
 1

User Guide
Intel Corporation

Resource Management Daemon

Authors
Joseph Gasparakis

Dakshina Ilangovan

Jasvinder Singh

1 Introduction
Increasing the number of CPU cores and storage capacity in data centers has greatly
increased the density of software components per server. This high density causes
software components to compete for finite resources on the platform, possibly
producing a negative impact on the performance, service assurance, and the end user’s
general quality of experience. The Resource Management Daemon (RMD) is an open
source software component that arbitrates between resources and software
components.

RMD runs on the server and maps resources (or pools of them) to software components
according to a certain policy. For each workload, RMD exposes a RESTful API to receive a
policy from external management software (such as orchestrator, container engine,
customer management plane, and so forth) and enforces that policy on the platform.

RMD handles arbitration locally on the compute node (rather than sending telemetry to
the upper layers of the stack to make the decision there). The reason is that some use
cases, such as latency sensitive applications, require faster local analysis and mitigation
of resource contention.

This document describes RMD architecture and installation, provides a usage scenario,
discusses plugins and OpenStack* integration, and provides an example of using RMD for
the Intel® Resource Director Technology (Intel® RDT) and P-state control using
Performance Monitoring Unit (PMU).

• RMD enables an abstracted and scalable implementation for finer grain resource

management.
• RMD can manage a subset of platform resources through support for multiple

interfaces on the host platform.
• RMD provides a centralized and holistic decision-making mechanism for resource

management that can be supported on multiple platform types.
• RMD can be integrated with any node management layer that supports node or

workload policies.

This document is part of the Network Transformation Experience Kit, which is available
at: https://networkbuilders.intel.com/network-technologies/network-transformation-
exp-kits

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

User Guide | Resource Management Daemon

 2

Table of Contents
1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documents .. 3

2 Architecture .. 3
2.1 RMD Implementation Examples ... 5

2.1.1 RMD for Static Allocation of Last Level Cache (LLC) ... 5
2.1.2 RMD for P-State Control of CPU Cores .. 6

3 Integration with Orchestration Layers .. 7
3.1 RMD Integration with OpenStack* ... 7

4 Installation Guide .. 7
4.1 Prerequisites.. 7
4.2 Install as Executable ... 8
4.3 Install from Source .. 8

5 Usage Examples .. 8
5.1 CAT – Node Policy ... 8
5.2 Querying Cache Inventory Information ... 9
5.3 P-State Control – Node Policy and Configuration ... 9
5.4 Querying P-State Control Information .. 9
5.5 Workload Policies to Request LLC Allocation .. 10

5.5.1 Changing and Adding Policies ... 10
5.5.2 Predefined Policy.. 10
5.5.3 Custom Policy .. 10
5.5.4 Hospitality Score of a Workload ... 10

5.6 Workload Policies to Request CPU P-State Control .. 11
6 Plugins ... 11
7 Summary ... 12

Figures
Figure 1. RMD Internal Architecture ... 4
Figure 2. RMD System Level Architecture .. 4
Figure 3. Logical Grouping of Cache Ways into CLOS ... 5
Figure 4. RMD Partitioning of Cache Ways into Cache Pools using Intel® RDT CLOS Constructs ... 5
Figure 5. CPU P-State Control Plugin .. 7

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3
Table 3. Hospitality Score Calculation ... 11

User Guide | Resource Management Daemon

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description

CAT Cache Allocation Technology

CLOS Class of Service

LLC Last Level Cache

NFV Network Functions Virtualization

PAM Pluggable Authentication Modules

PMU Performance Monitoring Unit

QoS Quality of Service

RDT Intel® Resource Director Technology (Intel® RDT)

RDT-CAT Intel® Resource Director Technology – Cache Allocation Technology (Intel® RDT-CAT)

RMD Resource Management Daemon

RPC Remote Procedure Calls

VNF Virtual Network Function

VNF-M Virtual Network Function Manager

vRouter Virtual Router

vSwitch Virtual Switch

1.2 Reference Documents

Table 2. Reference Documents

Reference Source

Intel® Resource Director Technology https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html

Resource Management Daemon repository on GitHub* https://github.com/intel/rmd

Introduction to Cache Allocation Technology in the Intel® Xeon®
Processor E5 v4 Family

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-
technology

Introduction to Memory Bandwidth Monitoring in the Intel®
Xeon® Processor E5 v4 Family

https://software.intel.com/en-us/articles/introduction-to-memory-
bandwidth-monitoring

2 Architecture
RMD is a daemon that runs on the server, one instance per compute node. It exposes a RESTful API for other software layers to
make requests and push policies that perform mapping between workloads and resources. These layers need to authenticate
themselves through Pluggable Authentication Modules (PAM). There is also HTTPS support accessing the REST API.

The policy can be static or dynamic:
• Static policy is a one off allocation of resources. RMD allocates these resources to the associated workload and then ensures that

the workload is still running. If the workload stops running, RMD releases the resources so that they are available for
consumption by the next workload that is scheduled on the server.

• When a dynamic policy is received, RMD constantly monitors and re-allocates resources as described in the policy. One can
describe an algorithm in that policy on how RMD should do this. As an example, for a multi-way cache, the policy might request
for the workload to receive two cache ways from the processor’s last level cache (LLC), but to allocate an extra cache way if the
throughput on a specific network interface increases above a certain threshold, or to release the extra cache way if the
throughput decreases below the threshold.

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://github.com/intel/rmd
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-monitoring
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-monitoring

User Guide | Resource Management Daemon

 4

Figure 1. RMD Internal Architecture

Figure 1 shows the internal architecture of RMD. When a policy is received by an authenticated software entity, it is processed and
validated against a hardware resource detection mechanism (if the resources exist, are available, and RMD can control them.).
Provided everything is valid, RMD spawns a thread that works in a loop, monitoring resources constantly, and re-allocating them as
needed and if the policy is of dynamic nature.

Monitoring and enforcement (re-allocation) of resources is done through pluggable interfaces. For RMD to monitor and control a
new resource, you must implement the right plugin and RMD will be able to support this resource onward. For more details, see
Section 5.6.

Figure 2 below shows that structurally, RMD is broken into user and root engines. The user engine provides the RESTful API, runs
the monitoring threads, and runs the re-enforcing threads. The engine with elevated privileges (Super user process) performs the
actual monitoring and allocations and uses Remote Procedure Calls (RPC) to communicate the information to and from the user
engine. Pluggable Authentication Modules (PAM) authentication is also handled by the root process.

RMD uses NoSQL databases for persisting policy information, shown below in Figure 2 as Bolt and Mongo* databases. If RMD
terminates abnormally, it reads the previously stored database information and restores the resource allocations. It also uses
configuration files in order to organize resources at start up.
Note: Blocks with a dotted border in Figure 2 are used to indicate that monitor threads, dynamic allocation algorithms, resource

plugins, and the Redis* data store are planned for future development.

Figure 2. RMD System Level Architecture

User Guide | Resource Management Daemon

 5

2.1 RMD Implementation Examples
This section describes the following RMD implementation examples:
• management of allocations to Last Level Cache (LLC) using Intel® RDT-CAT (Intel® Resource Director Technology – Cache

Allocation Technology)
• management of P-state using PMU counters

2.1.1 RMD for Static Allocation of Last Level Cache (LLC)
RMD controls the Last Level Cache on a host using Cache Allocation Technology (CAT) from Intel® Resource Director Technology
(Intel® RDT). For more information on Intel® RDT, see https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html

CAT introduces the concept of describing multiple LLC available on a system. On current generation systems there is one L3 cache
per socket but CAT allows for multiple separate L3 caches, representing each LLC using a Cache ID.

Each LLC is measured in cache ways. For example, a four-way cache has four cache ways. The size of a cache way is the total size of
the LLC divided by the number of cache ways available. The cache ways are logically partitioned using Class of Service (CLOS). This
segment of LLC is assigned for sole use by one or more processes or cores. The number of available CLOS is platform dependent.

Currently the allocation of cache ways to processes or cores with CLOS can be controlled using MSR registers or Linux* resctrl
file system starting kernel version 4.10.

Figure 3 illustrates a logical grouping of cache ways into CLOS that determine how cache ways are shared.

Figure 3. Logical Grouping of Cache Ways into CLOS

RMD provides hooks into the resctrl file system to further associate Quality of Service (QoS) meta-data to Intel® RDT CLOS that can
be provided. With features to create CLOS for processes such that cache ways can be allocated in dedicated, shared or overlapped
manner, RMD can allocate cache ways for processes into three QoS based cache pools. Refer to Figure 4.

Figure 4. RMD Partitioning of Cache Ways into Cache Pools using Intel® RDT CLOS Constructs

The Guaranteed cache pool allocates dedicated cache ways for all processes requesting from it. This request is provided to RMD as
Max_Cache=Min_Cache, Max_Cache>0, and Min_Cache>0.

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

User Guide | Resource Management Daemon

 6

The Best Effort cache pool allocates cache ways within the window of Min_Cache and Max_Cache described where Max_Cache>0
and Min_Cache>0. RMD attempts to allocate Max_Cache upon request and can oversubscribe processes on host by changing
allocations based on usage. This cache pool is leveraged with dynamic re-allocations.

The Shared cache pool allocates all processes to a fixed size CLOS (set of cache ways). All processes in this pool share their cache
ways. Low priority/short-lived processes can be subscribed to this pool. The number of processes in this pool is configurable in
RMD to avoid any contention.

Two other statically configured cache pools are provided:
• The OS cache pool is dedicated for operating system processes.
• The Shared Infrastructure cache pool is configured in overlap with all available cache pools except the OS cache pool. This

enables data sharing between infrastructure processes subscribed to other processes that can be scheduled on other cache
pools. A typical example would be for a network functions virtualization (NFV) use case with virtual switch (vSwitch) or virtual
router (vRouter) processes that require sharing of data in LLC with other virtual network functions (VNFs).

2.1.2 RMD for P-State Control of CPU Cores
In some NFV deployments, we may be limited to observing CPU metrics alone to achieve a power saving mode. Consider the
following:
• Networking workloads are typically running in a polling mode. Observing the CPU utilization in polling mode always shows 100%

busy.
• For NFV, the workloads may also be virtualized and direct control of P-states is not typically facilitated through Guest OS kernels.
• Application telemetry may not be available to observe the real utilization of the application.

The deployment model for this plugin is to deploy to a host OS and control the frequency of cores on behalf of a Virtual Machine,
without any feedback loop from the VM.

When the deployment is limited by the above criteria, it is possible to detect idle or busy periods by viewing the CPU metrics. This
detection mechanism is limited to idle or busy and not how busy, as this requires characterization per workloads.

To achieve this, the scheme observes CPU counters to detect a change in behavior to idle or the code is busy doing work. When idle
is detected, the frequency can be scaled down and when work is detected, the frequency can be scaled up.

Per-core P-states is a CPU feature that can be used to save power by scaling frequency. For 100% utilization or polling workloads, a
trigger is required to achieve a power saving. This mechanism allows detection of a change of condition when still 100% utilized
and is the trigger that can be used to make a power saving decision.

RMD interfaces with the P-state control plugin that helps minimize platform power consumption by exploiting the temporal
variation in traffic volume. The plugin targets power saving for virtualized application with no feedback loop to the host and those
workloads are 100% polling software threads. The plugin monitors the x86 branch instruction misses to hit ratio in the Performance
Management Unit (PMU) of the CPU cores to determine the traffic load.

The ratio of branch misses to branch hits grows significantly when the traffic flow increases, since the number of instructions to
execute increases while processing the packets. When there are no packets to process, the branch miss to hit ratio is very low, in
percentage terms, typically <0.01%. At 100% traffic, the branch miss to hit ratio is notably higher, in the order of 2%.

PMU counters such as the branch miss to hit ratio of a core suggests its utilization, which the software can then assess to increase or
decrease CPU frequency (that is, decrease frequency when utilization is low, for example) without modifying the application. The
tradeoffs are that a lower CPU frequency can yield power savings, whereas a higher frequency can improve performance.

As shown in Figure 5, on receiving workload policy requests, the RMD core performs a sanity check and when passed, forwards
requests to the P-state plugin that runs out of band on a dedicated core. During runtime, the plugin continuously inspects the
branch misses provided by the PMU counters of the CPU cores running the workloads, compares them with the threshold value
from the RMD workload policy to determine the workload utilization (in this case, the traffic rate), and then scales up or scales down
the CPU core frequency accordingly to increase performance or save power, respectively.

User Guide | Resource Management Daemon

 7

Figure 5. CPU P-State Control Plugin

3 Integration with Orchestration Layers
Note: This section describes a planned implementation, which will be released at a future date.

From an orchestration perspective, interaction with a physical host is limited to the initial allocation of resources and the
characterization of nodes to improve the placement of workloads. Runtime handling of workload requirements is not part of the
core functionality.

The future implementation of RMD acting as an external component to orchestration environments like OpenStack* or Kubernetes*
will offer the functionality to manage different node capabilities and will provide configurability to specify the policies and changes
required by the sys-admin, the tenant or the workload deployment requirements. It will provide a unified API for the resource
orchestrator to enable high frequency and autonomic control to the node within a set of guardrails defined by a node policy to
improve the workload functional and non-functional characteristics.

3.1 RMD Integration with OpenStack*
Note: This section describes a planned implementation, which will be released at a future date.

Nova is the compute component in OpenStack*. It is responsible to provide awareness to OpenStack on the compute node
capabilities and also provisions and manages the lifecycle of workloads (VNFs) scheduled on it. RMD, as a component on each
compute node external to OpenStack services, will take care of validation and enforcement of policies provisioned by two different
roles: the Sys-admin and the VNF Manager (VNF-M). The compute node will be provisioned with a set of RMD resource plugins to
support the Sys-admin and the VNF-M requests.

The Sys-admin will provide the “Node Policy” to enable a subset of host resources and supply node level configuration for those
resources. The VNF-M will supply “Workload Policy” along with VNF requirements. The “Workload Policy” will be used to describe
the resources that can be provisioned or controlled by RMD during the lifecycle of the VNF. The RMD component will be in charge
of verifying the applicability of the “Node Policy” and will also deliver to Nova the resource characteristics enabled on the node
before Nova services are initiated.

Once the Nova services are started, the VNF-M will be able to request the VNF requirements along with the “Workload Policy” for
the VNF. The VNF requirements will be used for scheduling the VNF on a compute node with matching specs.

Upon creation of the VNF on a compute node with the VNF requirements, the RMD component on that compute node will
asynchronously execute on the “Workload Policy” it queries from Nova in an out-of-band manner. The RMD component will apply
the specific changes to the hardware using RMD resource plugins.

4 Installation Guide
This section contains RMD instantiation instructions. RMD is currently supported as a system daemon running on generic Linux
platforms/x86 platforms. RMD supports the static allocation and QoS management of an LLC hardware resource using Intel® RDT –
CAT technology and CPU P-state control using PMU counters.

4.1 Prerequisites
The prerequisites for deploying RMD are as follows:
• RMD is supported on select x86 CPU SKUs that enable Intel® RDT – CAT.
• RMD is supported on select Linux* kernel versions (4.10 or greater) that enable resctrl fs. For details, refer to

https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt

https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt

User Guide | Resource Management Daemon

 8

1. To enable resctrl fs with Intel® RDT – CAT support, add the following to the GRUB command line:
rdt=l3cat

2. To verify support for P-state control, check for the scaling driver using the command:
cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_driver | egrep “acpi_cpufreq|intel_pstate”

3. To verify minimum and maximum frequency limits defined by the manufacturer for a CPU, use the commands:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq

4. To enable PMU counters, load the model specific register driver for PMU counters using the command:
modprobe msr

5. Verify this on the deployment node using the command:
cat /proc/filesystems | grep resctrl

6. Mount the resctrl fs using the command:
mount -t resctrl resctrl /sys/fs/resctrl

7. Install the Linux PAM, Berkeley DB, and OpenSSL packages.
8. To install the Debian* or Ubuntu* OS, enter the command:

sudo apt-get install openssl libpam0g-dev db-util
9. To install the Red Hat* Linux* OS, enter the command:

sudo dnf install openssl pam-devel db4-utils

4.2 Install as Executable
RMD follows versioned history and with each stable release, an executable will be released on GitHub in the location:
https://github.com/intel/rmd/releases

The executable file must be executed with super user privileges and can be added to the system path.

4.3 Install from Source
The RMD source code can be cloned from the GitHub repository: https://github.com/intel/rmd.git

To build RMD from source, the system should support the Golang environment. For instructions, refer to
https://golang.org/doc/install and ensure rmd repo is cloned to GOPATH src directory.

The following commands are a shorthand to get started with building and running RMD:
1. Download RMD source code dependencies and build:

make
2. Install RMD binary to build/ directory:

scripts/install.sh
3. Run rmd from build directory in debug mode:

rmd –d
4. Test RMD REST interfaces exposed over HTTP in debug mode and query LLC information:

wget http://localhost:8081/v1/cache/l3

The above steps will help users and developers to quickly get started with building and running RMD using default configuration
files. For detailed documentation, refer to the links below.
• Configuration guide: https://github.com/intel/rmd/blob/master/docs/ConfigurationGuide.md
• User guide: https://github.com/intel/rmd/blob/master/docs/UserGuide.md
• Developer guide: https://github.com/intel/rmd/blob/master/docs/DeveloperQuickStart.md

5 Usage Examples
5.1 CAT – Node Policy
In order to associate cache ways to workloads efficiently using RMD, the host should be prepared by applying “Node Policy” using
the RMD configuration file.

The RMD configuration file supports fields to specify cache allocation groups and quantities for reserved processes (such as
operating system) and infrastructure processes in general.

The default configuration file is installed at /usr/local/etc/rmd/rmd.toml.
[OSGroup] # mandatory
cacheways = 1
cpuset = "0-1"

[InfraGroup] # optional
cacheways = 19
cpuset = "2-3"
arrary or comma-separated values
tasks = ["ovs*"] # just support Wildcards

https://github.com/intel/rmd/releases
https://github.com/intel/rmd.git
https://golang.org/doc/install
https://github.com/intel/rmd/blob/master/docs/ConfigurationGuide.md
https://github.com/intel/rmd/blob/master/docs/UserGuide.md
https://github.com/intel/rmd/blob/master/docs/DeveloperQuickStart.md

User Guide | Resource Management Daemon

 9

[CachePool]
shrink = false # whether allow to shrink cache ways in best effort pool
max_allowed_shared = 10 # max allowed workload in shared pool, default is 10
guarantee = 10
besteffort = 7
shared = 2

The configuration file directives are explained below:
• OSGroup: cache ways reserved for use by the operating system usage.
• InfraGroup: cache ways dedicated for use by identified infrastructure process. These cache ways are allocated to be shared with

every other workload scheduled on the system.
• CachePool: Cache allocation requests are grouped into one of three groups:

− guarantee: allocate dedicated cache ways to a workload (max_cache == min_cache > 0)
− besteffort: dedicated minimum number of cache ways for workload which can grow to maximum number of cache ways in

an overlapped manner (max_cache > min_cache > 0)
− shared: all workloads in this pool share cache ways (max_cache == min_cache = 0)

Flags are:
− shrink: flag to indicate whether to shrink cache ways already allocated to workloads in besteffort pool upon arrival of a

new workload.
− max_allowed_shared: threshold to define the max allowed workloads in shared cache pool

Refer to Figure 4 and Section 2.1 for additional information.

On a host that supports up to 20 cache ways, the configuration file will create the following cache bit mask layout.
OSGroup: 0000 0000 0000 0000 0001
InfraGroup: 1111 1111 1111 1111 1110

The layout of the remaining cache ways available for cache pools represented by the cache bit mask is:
guarantee: 0000 0000 0111 1111 1110
besteffort: 0011 1111 1000 0000 0000
shared: 1100 0000 0000 0000 0000

5.2 Querying Cache Inventory Information
The LLC information on the node deploying RMD can be queried using the following REST API calls:
$ curl -i http://127.0.0.1:8081/v1/cache/
$ curl -i http://127.0.0.1:8081/v1/cache/l3
$ curl -i http://127.0.0.1:8081/v1/cache/l3/0

5.3 P-State Control – Node Policy and Configuration
To use RMD to perform P-state control on the CPU cores running the workloads, the host should be prepared to configure the
P-state control plugin using the RMD configuration file.

The RMD configuration file contains an optional P-state section for specifying configuration and node policy for the P-state control
plugin. If this section is not present in the configuration file, the P-state plugin interface in RMD will be disabled.
[pstate] # optional

enabled = true # Simple plugin enable/disable flag

port = 8080 # port number with plugin's http server (REST API)

The configuration file directives are explained below:
• enabled: when set to "false" disables the P-state module on the node.
• port: defines the listening port for branch_monitor's http server with REST API interface.

5.4 Querying P-State Control Information
The P-state configuration parameters for the CPU cores can be queried using the following REST API calls:
$ curl -i http://127.0.0.1:8081/v1/pstate/
$ curl -i http://127.0.0.1:8081/v1/pstate/{core_id}

User Guide | Resource Management Daemon

 10

5.5 Workload Policies to Request LLC Allocation
5.5.1 Changing and Adding Policies
The Sys-admin can change and add new policies by editing the following line in the yaml file which is pointed to in the configuration
file.
policypath = "etc/rmd/policy.toml"

5.5.2 Predefined Policy
The Sys-admin can provide predefined LLC allocation policies based on the target platform characteristics. The predefined
allocation policy represents cache pools of Guaranteed, Best-effort, and Shared using Gold, Silver, and Bronze levels respectively.

The following example is a predefined policy which can be referenced in workload policy to RMD to request LLC.
Note: The following catpolicy file includes product codenames for processors that have been released by Intel.

Cascadelake is branded as 2nd generation Intel® Xeon® Scalable processors.
For desktop and mobile, Skylake is branded as 6th Generation Intel® Core™ i3, Intel® Core™ i5, and Intel® Core™ i7
processors. For workstations, Skylake is branded as Intel® Xeon® E3 v5 processors.

catpolicy:
 cascadelake:
 - gold:
 - MaxCache: 4
 - MinCache: 4
 - silver-bf:
 - MaxCache: 2
 - MinCache: 1
 - bronze-shared:
 - MaxCache: 0
 - MinCache: 0
 skylake:
 - gold:
 - MaxCache: 3
 - MinCache: 3
 - silver-bf:
 - MaxCache: 2
 - MinCache: 1
 - bronze-shared:
 - MaxCache: 0
 - MinCache: 0

Example Workload Request Command

The following command creates a workload request to RMD with gold policy for a workload described with process id 78377:
$ curl -H "Content-Type: application/json" --request POST --data \
 '{"task_ids":["78377"], "policy": "gold"}' \
 http://127.0.0.1:8081/v1/workloads

5.5.3 Custom Policy
To specify a custom policy to request LLC allocation, the payload body should contain the following. A workload can be described
as a set of task_ids or set of core_ids.
• task_ids: set of process ids describing the workload
• core_ids: set of core ids on which the workload process ids run
• max_cache: maximum number of cache ways the workload can run on
• min_cache: minimum number of cache ways the workload must run on

Example workload request command

The following command creates a workload request to RMD with minimum and maximum cache values for a workload described
with process id 78377:

$ curl -H "Content-Type: application/json" --request POST --data \
 '{"task_ids":["78377"], "max_cache": 4, "min_cache": 4}' \
 http://127.0.0.1:8081/v1/workloads

5.5.4 Hospitality Score of a Workload
The hospitality score API provides a score in the range of 0 to 100 to indicate how hospitable the host is to provide the desired LLC
allocation values for the workload. The score is calculated as shown in Table 3.

User Guide | Resource Management Daemon

 11

Table 3. Hospitality Score Calculation

Request Hospitality Score LLC Pool

max_cache == min_cache > 0 [0 | 100] Guarantee

max_cache == min_cache == 0 [0 | 100] Shared

max_cache > min_cache > 0 [0 , 100] Best-effort

Example: The following code will display the hospitality score for a workload that has desired LLC allocation values of min=2 and
max=2. Since two LLC ways can be provided on the host, the score is returned as 100.
$ curl -H "Content-Type: application/json" --request POST --data \
 '{"max_cache": 2, "min_cache": 2}' \
 http://127.0.0.1:8888/v1/hospitality
{
 "score": {
 "l3": {
 "0": 100,
 "1": 100
 }
 }
}

5.6 Workload Policies to Request CPU P-State Control
To specify a workload policy to request P-state control for the workload running on CPU core, the payload body should contain the
following:
• core_ids: the set of core ids on which the workload process ids run
• pstate_br: branch miss threshold value
• monitoring: flag to enable or disable P-state control for the workload

Example workload request command

The following command creates a workload request to RMD to enable P-state control for CPU core 7.
$ curl -H "Content-Type: application/json" --request POST --data \
 '{"core_ids":["7"], "pstate_br": 3.0, "monitoring": "on"}' \
 http://127.0.0.1:8081/v1/workloads

6 Plugins
RMD is a centralized arbitrator to perform resource management on the platform. For this it needs access to system resources for
enforcement as well as monitoring. For ease of use for platform and vendor developers, RMD defines standard interfaces for each
resource it can control. Platform and vendor developers can write plugins that can conform to these provided standard interfaces.
We can expect multiple versions for a single plugin for a resource as well as multiple plugins for a resource. Plugins can be
combined to handle both write and read but must be registered separately as write and read plugins with RMD for better
management.

Using the plugin approach:
• RMD administrators can control the list of resources supported by RMD for enforcement and monitoring through configuration. It

is the responsibility of administrators to ensure the plugins configured are compatible with RMD and the platform. For example,
compatibility might be required for Golang, the kernel, hardware versions like CPU model, and so forth.

• Platform and vendor developers should provide template configuration and documentation to explain the features provided by
the plugin as well as any dependencies required.

• For a resource, the configuration should allow only one plugin each for write and read operations.

Different resources on the system will have different needs and the configurability and control will be highly coupled to the
resource controller implementation. RMD plugins reduce the dependency on platform or vendor specific implementation details. It
uses its configuration to load the correct plugin based on platform or vendor resource version, if provided.

Usually the RMD plugins are pieces of code that read or write into standard kernel facilities such as the pseudo filesystems
(proc/sysfs/resctrlfs and others) but they can be implemented by accessing resources in different ways: through
communicating with other daemons on the platform, calling libraries, and writing directly to Model Specific Registers (MSRs).

To support a newly introduced resource, you need to do a bit of research on how this resource is exposed. Starting from the kernel
pseudo filesystem is usually a good approach, but there might be other ways that a resource can be accessed, such as a command
line tool (such as sysctl or ethtool) or via another daemon or library.

User Guide | Resource Management Daemon

 12

It’s important to experiment to get an understanding of how this resource affects workloads. As an example, refer to this
investigation for Cache Allocation Technology here. Then you can proceed with writing a plugin that monitors and enforces the
resource in a meaningful way.

7 Summary
Resource Management Daemon (RMD) enables a flexible and scalable implementation for resource management. It provides a
unified centralized decision making mechanism that can be used in multiple environments.

This document described RMD architecture and installation, provided a usage scenario, discussed plugins and OpenStack
integration, and provided examples of using RMD for the Intel® Resource Director Technology (Intel® RDT) and for P-state control
using PMU.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter
disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.
Current characterized errata are available on request. No product or component can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more information go to www.intel.com/benchmarks

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at http://www.intel.com/ or from the OEM or retailer.

Intel, the Intel logo, Intel Core, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 1219/DN/PTI/PDF 338933-005US

https://download.01.org/packet-processing/ONPS2.1/Intel_ONP_Release_2.1_Application_Note_on_RDT_Rev1.0.pdf
http://www.intel.com/benchmarks
http://www.intel.com/design/literature.htm
http://www.intel.com/

	1 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2 Architecture
	2.1 RMD Implementation Examples
	2.1.1 RMD for Static Allocation of Last Level Cache (LLC)
	2.1.2 RMD for P-State Control of CPU Cores

	3 Integration with Orchestration Layers
	3.1 RMD Integration with OpenStack*

	4 Installation Guide
	4.1 Prerequisites
	4.2 Install as Executable
	4.3 Install from Source

	5 Usage Examples
	5.1 CAT – Node Policy
	5.2 Querying Cache Inventory Information
	5.3 P-State Control – Node Policy and Configuration
	5.4 Querying P-State Control Information
	5.5 Workload Policies to Request LLC Allocation
	5.5.1 Changing and Adding Policies
	5.5.2 Predefined Policy
	5.5.3 Custom Policy
	5.5.4 Hospitality Score of a Workload

	5.6 Workload Policies to Request CPU P-State Control

	6 Plugins
	7 Summary

