
 1

A service mesh is an infrastructure network layer framework that handles security, traffic
management, and telemetry between microservices in a clustered environment.

Authors
Luyao Zhong

Mrittika Ganguli

Ismo Puustinen

Qiming Liu

Rafal Sznejder

Sakari Poussa

Ramesh Masavarapu

Executive Summary
A service mesh is a configurable, low‑latency infrastructure layer designed to handle a high
volume of network‑based inter-process communication among application infrastructure
services using application programming interfaces (APIs). The service mesh ensures that the
communication layer between microservices is fast, reliable, and secure. Some of the key
features include service discovery, security, traceability, and observability.

A service mesh can be implemented by multiple open-source software solutions. This
document discusses the open-source project, Istio that implements the service mesh
architecture. Istio is the control plane and Envoy is used as a sidecar proxy for the data plane.

This document is part of the Network Transformation Experience Kits.

Service Mesh Performance and Latency Challenges
One of the biggest challenges with the current open-source implementations of Istio and
Envoy that have been addressed by Intel are associated with performance and latency.

Service mesh deployments that use Istio with Envoy cause latency and performance
challenges due to the nature of sidecar implementation in Envoy. Intel has addressed this
performance and latency challenges by utilizing Intel® Xeon® CPU features such as Intel®
QuickAssist Technology (Intel® QAT) and Intel® Dynamic Load Balancer (Intel® DLB). The
results are:

• Up to 1.6x CPU cycles saved, up to 2.37x throughput/RPS improvement and up to
1.95x latency reduction using Intel QAT in a 1C-16C scaling experiment on the 4th
Gen Intel® Xeon® Scalable processor

• Using 1x QAT, for 8 core and 16 cores, save 42% and 60% respectively on the 4th
Gen Intel Xeon Scalable processor CPU cycles

• Using 2x QAT, for 8 core and 16 cores, save 18% and 49% for 2x Intel QAT on the
4th Gen Intel Xeon Scalable processor CPU cycles

• For the same RPS, latency improves upto 1.96x for mixed message sizes using Intel
DLB on the 4th Gen Intel Xeon Scalable processor

• Reduction in latencies on the 4th Gen Intel® Xeon® Scalable processor using the
Hyperscan optimizations

• TCP/IP eBPF Bypass performance optimization has shown a reduction of latencies
on the 4th Gen Intel Xeon Scalable processor

Solution Brief

Service Mesh – Istio and Envoy Optimizations
for Intel® Xeon® Scalable Processors

https://networkbuilders.intel.com/intel-technologies/experience-kits

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 2

Service Mesh - Istio and Envoy
A service mesh is a dedicated infrastructure layer for handling service-to-service communication. It is responsible for the
reliable delivery of requests through the complex topology of services that comprise a modern, cloud native deployment. In
practice, the service mesh is typically implemented as an array of lightweight network proxies that are provisioned alongside
deployment code, without the deployment needing to be aware. The core of service mesh is to provide a unified global method
to control and measure all request traffic between deployments or services.

Istio is an open-source solution, which implements the service mesh framework that handles traffic management, security,
telemetry, and observability within a clustered environment. Istio utilizes Envoy as a sidecar proxy to handle all data plane traffic
whereas, Istio handles all the control plane traffic within a clustered environment.

Figure 1. Istio and Envoy

Istio and Envoy Optimizations
Performance - TLS Accelerations using Intel® QAT and Intel® AVX-512
TLS Acceleration within Envoy can happen using Intel® QAT hardware acceleration or Intel® AVX-512 vectorized instruction
set.

TLS Acceleration using Intel QAT
Crypto operations can be both symmetric and asymmetric in nature. Intel’s optimizations implement the solution by using
asynchronous TLS to take advantage of the hardware offload acceleration benefits, which also saves CPU cycles.

Intel AVX-512 utilizes Single Instruction Multiple Data (SIMD) vector instruction capabilities into the CPU. Recently, crypto
instructions have been added to the vector instruction set Intel AVX-512. TLS handshake, when accelerated with Intel AVX-512,
are executed in parallel and thus, improve performance.

Envoy uses BoringSSL as the default TLS library. BoringSSL supports setting private key methods for offloading asynchronous
private key operations. Envoy implements a private key provider framework to allow creation of Envoy extensions, which
handles TLS handshake private key operations (signing and decryption) using the BoringSSL hooks.

CryptoMB private key provider is an Envoy extension, which handles BoringSSL TLS RSA operations using Intel AVX-512 multi-
buffer acceleration. When a new handshake occurs, BoringSSL invokes the private key provider to request the cryptographic
operation, and then the control returns to Envoy. The RSA requests are gathered in a buffer. When the buffer is full or the timer
expires, the private key provider invokes Intel AVX-512 processing of the buffer. When processing is done, Envoy is notified that
the cryptographic operation is completed and that it may continue with the handshake.

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 3

Figure 2. Envoy and Asynchronous Handshakes

The Envoy worker thread has a buffer size for eight RSA requests. When the first RSA request is stored in the buffer, a timer will
be initiated (timer duration is set by the poll_delay field in the CryptoMB configuration). When the buffer is full or when the timer
expires, perform the crypto operations for all RSA requests simultaneously. The SIMD processing gives the potential
performance benefit compared to the non-accelerated case.

Figure 3: Crypto Multi-Buffer when Timer has started

Figure 4. Crypto Multi-Buffer when Timer has expired

As illustrated in the figures above, when the CryptoMB timer expires there is a parallel execution of the crypto operations.

TLS Handshake Performance Improvement using Intel QAT
Intel QAT is a special hardware accelerator, which is visible to the operating system as a PCI device. The Envoy Intel QAT
private key provider expects that the Intel QAT devices are available using the regular Linux kernel driver, present in Linux kernel
from version 5.15 onward. The Intel QAT endpoint is exposed to Envoy via an SR-IOV VF device, which is the standard Intel QAT
container deployment method, used, for example, in Kubernetes via Intel QAT device plugin.

Envoy TLS context BoringSSL Private Key Provider

handshake

RSA sign function

in progress

in progress

processing offline

handshake cryptography done

handshake

completion function

complete

complete

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 4

Figure 5. Envoy Intel QAT SW stack enablement for Kubernetes

The performance benefit from using Intel QAT for TLS handshakes depends on many factors. Most important is simply the
amount of asymmetric cryptography that needs to be done because that makes the cryptography acceleration have more
effect in the overall performance. For example, if there are only a few new TLS connections per second or if the selected RSA
key size is small, the acceleration possibilities are smaller. Conversely, if the RSA key size is large and there are many incoming
RSA connections, the possibility for performance increase is bigger. Another thing to consider is the number of CPU threads
Envoy is running on. On smaller number of CPU cores the performance benefit is easier to see, since the acceleration leaves the
CPU cores free to do other useful work needed for connection processing.

The performance impact has several components:

• The change in maximum throughput (requests / second)

• The change in latency (time required to complete a single operation)

• The change in CPU utilization

• The change in server power requirements

Performance – Intel® Dynamic Load Balancer (Intel® DLB) on 4th Gen Intel® Xeon® Scalable Processor
In Envoy, there are two main issues that Intel’s DLB accelerator solves:

1. Distribution across cores is not even. Some cores are more occupied than the others.

2. Envoy has its exact balance SW load balancer, which balances connections, but CPU cycles utilized are uneven (20% in
some, 80% in others)

Intel DLB offloads the distribution of requests across worker cores at the server.

The Intel DLB is a hardware managed system of queues and arbiters connecting producers and consumers. It is a PCI device in
the CPU package. Intel DLB interacts with software running on cores and potentially other devices.

Intel DLB implements the load balancing features outlined earlier, including the following:

1. Lock-free multi-producer/multi-consumer operation

2. Multiple priorities for varying traffic types

3. Various distribution schemes

Data-plane software communicates with Intel DLB using standard (PCI) memory mapped interfaces in a simple, low cycle-cost
way that is enabled with DPDK. Intel DLB supports virtualization using industry-standard techniques and is exposed as part of
the Virtual Network Function Infrastructure on an Intel® architecture platform. Intel DLB further allows finer grained isolation
between individual applications if necessary. Use Intel DLB to offload the distribution of requests across worker cores at the
server.

More information on Intel DLB can be found at: https://builders.intel.com/docs/networkbuilders/SKU-343247-001US-queue-
management-and-load-balancing-on-intel-architecture.pdf

https://builders.intel.com/docs/networkbuilders/SKU-343247-001US-queue-management-and-load-balancing-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/SKU-343247-001US-queue-management-and-load-balancing-on-intel-architecture.pdf

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 5

Figure 6: Solution based on Intel DLB

Figure 7. Traditional HTTP Traffic flow Handling in Envoy

Figure 8. HTTP Traffic flow Handling with Intel DLB in Envoy

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 6

Performance – Envoy Routing Acceleration using Hyperscan
Envoy performs filtering, access control, and routing operations within a service mesh environment. During filtering operations,
it selects different filters for different HTTP requests. For access control operations, Envoy utilizes access control to block
suspicious requests by matching their characteristics with security policies. The routing actions involve parsing the URL paths
and other components of HTTP requests that need to be routed upstream to different clusters or services.

During the above operations, regex matching is key factor that helps Envoy decide the routing of a request. These regex
operations utilize expensive CPU cycles. Utilizing Hyperscan to optimize the regex matching operations improves the
performance by saving CPU cycles and the latency of requests.

In operations mentioned above, matching is the basic but core module, which helps Envoy to decide where a request can be
redirected, and the regex matching is one of the most expensive methods, which consumes much more CPU utilization
compared to prefix and exact matching.

Performance - TCP/IP Bypass using eBPF
The current implementation of service mesh in Istio and Envoy involve an overhead of TCP/IP stack. Data plane implementation
in Istio is through Envoy as a sidecar proxy. The data packets traverse the TCP/IP stack at least three times during the following
situations:

• Inbound

• Outbound

• Envoy to Envoy within the same host

Figure 9. Typical Istio/Envoy Deployment within a K8’s Cluster

The multiple TCP/IP stack traversal causes performance degradation in the data plane when envoy is deployed as a sidecar
proxy. Intel’s proposed solution is to bypass the TCP/IP networking stack in the Linux kernel by utilizing eBPF module. This
solution has shown a reduction in latency and increase in the throughput because the data is being written directly to the socket
in the user space.

Figure 10. TCP/IP Bypass using eBPF

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 7

Benefits of Solution
Performance – TLS Accelerations on 4th Gen Intel Xeon Scalable Processor using Intel QAT and Intel
AVX-512
TLS acceleration can be achieved on 4th Gen Intel Xeon Scalable processor using either Intel QAT accelerator or the Intel AVX-
512 (Crypto MultiBuffer) vectorized acceleration. TLS acceleration using Intel QAT on 3rd Gen Intel® Xeon® Scalable
processor is NOT supported.

The configuration is provided in Appendix 2.

Figure 11. Benchmarking Setup

The performance and latency charts below showcase the TLS accelerations performance on 4th Gen Intel® Xeon® processor
with AVX-512 (Crypto MultiBuffer), and different Intel QAT end points. The TLS accelerations can be achieved either with Intel
QAT or Intel AVX-512.

Figure 12. TLS Performance on 4th Gen Intel® Xeon® Scalable Processor

21
66

42
67 84

86 16
31

7

43
62 87

78 17
09

0 33
07

6

75
88 14

37
7

25
48

0

28
38

1

75
97 14

37
8

25
55

9 42
27

4

1C2T 2C4T 4C8T 8C16T

RE
Q

U
ES

TS
 P

ER

SE
CO

N
D

INGRESS CORES

REQUESTS PER SECOND

no accel

cryptoMb

QATcrypto: 1

QATcrypto: 2

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 8

Figure 13. Latency on 4th Gen Intel Xeon Scalable Processor

Summary

Using 1x QAT, for 8 core and 16 cores can save 42% and 60% respectively on CPU cycles.

Using 2x QAT, for 8 core and 16 cores can save 18% and 49% for 2x QAT on CPU cycles. It is best to use 16 cores for 2x QAT.

Performance – Intel Dynamic Load Balancer (Intel DLB) on 4th Gen Intel Xeon Scalable Processor
The setup for the benchmarking is shown below:

Figure 14: Intel DLB based solution in Envoy

Setup and configuration of the benchmark to showcase the Intel DLB benefits in Envoy using nighthawk is in Appendix 3.

1C2T 2C4T 4C8T 8C16T 16C32T
no accel 952 1312 627 336 323
cryptoMb 384 182 159 249 67
QATcrypto: 1 101 92 260 118 97
QATcrypto: 2 44 100 115 85 106

0
200
400
600
800

1000
1200
1400

La
te

nc
y

[m
s]

Ingress cores

Latency P99 [ms] – lower is better

no accel

cryptoMb

QATcrypto: 1

QATcrypto: 2

90%

70%

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 9

Figure 15: Benchmarking setup for Envoy optimization using Intel DLB

Performance

The latency of different message sizes with 4000 connections.

Figure 16: P99 Latency for different message sizes on 4 Gen Intel Xeon Scalable Processor

Summary

For the same RPS, latency improves upto 1.96x for mixed message sizes using Intel DLB in a 6C12Th setup.

1 1 1 1

0.11 0.04 0.09 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1kB 10kB 1MB mixed

Latency P99 ratios - lower is better

no DLB DLB
Message sizes

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 10

Use Case Examples
TLS Accelerations using Intel AVX-512 and Intel QAT

Intel® AVX-512

An example deployment below shows a sample configuration of Istio with Envoy as a sidecar proxy using Intel AVX-512
vectorized instruction set. Envoy is deployed as an Ingress Gateway within the cluster whereas there are two microservices
running Envoy as a sidecar proxy within a Kubernetes cluster. A user can apply the private key provider configuration to:

1. Ingress Gateway only

2. Application Specific Pods by configuring them using pod annotations

Figure 17. Istio Deployment utilizing Intel AVX-512

TLS Configuration with only a private key

tls_certificates:

 certificate_chain: { "filename": "/path/cert.pem" }

 private_key: { "filename": "/path/key.pem" }

TLS Configuration with CryptoMB private key provider

tls_certificates:

 certificate_chain: { "filename": "/path/cert.pem" }

 private_key_provider:

 provider_name: cryptomb

 typed_config:

 "@type":
type.googleapis.com/envoy.extensions.private_key_providers.cryptomb.v3alpha.CryptoMbPrivate
KeyMethodConfig

 private_key: { "filename": "/path/key.pem" }

 poll_delay: 10ms

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 11

Intel® QAT

Envoy supports Intel QAT for accelerating TLS handshakes. The performance benefit varies depending on the use case, but
Intel QAT can help in reducing CPU usage, reducing individual request latency, and increasing throughput. The Intel QAT to
Envoy support needs to be enabled by a configuration file change or by a dynamic Envoy listener configuration over the xDS
protocol. In addition, the Envoy container must have Intel QAT resources added to it by configuring Kubernetes cluster
accordingly.

Envoy TLS configuration can be done by two methods: either using direct configuration from a configuration file or using SDS
(Secret Discovery Service) protocol for remotely configuring Envoy from an external control plane. Intel QAT TLS acceleration
can be enabled in both ways.

When using direct configuration file configuration, the regular way for setting the private key is by adding it to as private_key
field to Envoy’s common_tls_context [1]:

common_tls_context:

 tls_certificates:

 - certificate_chain:

 filename: ”/tmp/rsa-cert.pem”

 private_key:

 filename: ”/tmp/rsa-key.pem”

However, when Intel QAT acceleration is required, private_key field should be replaced with suitably configured
private_key_provider field:

common_tls_context:

 tls_certificates:

 - certificate_chain:

 filename: ”/tmp/rsa-cert.pem”

 private_key_provider:

 provider_name: qat

 typed_config:

 "@type":
"type.googleapis.com/envoy.extensions.private_key_providers.qat.v3alpha.QatPrivateKeyMethod
Config"

 poll_delay: 0.002s

 private_key:

 filename: ”/tmp/rsa-key.pem”

The Intel QAT private key provider configuration has two fields: poll_delay and private_key. The private_key field works as a
regular Envoy DataSource type. The poll_delay field is a Duration type and specifies how often the Intel QAT instance should be
polled when waiting for an answer to Intel QAT request. The right value depends on the tradeoff between CPU consumption
and latency requirements and might require experimentation depending on the workload setup. A value of 0.002s (2
milliseconds) is a good starting point.

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 12

Intel Dynamic Load Balancer (Intel DLB) on 4th Gen Intel Xeon Scalable Processor
The most prominent use case is when Envoy is used as an Ingress Proxy Server. Deploying Intel DLB solution show cases the
benefits.

Figure 18. Envoy as an Ingress Proxy Server with Intel DLB optimizations

An example configuration:

static_resources:
 listeners:
 - connection_balance_config:
 extend_balance:
 name: envoy.network.connection_balance.dlb
 typed_config:
 "@type": type.googleapis.com/envoy.extensions.network.connection_balance.dlb.v3alpha.Dlb

Installation and Configuration details of the driver are listed here.

Envoy Routing Acceleration using Hyperscan
This use case describes when an Envoy is used as an Ingress Gateway. The following diagram illustrates the different filters and
steps that are triggered when Envoy must make routing decisions.

Figure 19. Envoy routing flow for incoming requests

https://downloadmirror.intel.com/727424/DLB_Driver_User_Guide.pdf

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 13

TCP/IP Bypass using eBPF
The below use case is an example of deploying eBPF within service mesh.

Figure 20. Using eBPF Solution within Service Mesh Envoy Deployment

Inbound Acceleration

For inbound, server-side envoy connects server application actively. Envoy will hold an active socket, and server app holds a
passive socket. SOCK_OPS is used to define and insert the callback function to kernel; therefore, corresponding callback will be
invoked when TCP state changes. When active socket hits the active established state and passive socket hits passive
established state respectively, socket 4-tuple address and socket FD of these two sockets are recorded to the SOCKHASH
map. After TCP handshake is done and the socket tries to send message, its peer socket can be looked up from the map based
on peer socket 4-tuple address by reversing the local and remote address. This design requires Istio version greater than v1.10,
which has the flag INBOUND_PASSTHROUGH set by default. This flag makes Envoy to use pod IP as the destination IP to
communicate with server app.. If this flag is not set, Envoy will use localhost IP that will cause conflict when populating the map
since our SOCK_OPS program is attached to unified cgroup.

Figure 21. TCP/IP eBPF Bypass Acceleration for Inbound Traffic

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 14

Outbound Acceleration

For outbound, client application tries connecting to another service. After iptables rule is applied, the traffic is redirected to
Envoy and client application sets up a TCP connection with the sidecar. So, client app holds the active socket, which has cluster
IP and port as its remote address, and Envoy holds the passive socket, which has localhost IP and 15001 as local address.
Recording the socket 4-tuple address and socket FD (like in the case of inbound acceleration) is not enough here to find out
peer socket. To resolve this problem, a proxy map is introduced to record the socket pair addresses during TCP handshake.
Source address never changes during communication, it helps to identify which two sockets belong to the same connection.

Figure 22. TCP/IP eBPF Bypass Acceleration for Outbound Traffic

Envoy to Envoy Acceleration on the Same Host

Envoy-to-Envoy acceleration is almost the same as outbound. This is because, from the perspective of kernel, they are all
redirected by iptables, and destination address is modified. If the two envoys are on different hosts then the proxy map will not
be populated because two hosts cannot share the map content. The mapping between original destination and new address
cannot be established on a single host. Therefore, SK_MSG cannot match any entry to get peer socket address in the proxy map
when sending message. In this cross-node case, package is sent out through TCP/IP stack.

Figure 23. TCP/IP eBPF Bypass Acceleration between Envoy side-cars on same host

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 15

Summary
Service Mesh has introduced latency and performance challenges due to the nature of sidecar implementation in Envoy. Intel
has addressed the performance and latency challenges by utilizing Intel Xeon features such as Intel QAT, Intel DLB. The results
of performance and latency improvements can be summarized as below.

• Up to 1.6x CPU cycles saved, up to 2.37x throughput/RPS improvement and up to 1.95x latency reduction using Intel
QAT in a 1C-16C scaling experiment on 4th Gen Intel Xeon Scalable processor

• Using 1x Intel QAT, for 8 core and 16 cores, can save 42% and 60% respectively on 4th Gen Intel Xeon Scalable
processor

• Using 2x Intel QAT, for 8 core and 16 cores, can save 18% and 49% for 2x Intel QAT on 4th Gen Intel Xeon Scalable
processor

• For the same RPS, latency improves upto 1.96x for mixed message sizes using Intel DLB on 4th Gen Intel Xeon
Scalable processor

Availability of Performance Solutions

Table 1: Availability of Performance Solutions

Performance
Optimization

Istio Availability
Envoy
Version

Intel GitHub Dependency Intel Platforms

Intel® QAT TLS
Performance

1.17 – Available in 2023.
1.24 Intel GitHub (Available) QATlib 4th Gen Intel Xeon

Scalable processor

Intel® Crypto
MultiBuffer Perf

1.14

1.20 Intel GitHub (Available) CryptoMB
Library

4th Gen Intel Xeon
Scalable processor, 3rd
Gen Intel Xeon Scalable
processor

Intel® DLB
Performance

1.18 – Available in 2023.
1.23 Intel GitHub (Available) libDLB,

Drivers.
4th Gen Intel Xeon
Scalable processor

Intel® Hyperscan 1.14

1.22 Intel GitHub (Available) Hyperscan 4th Gen Intel Xeon
Scalable processor, 3rd
Gen Intel Xeon Scalable
processor

Intel® TCP/IP
eBPF Bypass

N/A

N/A Intel GitHub (Available) None 4th Gen Intel Xeon
Scalable processor, 3rd
Gen Intel Xeon Scalable
processor

https://intel.github.io/istio/docs/QAT.html
https://intel.github.io/istio/README.html
https://intel.github.io/istio/README.html
https://intel.github.io/istio/README.html
https://intel.github.io/istio/README.html
https://intel.github.io/istio/README.html
https://downloadmirror.intel.com/727424/DLB_Driver_User_Guide.pdf
https://intel.github.io/istio/README.html
https://intel.github.io/istio/README.html
https://github.com/intel/istio-tcpip-bypass

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 16

Terminology

Table 2. Terminology

Abbreviation Description
CPU Central processing unit

eBPF Extended Berkley Packet Filter

Hyperscan Hyperscan is a high-performance multiple regex matching library

Intel® AVX-512 Intel® Advanced Vector Extensions 512

Intel® DLB Intel® Dynamic Load Balancer

Intel® QAT Intel® QuickAssist Technology

RSA Rivest–Shamir–Adleman – A public-key cryptosystem.

SIMD Single Instruction Multiple Data

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

References

Table 3. References

Reference Source
CryptoMB - TLS handshake acceleration for Istio https://istio.io/latest/blog/2022/cryptomb-privatekeyprovider/

DLB Envoy https://www.envoyproxy.io/docs/envoy/latest/configuration/other_features/dlb

Service Mesh - Crypto Accelerations in Istio and
Envoy with Intel Xeon Scalable Processors User
Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-
accelerations-istio-envoy-intel-xeon-sp-user-guide

Service Mesh - Envoy Regular Expression
Matching Acceleration with Hyperscan User
Guide

https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-
expression-matching-acceleration-hyperscan-user-guide

Service Mesh – mTLS Key Management in Istio
and Envoy for Intel® Xeon® Scalable Processors
User Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-
mgmt-istio-envoy-intel-xeon-sp-user-guide

Service Mesh - TCP/IP eBPF Bypass in Istio and
Envoy with Intel Xeon Scalable Processors User
Guide

https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-bypass-
istio-envoy-intel-xeon-sp-user-guide

Document Revision History

Revision Date Description
001 January 2023 Initial release.

https://github.com/intel/hyperscan
https://istio.io/latest/blog/2022/cryptomb-privatekeyprovider/
https://www.envoyproxy.io/docs/envoy/latest/configuration/other_features/dlb
https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-accelerations-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-crypto-accelerations-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-envoy-regular-expression-matching-acceleration-hyperscan-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-mtls-key-mgmt-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-bypass-istio-envoy-intel-xeon-sp-user-guide
https://networkbuilders.intel.com/solutionslibrary/service-mesh-tcp-ip-bypass-istio-envoy-intel-xeon-sp-user-guide

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 17

Appendix 1: Performance Improvements Benchmarking on Intel® QAT, Intel® AVX-512, and
Intel® DLB

Software Configuration 3rd Gen Intel
Xeon Scalable
processor Ice
lake[1]

3rd Gen
Intel Xeon
Scalable
processor
Ice
Lake[2]

4th Gen Intel Xeon
Scalable processor

Sapphire Rapids –
SPR[1] E3

4th Gen Intel Xeon
Scalable processor

Sapphire Rapids –
SPR[2] (with QAT)

Workload & version Nighthawk Nighthawk Nighthawk Nighthawk

Compiler gcc version
11.2.0 (Ubuntu
11.2.0-
19ubuntu1)

gcc
version
11.2.0
(Ubuntu
11.2.0-
19ubuntu1)

gcc version 11.2.0 (Ubuntu
11.2.0-19ubuntu1)

gcc version 11.2.0
(Ubuntu 11.2.0-
19ubuntu1)

Libraries

OS Ubuntu 22.04
LTS

Ubuntu
22.04 LTS

Ubuntu 22.04 LTS Ubuntu 22.04 LTS

Kernel 5.15.0-39-
generic

5.15.0-50-
generic 5.15.0-40-generic 5.17.0-051700-generic

Docker 20.10.17 20.10.17 20.10.17 20.10.17

Kubernetes v1.22.3 v1.22.3 v1.22.3 v1.22.3

Istio 1.13.4 1.13.4 1.13.4 Intel 22.06(1.14)

Calico 3.21.4 3.21.4 3.21.4 3.21.4

Run Method: Warm Warm Warm Warm

Iterations and result
choice (median, average,
min, max)

3 iterations, max 3
iterations,
max

3 iterations, max 3 iterations, max

Protocol HTTP/1.1 and
HTTP/2

HTTP/1.1
and
HTTP/2

HTTP/1.1 and HTTP/2 HTTPS

Payload size 400B 400B 400B 400B

Client threads 40 40 40 40

Operating Frequency 2.0GHz 2.4GHz 2.0GHz 2.0GHz

MTU 1500 1500 1500 1500

aRFS enabled enabled enabled enabled

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 18

Idle-poll disabled disabled disabled disabled

Appendix 2: TLS Accelerations using Intel® QAT and Intel® AVX-512 Configuration

Configuration 4th Gen Intel Xeon Scalable
processor

Sockets 2

CPU Frequency 2.0GHz

Uncore Frequency 2.0GHz

RAM 1024GB [4400 MT/s]

Message size 400B

Appendix 3: Intel® DLB Configuration

4th Gen Intel Xeon Scalable
processor

Sockets 2

CPU Frequency 2.0GHz

Uncore Frequency 2.0GHz

RAM 1024GB [4400 MT/s]

4 1kB, 10kB, 1MB

Appendix 4: Hyperscan Benchmarking Configuration

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 19

Solution Brief | Service Mesh – Istio and Envoy Optimizations for Intel® Xeon® Scalable Processors

 20

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 0123/DN/WIT/PDF 763381-001US

http://www.intel.com/PerformanceIndex

	Authors
	Executive Summary
	Service Mesh Performance and Latency Challenges
	Service Mesh - Istio and Envoy
	Istio and Envoy Optimizations
	Performance - TLS Accelerations using Intel® QAT and Intel® AVX-512
	TLS Acceleration using Intel QAT
	TLS Handshake Performance Improvement using Intel QAT
	Performance – Intel® Dynamic Load Balancer (Intel® DLB) on 4th Gen Intel® Xeon® Scalable Processor
	Performance – Envoy Routing Acceleration using Hyperscan
	Performance - TCP/IP Bypass using eBPF

	Benefits of Solution
	Performance – TLS Accelerations on 4th Gen Intel Xeon Scalable Processor using Intel QAT and Intel AVX-512
	Summary

	Performance – Intel Dynamic Load Balancer (Intel DLB) on 4th Gen Intel Xeon Scalable Processor
	Performance
	Summary

	Use Case Examples
	TLS Accelerations using Intel AVX-512 and Intel QAT
	Intel® AVX-512
	Intel® QAT

	Intel Dynamic Load Balancer (Intel DLB) on 4th Gen Intel Xeon Scalable Processor
	Envoy Routing Acceleration using Hyperscan
	TCP/IP Bypass using eBPF
	Inbound Acceleration
	Outbound Acceleration
	Envoy to Envoy Acceleration on the Same Host

	Summary
	Availability of Performance Solutions
	Terminology
	References
	Document Revision History

	Appendix 1: Performance Improvements Benchmarking on Intel® QAT, Intel® AVX-512, and Intel® DLB
	Appendix 2: TLS Accelerations using Intel® QAT and Intel® AVX-512 Configuration
	Appendix 3: Intel® DLB Configuration
	Appendix 4: Hyperscan Benchmarking Configuration

