
 1

Application Note
Intel Corporation

Secure the Network Infrastructure – Secure Boot

Methodologies

Authors

Kapil Sood

Seosamh O’Riordain

John Geary

Heqing Zhu

1 Introduction

Industry-proven platform security technologies are crucial to protect against ever-

increasing cyber-attacks and threats. 5G networks will incorporate more open source

technologies such as Linux* or DPDK on standard server systems. Edge computing will

accelerate the convergence of multi-party services onto a single system. Therefore, a

security first mindset needs to be front and center when planning network infrastructure.

Using proven technologies will be critical in protecting data and IP in a secured network

infrastructure. Intel has built security features into its silicon, firmware, and software

technologies in conjunction with industry leaders.

This document describes the Secure Boot methodology using Intel® Boot Guard

technology and UEFI Secure Boot. Intel® Boot Guard provides the hardware Root of Trust

(RoT) for platform boot and UEFI Secure Boot is defined by the UEFI standards to verify

IA firmware signatures prior to boot [20]. Together, Intel® Boot Guard and UEFI Secure

Boot can be implemented to create a platform chain of trust for boot and to ensure that

the Intel and OEM platform firmware is authorized to run on that platform. This

document is targeted for the Intel® Xeon® Scalable platform (codenamed Purley) and

second generation Intel® Xeon® Scalable platform (codenamed Purley-Refresh).

This document can act as a reference to implement Intel® Boot Guard and UEFI secure

boot for networking platforms including packet processing workloads, and for bare

metal, DPDK, vEPC, vCPE, and other virtualized and non-virtualized systems. This

document is a guide and not meant to duplicate the reference documents in Table 2. It is

highly recommended that readers refer to these documents for enabling and design

details.

This document is part of the Network Transformation Experience Kit, which is available

at: https://networkbuilders.intel.com/

https://networkbuilders.intel.com/

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 2

Table of Contents

1 Introduction ... 1

1.1 Terminology .. 3
1.2 Reference Documents .. 3

2 Secure Boot Overview .. 4
2.1 Secure Boot Architecture and Flow .. 4
2.2 Firmware Threat Model ... 5
2.3 Secure Boot Best Practices .. 5
2.4 Secure Boot Use Cases and Requirements .. 6
2.5 Secure Boot Ecosystem Enabling Flow ... 6
2.6 Secure Boot support on Intel® Server Platforms ... 6

3 Intel® Boot Guard Basics .. 7

4 UEFI Secure Boot Basics .. 7
4.1 Authenticated Variables and Key Provisioning... 8
4.2 Secure Firmware Update .. 8
4.3 Firmware Recovery .. 8

5 UEFI Secure Boot: Operating System Enhancements .. 8
5.1 Signed Kernel Modules ... 8
5.2 Machine Owner Keys .. 9
5.3 Kernel Security Enhancements ... 10
5.4 Enhanced Platform Awareness (EPA) for Secure Boot ... 10

6 Networking Workloads on UEFI Secure Boot Platforms ... 10

6.1 Networking Workload Impact .. 10
6.2 Networking Workload Mitigations for Secure Boot ... 10

7 Summary and Call to Action ... 11

Figures
Figure 1. Secure Boot Flow .. 4
Figure 2. Secure Boot Architecture ... 5
Figure 3. Intel® Architecture Secure Boot Ecosystem Enabling Flow ... 6
Figure 4. UEFI Secure Boot Components ... 7
Figure 5. Shim Certificate Signing ... 9
Figure 6. OSV Secure Boot Chain of Trust ... 9
Figure 7. MOK and User Signed Images.. 9
Figure 8. UEFI Secure Boot Impact on Networking Workloads .. 10
Figure 9. UEFI Secure Boot Mitigations ... 11

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents ... 3
Table 3. Secure Boot Use Cases ... 6
Table 4. UEFI Authenticated Variables .. 8

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 3

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

BIOS Basic Input / Output System

FW Firmware

Intel® RDT Intel® Resource Director Technology

KEK Key Exchange Key

OS Operating System

RoT Root of Trust

UEFI Unified Extensible Firmware Interface

VMM Virtual Machine Monitor

1.2 Reference Documents

Table 2. Reference Documents

Ref # Document Document No./Location

1
Intel® Xeon® Processor Scalable Family Technical

Overview

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-

family-technical-overview

2 UEFI Specification and open source

http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6%20

Errata%20A%20final.pdf

https://www.tianocore.org/

3
ETSI NFV Security Standards (SEC001, SEC012,

SEC013, others)
http://www.etsi.org/technologies-clusters/technologies/nfv

4 Linux* Usage
https://firmware.intel.com/sites/default/files/SF12_EFIS001_100.pdf

https://firmware.intel.com/blog/using-mok-and-uefi-secure-boot-suse-linux

5 Windows* Usage https://technet.microsoft.com/en-us/library/hh824987.aspx

6 Open Source Implementation https://github.com/tianocore/edk2/tree/master/SecurityPkg

7
NIST BIOS Security Guidelines: SP800-147 and NIST

SP800-147B
http://dx.doi.org/10.6028/NIST.SP.800-147B

8 Red Hat* UEFI Secure Boot

https://www.redhat.com/es/blog/uefi-secure-boot

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-

uefi_secure_boot

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-

signing-kernel-modules-for-secure-boot.html

9 Ubuntu* UEFI Secure Boot https://wiki.ubuntu.com/UEFI/SecureBoot

10 UEFI Rootkits and Attacks

https://www.blackhat.com/presentations/bh-usa-

07/Heasman/Presentation/bh-usa-07-heasman.pdf

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-

UEFI-Firmware-Rootkits-Myths-And-Reality.pdf

https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-

wild-courtesy-sednit-group/

https://eclypsium.com/2018/10/01/uefi-attacks-in-the-wild/

11 Google* Infrastructure Security White Paper

https://cloud.google.com/security/infrastructure/design/resources/google_in

frastructure_whitepaper_fa.pdf

https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-

plaintext

12 SUSE* Linux* Enterprise Server: UEFI Secure Boot
https://www.suse.com/documentation/sles-

15/book_sle_admin/data/sec_uefi_secboot.html

13 Microsoft* UEFI Secure Boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-

experiences/oem-secure-boot

14 Dell* Servers with Intel® Boot Guard

https://downloads.dell.com/solutions/servers-solution-

resources/Direct%20from%20Development%20-%20Cyber-

Resiliency%20In%20Chipset%20and%20BIOS.pdf

15 Open Compute Project Cerberus*
https://azure.microsoft.com/en-us/blog/microsofts-project-olympus-

delivers-cloud-hardware-innovation-at-scale/

16 Google* Titan
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-

plaintext

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6%20Errata%20A%20final.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6%20Errata%20A%20final.pdf
https://www.tianocore.org/
http://www.etsi.org/technologies-clusters/technologies/nfv
https://firmware.intel.com/sites/default/files/SF12_EFIS001_100.pdf
https://firmware.intel.com/blog/using-mok-and-uefi-secure-boot-suse-linux
https://technet.microsoft.com/en-us/library/hh824987.aspx
https://github.com/tianocore/edk2/tree/master/SecurityPkg
http://dx.doi.org/10.6028/NIST.SP.800-147B
https://www.redhat.com/es/blog/uefi-secure-boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-uefi_secure_boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-uefi_secure_boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-uefi_secure_boot
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Administration_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://wiki.ubuntu.com/UEFI/SecureBoot
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://eclypsium.com/2018/10/01/uefi-attacks-in-the-wild/
https://cloud.google.com/security/infrastructure/design/resources/google_infrastructure_whitepaper_fa.pdf
https://cloud.google.com/security/infrastructure/design/resources/google_infrastructure_whitepaper_fa.pdf
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://www.suse.com/documentation/sles-15/book_sle_admin/data/sec_uefi_secboot.html
https://www.suse.com/documentation/sles-15/book_sle_admin/data/sec_uefi_secboot.html
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://downloads.dell.com/solutions/servers-solution-resources/Direct%20from%20Development%20-%20Cyber-Resiliency%20In%20Chipset%20and%20BIOS.pdf
https://azure.microsoft.com/en-us/blog/microsofts-project-olympus-delivers-cloud-hardware-innovation-at-scale/
https://azure.microsoft.com/en-us/blog/microsofts-project-olympus-delivers-cloud-hardware-innovation-at-scale/
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 4

Ref # Document Document No./Location

17 Intel® Platform Firmware Resilience (Intel® PFR)
https://www.intel.com/content/www/us/en/data-center-blocks/business/pfr-

server-blocks.html

18 DPDK Linux Drivers: VFIO http://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#vfio

19 Dell Server Infrastructure Firmware Security Paper

https://delltechnologiesworldonline.com/2017/connect/fileDownload/sessio

n/F6DCEE362410E8EEC1CD044710AC8FB4/server.07%20Is%20your%20Se

rver%20Infrastructure%20Secure.pdf

20 Establishing the root of trust
http://www.uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20

paper_Final%208%208%2016%20%28003%29.pdf

21 Node feature discovery for Kubernetes* https://github.com/kubernetes-incubator/node-feature-discovery

22 Kubernetes EPA enhancements for Secure Boot https://github.com/kubernetes-sigs/node-feature-discovery/pull/87

23
National Security Agency (NSA) Cybersecurity Report:

UEFI Defensive Practices Guidance

https://www.nsa.gov/Portals/70/documents/what-we-

do/cybersecurity/professional-resources/ctr-uefi-defensive-practices-

guidance.pdf?ver=2018-11-06-074836-090

24 Fedora* Signing Kernel Modules for Secure Boot

https://docs.fedoraproject.org/en-

US/Fedora/26/html/System_Administrators_Guide/sect-signing-kernel-

modules-for-secure-boot.html

25 Ubuntu Secure Boot Signing https://blog.ubuntu.com/2017/08/11/how-to-sign-things-for-secure-bootq

2 Secure Boot Overview

Secure Boot mechanisms can be enabled by platform owners to ensure that only authorized firmware images can be installed and

run on their platforms. This helps mitigate the risk of attacks targeting low-level, highly privileged platform components.

2.1 Secure Boot Architecture and Flow

Platform Secure Boot is achieved by progressively cryptographically verifying every critical piece of firmware as it is installed on the

platform, starting with a hardware-based Root-of-Trust (RoT). A verified firmware is installed, and then subsequently verifies the

digital signature check on the next firmware component before installing that new component. This essentially creates a boot chain

of trust, starting from the hardware RoT (Intel® Boot Guard) all the way up to the platform OS, which can extend the chain to the

loading of signed kernel modules.

Figure 1. Secure Boot Flow

Figure 2 illustrates a system Secure Boot architecture for a network platform system, including key Intel® architecture hardware RoT,

UEFI, kernel, and workload composition.

https://www.intel.com/content/www/us/en/data-center-blocks/business/pfr-server-blocks.html
https://www.intel.com/content/www/us/en/data-center-blocks/business/pfr-server-blocks.html
http://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#vfio
https://delltechnologiesworldonline.com/2017/connect/fileDownload/session/F6DCEE362410E8EEC1CD044710AC8FB4/server.07%20Is%20your%20Server%20Infrastructure%20Secure.pdf
https://delltechnologiesworldonline.com/2017/connect/fileDownload/session/F6DCEE362410E8EEC1CD044710AC8FB4/server.07%20Is%20your%20Server%20Infrastructure%20Secure.pdf
https://delltechnologiesworldonline.com/2017/connect/fileDownload/session/F6DCEE362410E8EEC1CD044710AC8FB4/server.07%20Is%20your%20Server%20Infrastructure%20Secure.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%208%2016%20%28003%29.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%208%2016%20%28003%29.pdf
https://github.com/kubernetes-incubator/node-feature-discovery
https://github.com/kubernetes-sigs/node-feature-discovery/pull/87
https://www.nsa.gov/Portals/70/documents/what-we-do/cybersecurity/professional-resources/ctr-uefi-defensive-practices-guidance.pdf?ver=2018-11-06-074836-090
https://www.nsa.gov/Portals/70/documents/what-we-do/cybersecurity/professional-resources/ctr-uefi-defensive-practices-guidance.pdf?ver=2018-11-06-074836-090
https://www.nsa.gov/Portals/70/documents/what-we-do/cybersecurity/professional-resources/ctr-uefi-defensive-practices-guidance.pdf?ver=2018-11-06-074836-090
https://docs.fedoraproject.org/en-US/Fedora/26/html/System_Administrators_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://docs.fedoraproject.org/en-US/Fedora/26/html/System_Administrators_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://docs.fedoraproject.org/en-US/Fedora/26/html/System_Administrators_Guide/sect-signing-kernel-modules-for-secure-boot.html
https://blog.ubuntu.com/2017/08/11/how-to-sign-things-for-secure-bootq

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 5

Figure 2. Secure Boot Architecture

The following sections describe these boot flows and architecture. Refer to Reference docs [1], [2], [8], and [9] in Table 2 for further

details.

2.2 Firmware Threat Model

Exposures and vulnerabilities on the platforms continue to grow and attacks are referenced in [10]. Attacks increasingly are now

being rooted in the most basic component on every platform: the underlying firmware which is based on the UEFI standard. As the

capabilities of the UEFI firmware grows (including LAN access), so does the potential attack surface that is exposed to attackers,

including zero day vulnerabilities. Firmware-based Bootkits and Rootkits can stay undetected and be exploited for long periods of

time. This is a serious problem for critical infrastructure including Networks and Cloud deployments.

UEFI standard implementations are open sourced, and increasingly offered as the firmware of choice on standard servers, often

modified and updated by a complex firmware supply chain including hardware and platform vendors, Independent BIOS Vendors

(IBVs), ODM/OEMs, and Platform Owners. The eventual firmware installed on the production servers must be thoroughly security

tested, policy enforced and authenticated at every boot and update to minimize security exposures.

2.3 Secure Boot Best Practices

Multiple exploits and vulnerabilities have been detected in the UEFI firmware design and implementation, and alongside, possible

mitigations have also been suggested. These include correct implementation of the UEFI Secure Boot, deploying platforms with a

hardware based RoT, following best security BIOS practices prescribed by NIST [7] and NSA [23] for secured server deployments,

and also illustrated in Dell Server Infrastructure security document [19]. ETSI NFV has defined multiple security specifications and

security requirements for NFV Infrastructure (NFVI) deployments [2], which are now being implemented in NFV and 5G products

and open source projects. Very large, full scale-out deployments at Cloud Providers like Google* tout the use of a secure verification

chain as basis of their Secure Boot stack. Google “use cryptographic signatures over low-level components like the BIOS,

bootloader, kernel, and base operating system image. These signatures can be validated during each boot or update” [11] to assure

customers of the security of their infrastructure.

Intel has continued to lead in this space, both in driving security research to detect vulnerabilities before they can be exploited to

working with the industry to make UEFI implementations more secure. Intel’s hardware RoT components is branded as Intel® Boot

Guard which was launched on Intel servers starting with the Intel® Xeon® Scalable platform. Intel has co-defined the UEFI standard

[2], including the UEFI Secure Boot with the industry and community, facilitating the open source implementations. The UEFI Secure

Boot solution is widely supported and deployed for Red Hat*, SUSE*, and Ubuntu* operating systems, and most large OEMs have a

deployment-ready solution.

Code signing indicates that the Platform Owner has authorized that image to be deployed on certain platforms provisioned with the

corresponding Public Keys. It is, therefore, highly recommend that the Platform Owner security validate the code and images prior

to signing and assign a security version.

Intel highly recommends that our customer server deployments follow the NIST BIOS Security guidelines [7] and industry boot

security best practices for platform firmware based on a hardware RoT [11].

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 6

2.4 Secure Boot Use Cases and Requirements

There are multiple scenarios where Secure Boot remains a fundamental security building block, especially for critical and sensitive

infrastructure deployments. In addition, deployments that are in remote locations often without physical controls may need to

mandate hardware-based RoT secure boot policy. Table 3 contains a subset of the use cases and corresponding platform security

requirements.

Table 3. Secure Boot Use Cases

Use Case Platform Security Requirements

System Owner/Admin. ensures that their deployed platform(s) boot

with their authorized FW/SW images only (including OEM authorized by

Operator).

Hardware-Based Root of trust

HW-rooted crypto-signatures on all FW and OS images

Signature verification at boot of all FW and OS images

Signing Key Management and Boot Policy Control

Anti-rollback controls

System Owner/Admin wants to prevent installation of boot update

images that may be tampered with while in repository.

Signature verification at boot of all updated FW and OS images

HW Fuse-Based Security Versioning

System Owner/Admin. meets regulatory, industry and standards

compliance security requirements.

NIST SP800-147B

ETSI NFV SEC001, SEC012, SEC013

System Owner/Admin. prevents booting from unauthorized

replacement of image flash memory.
Securely verify and deploy boot images from flash memory

Platform is available and serviceable through Operator’s trusted parties

(including OEMs, TEMs, and others).
Secure Recovery mechanism, per policy

2.5 Secure Boot Ecosystem Enabling Flow

Deploying a Secure Boot solution on Intel Platforms comprises multiple vendors, each delivering a portion of the overall integrated

solution, as shown in Figure 3.

Figure 3. Intel® Architecture Secure Boot Ecosystem Enabling Flow

The role of the various vendors is as follows:

 Intel delivers a hardware-based root of trust, which is the Intel® Boot Guard technology. Intel has worked with the UEFI and OS

vendors to enable Secure Boot platforms to our end customers.

 OEM and ODMs design the platforms and integrate the BIOS on the platform, designing in Intel® Boot Guard by provisioning the

signing key hashes in their manufacturing flows. OEMs validate the platform firmware.

 OEMs integrate UEFI Secure Boot credentials, based on their end customer requirements and keys. They also provide

integrated secure Recovery and secure Firmware Update system components.

 The OS vendors provide the OS Boot Loader and signed OS kernels. These system components are integrated into the

platform by OEMs, TEMS, and/or System integrators.

 The secure boot platform is delivered to the marketplace by the OEM.

2.6 Secure Boot support on Intel® Server Platforms

Intel Server platforms use the UEFI specifications based firmware, and as such, support UEFI Secure Boot on all platforms. The

evolution of UEFI Secure Boot follows the UEFI standards specifications revisions and open source, TianoCore project [2].

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 7

UEFI Secure Boot, by itself, can be deployed on any Intel Server platform and in this case, the UEFI firmware itself is the Root of

Trust for Secure Boot. Clearly, trust for platform boot is rooted on the UEFI firmware, and as such, any adversary capable of

installing their firmware on a machine can effectively control that machine and possibly other machines, possibly as an Advanced

Persistent Threat (APT).

Intel® Boot Guard is a hardware-based Root-of-Trust (RoT) that was introduced on the Intel® Xeon® Scalable platform. Starting in

2018, Intel® Boot Guard is available on Intel® Xeon® Scalable platform and Intel® Xeon® D processor-based server products ,which

brings the architectural innovations of the Intel® Xeon® Scalable platform to a system-on-a-chip (SoC) processor for lower-power,

high-density solutions, integrating essential network, security and acceleration capabilities. Intel® Boot Guard does not have any

software requirements; it is enabled at the factory, and cannot be disabled.

Intel and the industry has started investigating technologies for Secure Boot, Attestation and Firmware Reslience covering

verification of additional platform firmware. Technologies like Intel’s Platform Firmware Resilience (PFR) [17], Cerberus* [17] from

Open Compute Project and Microsoft*, and Google* Titan [16] are introducing an on-platform chip or an FPGA that can perform

platform hardware RoT function. These technologies are currently in development and out of scope for this paper.

3 Intel® Boot Guard Basics

UEFI BIOS code execution is generally untethered to the underlying hardware, which means this UEFI BIOS code runs without being

verified or measured. Hence, this makes the entire boot process vulnerable to subversion of the BIOS, whether that can happen

through an unprotected update process or simple hardware attacks using SPI flash memory replacement or using a Dediprog*.

Intel® Boot Guard provides robust hardware-enforced boot policy controls to platform manufacturers and platform owners to

authorize which BIOS code is allowed to run on that platform. Intel® Boot Guard provides that hardware based Root-of-Trust (RoT)

for platform boot verification, which is responsible for verifying the BIOS image prior to BIOS execution. Intel® Boot Guard raises the

security bar of the platform, reducing the above attack vectors and making it harder to launch attacks to subvert the boot process.

See [14] in Table 2 for an example of an OEM incorporating Intel® Boot Guard into its Platform Security solution.

4 UEFI Secure Boot Basics

This section gives an overview of UEFI Secure Boot architecture components, defined in the UEFI Specification [2]. In a nutshell,

UEFI uses the cryptographic signature verification mechanisms to first verify and then install the verified firmware components. The

Platform Owner or OEM creates a cryptographic hash of the firmware component image, and then signs this hash with their

firmware signing private key. For example, a Platform Owner could create a cryptographic hash using the SHA-256 algorithm and

then sign the hash using the RSA PKCS#1 signature standard.

Figure 4 shows that the cryptographic hash(es) of the Public Key(s) corresponding to the signature Private Keys are securely made

available as Certificates (step 1) to the firmware image for verification (steps 2A, 2B, and 2C). The UEFI Option ROMs and the OS

Boot Loader are verified using the provisioned certificates.

Figure 4. UEFI Secure Boot Components

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 8

The UEFI Secure Boot will stop the platform boot if signatures are not valid. In such cases, the remediation or recovery mechanisms

need to be built as per the platform security policy. For instance, in some cases for Comms devices, the Platform Owners prefer a

“dead” platform when the Intel® Boot Guard or UEFI detects signature verification failure. In other cases, the platforms would

implement an OEM provided secure recovery procedure or remediate the platforms to a remediation network for further analysis.

4.1 Authenticated Variables and Key Provisioning

Table 4 summarizes the UEFI secure credentials and use.

Table 4. UEFI Authenticated Variables

Credential Purpose Provisioning Entity

PK Platform Key – Root key set to enable Secure Boot Platform Manufacturer

KEK Key Exchange Key. - List of certificate owners with db, dbx update privilege. OS Partner (Optional: OEM Key)

db Authorized Database. - List of Allowed Driver or App. Signers (or hashes). OS Partner, or CA (Optional: OEM Appl. Key)

dbx Exclusion Database. - List of Revoked Signers (or hashes). Signing Authority

SetupMode 1= in Setup Mode, 0 = PK is Set (User Mode) -

SecureBoot 1 = Secure Boot in force -

The owner of the certificate in KEK can update the DB and DBX, which is usually the OSV. The owner of the certificate in PK can

update the KEK. If the image is signed by a key in DB, then it is allowed to run. If the image is signed by a key in DBX, then it is

forbidden to run.

4.2 Secure Firmware Update

Once the platform is up and running, it is a good operational security practice to securely update the platform with the latest CPU

patches, firmware, OS, and driver revisions. Often, these updates are driven by security fixes in prior and existing deployed versions.

Hence, system administrators should require that these updates adhere to the commensurate security level and trust policies that

were applied to the system boot.

At a minimum, all firmware and OS updates should follow a secure firmware update process, which includes that the update images

are verified prior to install. This should also include checking for Security Version information to ensure that the attacker is not

reverting back to an older vulnerable image. This is done with the Anti-rollback feature supported by Intel and OEM firmware.

4.3 Firmware Recovery

Intel® Boot Guard and UEFI Secure Boot enforce a strict security policy of installing only the authorized images that pass the

cryptographic signature verification checks as per the security policy. It is quite possible that a signature failure, possibly due to

operational error or security attack, may occur, which leaves the platform in a cold state. In essence, the platform is unbootable

using the currently available firmware and OS images.

OEMs and System Owners have deployed measures for reliably detecting such situations and performing recovery. Intel® Boot

Guard and UEFI Secure Boot specifications do not define Recovery procedures, which are largely deployment and system-specific.

In some cases like Routers, sensitive Base Stations, and others, the security policy may not allow any recovery procedures. Firmware

boot failures are considered catastrophic and hence, must be security evaluated. In some other cases, for instance in Cloud and

controlled deployments, secure recovery procedures may be instituted via Out Of Band or in band mechanisms. Dell* describes a

mechanism in [11].

5 UEFI Secure Boot: Operating System Enhancements

This section covers various techniques Operating Systems use to improve the security posture on a platform when they detect UEFI

Secure Boot is used to boot the platform.

5.1 Signed Kernel Modules

As described in Section 4, UEFI Secure Boot ensures that OS boot loaders are signed appropriately prior to execution. OEMs by

default ship their production platforms with Microsoft* UEFI Certificates already installed. Linux* distributions (such as Red Hat*,

Ubuntu*, and SUSE*) make use of this capability by shipping their first stage OS loader, called Shim which is signed by the Microsoft

UEFI Certificate Authority. Inside their Shim, they have their own UEFI key, which they use to sign their own next stage OS loader,

predominantly Grub2. This means the OSVs can be in total control of the Grub2 (bug fixing, feature updating, etc.) without having to

re-sign it with the Microsoft UEFI Certificate Authority for every change.

Figure 5 shows how this is done for Linux.

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 9

Figure 5. Shim Certificate Signing

Figure 6 shows how the OSVs extend this trust boot chain to the OS kernel and drivers.

Figure 6. OSV Secure Boot Chain of Trust

The UEFI aware OSes continue this sign verification trust into any kernel drivers that may be installed after the system OS boots.

This ensures that the system software remains trusted. The grub2, kernel, and kernel module components of this chain of trust will

not be loaded unless they are signed appropriately by the OSV. All of the aforementioned Linux OSVs support UEFI Secure Boot

out-of-the-box and they include all these properly signed components as part of their standard distributions [8, 9, 12]. Refer to

Table 2.

5.2 Machine Owner Keys

Figure 7 illustrates how the OSVs also cater for scenarios whereby the user, or machine owner, may want to create their own version

of grub2 or use their own modified kernel or third-party/out-of-tree kernel drivers. This capability is provided via the MOK (Machine

Owner Key) List feature of the Shim. It enables the machine owner to use their own key and enroll it into the Shim for subsequent

use when verifying images (OS loader, kernel, kernel modules).

Figure 7. MOK and User Signed Images

See references [24, 25] for examples of how Linux OSVs use the MOK utilities to sign third-party and out-of-tree kernel

modules/drivers.

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 10

5.3 Kernel Security Enhancements

On platforms with UEFI Secure Boot enabled, Linux OSVs have taken extra steps to ensure the OS is not compromised by applying a

set of kernel lockdown patches. The main principle of the security patches are to disable the use of mechanisms that could be used

to modify the resident kernel with unauthenticated code. The steps taken include the following:

 User mode direct hardware access is not allowed. This prevents access to PCI resources, DMA, and read-write operations to

ports.

 Write access to /dev/mem/ and /dev/kmem/ is not allowed.

 Hibernation and the user space software suspend interface are disabled.

 MSR Writes are disabled.

Intel strongly recommends that once the platform is up and running, it is a good operational security practice to securely update the

platform with the latest CPU patches, firmware, OS, and driver revisions.

5.4 Enhanced Platform Awareness (EPA) for Secure Boot

In orchestration environments such as OpenStack* and Kubernetes*, the discovery of compute node capabilities has seen

significant research and development. The detection of a compute node’s platform security posture is one area where this extra

platform information can assist in the decision making process of where to deploy trusted workloads.

In Kubernetes, there has been no way to identify hardware capabilities or the ability for a workload to request certain hardware

features. The Node Feature Discovery capability was created to bring Enhanced Platform Awareness (EPA) to Kubernetes [21].

EPA has been updated to detect if a compute node has been booted with Secure Boot. It can now detect if Intel® Boot Guard is

enabled and if UEFI Secure Boot is enabled on a running node [22].

6 Networking Workloads on UEFI Secure Boot Platforms

This section describes the impacts and mitigations for certain networking workloads when executed on platforms with UEFI Secure

Boot enabled.

6.1 Networking Workload Impact

Figure 8 provides an illustration of sample networking workloads that use ingredients that are impacted by the kernel security

enhancements described in the previous section.

Figure 8. UEFI Secure Boot Impact on Networking Workloads

Applications that use DPDK, e.g. OVS, VPP, are impacted when DPDK is configured to use the igb_uio and supporting UIO kernel

module to map NIC resources into user space. The UIO kernel module is prevented from performing the mapping operation when

the kernel detects, at runtime, that UEFI Secure Boot is enabled.

Similarly, the Intel® Resource Director Technology (Intel® RDT) based platform quality of service (pQoS) application and supporting

library is prevented from writing to MSRs using the standard MSR module within the kernel.

6.2 Networking Workload Mitigations for Secure Boot

Figure 9 illustrates the mitigations possible for impacted networking workloads.

Application Note | Secure the Network Infrastructure - Secure Boot Methodologies

 11

Figure 9. UEFI Secure Boot Mitigations

Applications using DPDK can be configured to use the VFIO kernel module. In fact, this is the recommended configuration

promoted by many in the industry as the most secure, since it makes use of the protection provided by the IOMMU [18]. VFIO has

been supported in the Linux kernel since version 3.6, and has been introduced to DPDK since version 1.7.

The Intel® RDT pQoS application and libraries are now built with the ability to use multiple mechanisms to configure MSRs. As well

as using the impacted MSR kernel module, it can work with the resctrl filesystem module, which is now an upstreamed kernel

module and supported by all major Linux OSVs.

7 Summary and Call to Action

Applying best practice security methodologies such as creating a hardware based Root of Trust (RoT) is an effective way of

protecting network infrastructure against ever increasing cyber-attacks. The objective of this paper is to share best practices as

recommended by Intel, specifically in the use of Intel® Boot Guard technology and UEFI Secure Boot to create secure networking

platforms for NFV, 5G, Edge, and Comms systems. Intel has also worked with industry leaders (OEM/OSVs) to create an ecosystem

that supports Secure Boot. In addition to taking these measures at the platform level, Intel also strongly recommends that

customers implement a Security Strategy at the network orchestration level. Using these proven technologies will be critical in

protecting data and IP in a Secure Network Infrastructure.

For any further questions, please contact your Intel support team.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree

to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact

your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized

errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation 0619/DN/PTI/PDF 338941-002US

http://www.intel.com/design/literature.htm

	1 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2 Secure Boot Overview
	2.1 Secure Boot Architecture and Flow
	2.2 Firmware Threat Model
	2.3 Secure Boot Best Practices
	2.4 Secure Boot Use Cases and Requirements
	2.5 Secure Boot Ecosystem Enabling Flow
	2.6 Secure Boot support on Intel® Server Platforms

	3 Intel® Boot Guard Basics
	4 UEFI Secure Boot Basics
	4.1 Authenticated Variables and Key Provisioning
	4.2 Secure Firmware Update
	4.3 Firmware Recovery

	5 UEFI Secure Boot: Operating System Enhancements
	5.1 Signed Kernel Modules
	5.2 Machine Owner Keys
	5.3 Kernel Security Enhancements
	5.4 Enhanced Platform Awareness (EPA) for Secure Boot

	6 Networking Workloads on UEFI Secure Boot Platforms
	6.1 Networking Workload Impact
	6.2 Networking Workload Mitigations for Secure Boot

	7 Summary and Call to Action

