SGX

Member
Direct

RedisRedis
Direct

Member
Origin

Redis Test Pods AZ PPML Pods

Member
SGX

Flink JM Flink TM
(Analytics-Zoo)

Kubernetes

Ubuntu 20.04 LTS

Intel M50CYP ICX 8352S

redis redis redis redis

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

8

Listing 1: Redis PoD Configuration

intel@icx-sdp4:~/multi_Redis$ kubectl get pods
NAME READY STATUS RESTARTS AGE
memtier-5b99b5958d-25gxg 1/1 Running 0 2d3h
memtier-5b99b5958d-5k27x 1/1 Running 0 2d3h
memtier-5b99b5958d-5rm5s 1/1 Running 0 2d3h
memtier-5b99b5958d-ql6f2 1/1 Running 0 2d3h
redis-direct-66756f8575-xltfj 1/1 Running 0 2d3h
redis-exitless-5b8cdc6595-drrwg 1/1 Running 0 2d3h
redis-origin-54d8bcfb48-vvn29 1/1 Running 0 2d3h
redis-sgx-5d754547bb-wdkqn 1/1 Running 0 2d3h

intel@icx-sdp4:~/multi_Redis$ kubectl get pods redis-origin-54d8bcfb48-vvn29 --output=yaml
apiVersion: v1
-
spec:
 containers:
 - image: Redis_sgx:0.1
 imagePullPolicy: Never
 name: direct
 resources:
 limits:
 cpu: "2"
 memory: 2Gi
 requests:
 cpu: "2"
 memory: 2Gi

intel@icx-sdp4:~/multi_Redis$ kubectl get pod redis-exitless-5b8cdc6595-drrwg --output=yaml
-
spec:
 containers:
 - image: Redis_sgx:0.1
 imagePullPolicy: Never
 name: exitless
 resources:
 limits:
 cpu: "2"
 memory: 1Gi
 sgx.intel.com/enclave: "1"
 sgx.intel.com/epc: 2Gi
 requests:
 cpu: "2"
 memory: 1Gi
 sgx.intel.com/enclave: "1"
 sgx.intel.com/epc: 2Gi

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

9

Listing 2: PPML PoD Configuration

intel@icx-sdp4:~$ kubectl get pods

NAME READY STATUS RESTARTS AGE

flink-jobmanager-57884b6577-c6npv 1/1 Running 0 18h

flink-taskmanager-0 1/1 Running 0 21h

flink-taskmanager-1 1/1 Running 0 21h

flink-taskmanager-2 1/1 Running 0 21h

flink-taskmanager-3 1/1 Running 0 21h

flink-taskmanager-4 1/1 Running 0 21h

flink-taskmanager-5 1/1 Running 0 21h

flink-taskmanager-6 1/1 Running 0 21h

flink-taskmanager-7 1/1 Running 0 21h

master-deployment-78f7479cf5-jwjpt 1/1 Running 0 8d

2.2 Test Procedure

2.2.1 Redis-SGX Performance

To demonstrate the benefit of Intel SGX, we tested Redis
container performance with DB key encryption. The
performance tests used the memtier benchmark tool
with automation provided by Intel-developed scripts that
automatically start the memtier benchmark tools. The
following Redis pod was measured to compare performance.

• Average operations per millisecond of an instantiated
Redis-SGX container:

 memtier-5b99b5958d-25gxg to Redis-origin-54d8bcfb48-
vvn29 (10.245.3.15)

 memtier-5b99b5958d-5k27x to Redis-direct-66756f8575-
xltfj (10.245.3.16)

 memtier-5b99b5958d-5rm5s to sgx-5d754547bb-wdkqn
(10.245.3.17)

 memtier-5b99b5958d-ql6f2 to Redis-exitless-5b8cdc6595-
drrwg (10.245.3.18)

• The memtier benchmark tool configuration was set to a data
size of 2048 bytes, 4:1 GET/SET ratio with Gaussian key-
pattern, and 32 connections per thread. The results were
measured as a SKT SLA condition as shown below, 10 times
iteration (warm) and the average resulting OPS was chosen
as a result.

 memtier_benchmark options: --ratio=1:4 -d 2048 --key-
pattern=G:G --key-minimum=1 --key-maximum=50001
--threads=1 --pipeline=1 -c 32 --hide-histogram --test-
time=100

• To test SGX encryption functionality, the Redis set key was
sent by Redis-cli. Key/value means that redis DB key/value
paires to test encyption and 10ea key/value was used from
test00/intel00 to test09/intel09. The process was then
dumped by gcore for process PID then saved as a core_
dump.PID (binary file), (using gcore -o core_dump PID). If
the DB is in an SGX enclave, its key value will not be printed.
If it is not in enclave, it will be printed on the screen.

2.2.2 PPML SGX Performance

The performance of PPML cluster serving is measured by
end-to-end throughput (images per second from image
enqueue to inference result dequeue), taking the average of
15 rounds with 10000 images per round. The benchmark
script used a client Python API of cluster serving to enqueue
test images and dequeue inference results. The test workload
is a Resnet50 model inference with the OpenVINO engine.
Batch size is 32 per instance, and 256 in total. To further
improve E2E PPML cluster serving performance with
Graphene-SGX, exitless mode is enabled for Redis.

2.2.3 SGX Integration with SKT 5G MEC Platform

To see interoperability between SGX and SKT Edge Stack,
an SGX-Redis test container was instantiated through the
SKT MEC Orchestrator. The instantiation status was then
monitored whether it worked and optimized.

The major components for PPML are one Flink JobManager pod, multiple Flink TaskManager pods, and one JobMaster pod.
The Redis server/client also resides in a JobMaster pod. A Flink JobManager pod is allocated with two vCPUs each with 16 GB
memory and 16 GB SGX EPC. Each Flink TaskManager pod is allocated with 8 vCPUs, each with 16 GB memory and 16 GB SGX
EPC. A JobMaster pod is allocated with 12 vCPUs each with 16 GB memory and 16 GB SGX EPC. The pod configurations are
listed in Listing 2 and Figure 6.

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

10

3. Test Result

3.1 Redis-SGX Performance
For the Redis performance comparison, the tests measured overall average throughput in operations per second of every
container of Origin, Direct, SGX, and SGX exitless that utilized two vCPUs on the same physical core. Each performance was
compared to that of the Origin to measure overhead. Figure 8 provides Redis-SGX performance for each Redis container
under 2048 bytes, Test highlights include:

• SGX overhead was 64 percent in SGX and 25 percent in exitless. Graphene LibOS also used 17 percent overhead without SGX.

• The SGX exitless (switchless) feature provided 208 percent improvement in OPS and 52 percent improvement in latency
overhead by additional vCPU. EPC is used for SGX and exitless Redis, so pod memory usage is not increased for them (see
Figure 9).

• Demonstrated that the Redis DB key was protected under SGX enclave as shown below. The last key and value can be printed
because the platform adaptation layer (PAL) is not running in an enclave and has a packet buffer for the last CLI command; it
is not from the DB. If a TLS connection is used, E2E encryption will be supported (see the listings in Table 3).

Table 3: Redis key encryption

intel@icx-sdp4:~/multi_Redis$./dump_test.sh

origin

[Inferior 1 (process 67782) detached]

test09

intel09

-

test01

intel01

test00

intel00

intel@icx-sdp4~/multi_redis$./dump_test.sh

sgx tls

Test with TLS connnection

-

[New LWP 395545]

0x000055fc36c0356c in sgx_ocall_poll ()

Saved corefile core_dump.395494

[Inferior 1 (process 395494) detached]

intel@icx-sdp4:~/multi_Redis$./dump_test.sh

sgx

[Inferior 1 (process 68870) detached]

*test09

*intel09

-

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

intel@icx-sdp4:~/multi_Redis$./dump_test.sh

exitless

[Inferior 1 (process 1300729) detached]

*test09

*intel09

-

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

11

Redis-SGX overhead comparision at 2048 bytes (Lower is Better)

100

90

80

70

60

50

40

30

20

10

0
Direct(%)

17.20%

SGX-Exitless(%)

25.80%

SGX(%)

64.50%

Figure 8. Redis-SGX performance at 2048 bytes

Figure 9. Redis-SGX performance at 2048 bytes

Higher is BetterHigher is Better

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

12

FP32

SGXNon-SGX

FP32

0.95x

0.85x

Analytics Zoo/BigDL PPML
Trusted Cluster Serving Performance

 (Higher is Better)

1800
1600
1400
1200
1000

800
600
400
200

0E2
E

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

637.188 606.401

1547.03
1325.02

Figure 10. Analytics Zoo/BigDL PPML Trusted Cluster Serving
Relative Performance

Figure 11. SKT MEC
Management Portal

Figure 12. SKT MEC
statistics

3.2 PPML-SGX Performance
The performance test for PPML compared the end-to-end
cluster serving throughput of non-SGX mode and graphene-
SGX mode for precision FP32 and INT8. In the test results
shown in Figure 10, the Graphene-SGX overhead is 4.8
percent for FP32 and 14.4 percent for INT8.

3.3 SGX Integration with SKT MEC Platform
Figures 11 and 12 show that when confidential computing
service is officially commercialized at SKT MEC, customers will
be able to use the service directly through the SKT MEC Biz.
Console. It also shows that the resource status of Redis test
pods can be continuously monitored through the SKT MEC
Orchestrator's assurance window, such as real time CPU usage
and memory usage.

White Paper | Reference Architecture for Confidential Computing on SKT 5G MEC

13

4. Summary
These tests present a confidential computing reference architecture to validate interoperability between Intel SGX and SKT
MEC edge stack for commercial services, leveraging Intel 3rd Xeon SP’s enhanced hardware security features. The tests
described in this paper include:

• Proven interoperability between Intel SGX and SKT 5G 5G MEC edge stack

• Demonstrated confidential computing as a service through SGX-enabled Redis, and PPML container performance validation
on SKT 5G MEC edge stack

The above results indicate that telecom equipment manufacturers (TEMs) and independent software vendors (ISVs) can utilize
SGX to help meet the requirements for confidentiality and integrity on open platforms being driven by rising robustness rules
for content protection on edge computing services.

The mobile network operator can leverage this confidential computing reference architecture to meet customer demand
for new services such as block chain, secret storage, ML-inferencing IoT, data integrity, privacy-preserving machine learning,
federated learning, etc. with data integrity and confidentiality to help manage B2B and B2B2C sales revenues.

5. Resources
Confidential Computing
https://www.intel.co.kr/content/www/kr/ko/now/edge-to-
cloud/confidential-computing-case-study.html

Intel 3rd Gen Xeon Scalable Processor
https://www.intel.com/content/www/us/en/products/
docs/processors/xeon/3rd-gen-xeon-scalable-processors-
brief.html

Intel SGX
https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions.html

Graphene
https://graphene.readthedocs.io/en/latest/index.html

Graphene Exitless Feature
https://graphene.readthedocs.io/en/latest/devel/
performance.html?highlight=exitless#effects-of-system-
calls-ocalls

Intel SGX Device Plugin for Kubernetes
https://intel.github.io/intel-device-plugins-for-kubernetes/
cmd/sgx_plugin/README.html

Kubernetes Node Feature Discovery
https://docs.01.org/kubernetes/nfd/overview.html

Kubernetes Topology Manager
https://kubernetes.io/docs/tasks/administer-cluster/
topology-manager/

Redis Benchmark Tool
https://github.com/RedisLabs/memtier_benchmark

Intel PPML and Analytics Zoo/BigDL
https://www.intel.com/content/www/us/en/artificial-
intelligence/posts/alibaba-privacy-preserving-machine-
learning.html
https://analytics-zoo.readthedocs.io/en/latest/doc/PPML/
Overview/ppml.html

6. Glossary of Terms

Term Description

SGX Software Guard Extension

K8S Kubernetes

NFV Network Function Virtualization

NFVi Network Function Virtualization Infrastructure

EPC Enclave Page Cache

PRM Processor Reserved Memory

BIOS Basic Input/Output System

NFD Node Feature Discovery

MEC Mobile Edge Computing

TEM Telecom Equipment Manufacturer

ISV Independent Software Vendor

CNF Cloud Native network Function

TLS Transport Layer Security

PPML Privacy Preserving Machine Learning

PAL Platform Adaptation Layer

https://www.intel.co.kr/content/www/kr/ko/now/edge-to-cloud/confidential-computing-case-study.html
https://www.intel.co.kr/content/www/kr/ko/now/edge-to-cloud/confidential-computing-case-study.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://graphene.readthedocs.io/en/latest/index.html
https://graphene.readthedocs.io/en/latest/devel/performance.html?highlight=exitless#effects-of-system-calls-ocalls
https://graphene.readthedocs.io/en/latest/devel/performance.html?highlight=exitless#effects-of-system-calls-ocalls
https://graphene.readthedocs.io/en/latest/devel/performance.html?highlight=exitless#effects-of-system-calls-ocalls
https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/sgx_plugin/README.html
https://intel.github.io/intel-device-plugins-for-kubernetes/cmd/sgx_plugin/README.html
https://docs.01.org/kubernetes/nfd/overview.html
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/
https://github.com/RedisLabs/memtier_benchmark
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/alibaba-privacy-preserving-machine-learning.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/alibaba-privacy-preserving-machine-learning.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/alibaba-privacy-preserving-machine-learning.html
https://analytics-zoo.readthedocs.io/en/latest/doc/PPML/Overview/ppml.html
https://analytics-zoo.readthedocs.io/en/latest/doc/PPML/Overview/ppml.html

White	Paper	|	Reference	Architecture	for	Confidential	Computing	on	SKT	5G	MEC	

7. Authors
SK Telecom Head of 5GX MEC Product, 5GX
Intelligence Company, T3K (ICT R&D Center)
Moonyoung Chung,
Solution Architect,mychung@sk.com

Daniel Park,
Solution Architect, dan.park@sk.com

Jian Li,
Solution Architect, gunine@sk.com

Keunhyun Kim,
Product Manager, keunhyun.kim@sk.com

Intel Corporation Data Platform Group
Wooram Alex Kim,
NCS Solutions Architect, alex.kim@intel.com

Jongeop Jayden Lee,
NPG PAE, jayde.lee@intel.com

Intel Corporation IAGS
Qiyuan Gong,
qiyuan.gong@intel.com

Dongjie Shi,
dongjie.shi@intel.com

Yabai Hu,
yabai.hu@intel.com

 Tests conducted by Intel in Sep. 2021:
 The server was an Intel® Server System Intel M50CYP WHITLEY by a 2.6 GHz Intel Xeon Gold 8352S Processor (microcode 0xd0002b1). The server featured 1 nodes and 2 sockets. Both Intel®

Hyper-Threading Technology and Intel® Turbo Boost Technology were turned on. Total memory equaled 512 GB DRAM (32 GB x16 DIMM), BIOS version is SE5C6200.86B.0022.D64.2105220049
 Ubuntu 20.04 LTS with Linux 5.13.4 x86_6 was the operating system, SKT Edge stack was used for MEC SW and Redis 6.0.5 on Ubuntu 18.04 LTS container. k8s: v1.22.1 (Client & Server), SGX

device plugin: v0.21.0, Graphene: v1.2-rc was used. The Server ran memtier benchmark tool configuration was set to a data size of 2048 bytes, 4:1 GET/SET ratio with Gaussian keypattern,
and 32 connections per thread. The results were measured as a SKT SLA condition as shown below, 10 times iteration (warm) and the average resulting OPS was chosen as a result and the
performance of PPML cluster serving is measured by end-to-end throughput (images per second from image enqueue to inference result dequeue), taking the average of 15 rounds with 10000
images per round. The benchmark script used a client Python API of cluster serving to enqueue test images and dequeue inference results. The test workload is a Resnet50 model inference with
the OpenVINO engine. Batch size is 32 per instance, and 256 in total. To further improve E2E PPML cluster serving performance with Graphene-SGX, exitless mode is enabled for Redis.

 Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex
 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component

can be absolutely secure.
 For workloads and configurations visit www.Intel.com/PerformanceIndex
 Results may vary
 Intel technologies may require enabled hardware, software, or service activation.
 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
 1021/BB/MESH/PDF 349047-001US

https://www.Intel.com/PerformanceIndex
https://www.Intel.com/PerformanceIndex

	1. Introduction
	1.1 Confidential Computing Overview
	1.2 Overview of SKT 5G MEC 2.0
	1.3 Key Technology
	1.3.1 Intel Software Guard Extension
	1.3.2 Graphene
	1.3.3 Analytics Zoo/BigDL PPML
	1.3.4 Intel 3rd Gen Xeon Scalable Platform SKUs for Enclave Page Cache

	2. Test Setup
	2.1 Device Under Test Configuration
	2.2 Test Procedure
	2.2.1 Redis-SGX Performance
	2.2.2 PPML SGX Performance
	2.2.3 SGX Integration with SKT 5G MEC Platform

	3. Test Result
	3.1 Redis-SGX Performance

	3.3 SGX Integration with SKT MEC Platform
	3.2 PPML-SGX Performance
	4. Summary
	5. Resources
	6. Glossary of Terms
	7. Authors

