
Introduction
Network quality is becoming harder for communications service providers
(CoSPs) to manage manually because of the overwhelming flood of telemetry
data coming from multi-gigabit networks. This challenge grows with the rapid
advancement of 5G technology due to the large number of devices and very fast
data rates. As a result, managing communication networks in an intelligent and
automated fashion using artificial intelligence (AI) technology becomes
increasingly important for CoSPs.

SK Telecom, the largest mobile operator in South Korea, manages more than
400,000 cell towers with over 27 million subscribers. This network handles 1.4
million records every second, which accumulates to 120 billion records per day.²
In order to effectively analyze this massive amount of data, SK Telecom and Intel
engineers built an end-to-end network AI pipeline for network quality prediction
using Analytics Zoo and FlashBase, running on Intel® architecture servers, which
effectively applies a memory-augmented TensorFlow model to large-scale time
series data on Apache Spark.

The entire pipeline (from FlashBase to Spark DataFrames to TensorFlow) runs
on a unified Intel® Xeon® Scalable processor-based server cluster, with Intel®
Advanced Vector Extensions 512 (Intel® AVX-512) and Intel® Deep Learning Boost.
Additionally, this leverages Analytics Zoo software to automatically handle the
in-memory data pipelines and distributed model training and inferencing. In
tests conducted by SKT, this AI pipeline outperforms SKT’s legacy GPU-based
implementation by up to four times and six times for deep learning training and
inference respectively,¹ which enables SK Telecom to more quickly forecast and
detect degradation and abnormal changes in network quality so that SKT can take
proactive action to deliver their 5G service quality.

AI Pipeline Architecture
Figure 1 shows the high-level architecture for the end-to-end network AI pipeline
in use at SK Telecom.

The entire pipeline runs on an Intel Xeon Scalable processor-based Spark
cluster using Analytics Zoo. Some of the key elements of the solution include the
following:

Analytics Zoo is an Intel-developed open source unified data analytics and AI
platform that simplifies scaling a range of AI models for distributed training
or inference on a big data cluster (such as Apache Spark). TensorFlow was the

Table of Contents

Introduction . 1

AI Pipeline Architecture 1

Test Parameters 2

Improvements over
Conventional Solutions 4

 Improved Model Accuracy 4

 Faster End-to-End Speed 5

 Performance Results 6

Summary . 7

Companies build accelerated end-to-end network AI pipelines using Analytics Zoo, TensorFlow,
and Apache Spark running on an Intel® architecture server; testing shows solution is six times faster
than GPU-based predecessor .¹ The new AI pipeline demonstrates fast predictive analysis of network
quality from SK Telecom’s huge volume of live datasets and distributed AI application with Spark
cluster on 2nd generation Intel® Xeon® Scalable processors, which enables improved network quality
prediction for SK Telecom’s real-world use cases .

Authors
Hongchan (Nate) Roh

SK Telecom

Jason Dai
Intel

SK Telecom, Intel Build AI Pipeline
to Improve Network Quality

White Paper

https://github.com/intel-analytics/analytics-zoo

AI model used in this testing, but other models are also
supported, including PyTorch, Intel® Distribution of OpenVINO
toolkit, and Ray. Analytics Zoo also enables porting AI
pipelines to Apache YARN or Kubernetes containerized
servers without the need to modify the clusters. Analytics
Zoo provides unified infrastructure for data processing, model
training, and model inference, which reduces data movement
and consolidates data storage and pipelines.

Apache Spark is an open-source distributed general-
purpose cluster-computing framework. Spark Core
provides in-memory computing capabilities to deliver
high-performance generalized execution to support a wide
variety of applications. APIs for Java, Scala, and Python APIs
ensure ease of development. For this testing, DataFrames
was used as the programming abstraction language acting as
a distributed SQL query engine.

TensorFlow is an open-source symbolic math software
library for dataflow and differentiable programming across
a range of tasks. TensorFlow is a Python library for fast
numerical computing and was created and released by
Google. It is a foundation library that can be used to create
deep learning models directly or by using wrapper libraries
that simplify the process built on top of TensorFlow.

Intel Xeon Scalable processors powered the CPU-
only server used in the testing. These CPUs provide the
foundation for high performance data center platforms
delivering both agility and scalability. This innovative
processor platform converges capabilities across compute,
storage, memory, network, and security. The Intel Xeon
Scalable platform is designed for data center modernization

to drive operational efficiencies that lead to improved total
cost of ownership (TCO) and higher productivity for users.³
For AI projects, Intel Xeon Scalable processors provide
vectorized and deep learning instructions via support for
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) and
Intel® Deep Learning Boost.

Test Parameters
Network KPI data is collected every five minutes from over
400,000 cell towers and stored into FlashBase, an in-
memory data store for Spark that supports extreme data
partitioning and efficient aggregation push-down. The KPI
data is then processed using Spark DataFrames. After that,
Analytics Zoo can directly apply the TensorFlow models to
the in-memory Spark DataFrames in a distributed fashion
across the Spark cluster, as illustrated below.

1. First, load the data from FlashBase using Spark
DataFrames for preprocessing, and transform Spark
DataFrames to the resilient distributed datasets (RDD) of
TensorFlow Tensors.

from zoo.tfpark import TFDataset
train_df, val_df = get_df_from_flashbase(sc, train_
cells=0.8, valid_cells=0.2)
dataset = TFDataset.from_dataframe(train_df,

feature_cols=[...],
labels_cols=[...],
batch_size=config.batch_size,
val_df=val_df)

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

Figure 1 . SK Telecom Lightning DB solution using Analytics Zoo on Intel Xeon processor-based servers

Ingest Prepare ActAnalyze

CPU
+GPU

CPU
only

4G/
5G

DRAM
Store

Flash
Store

Data Source APIs

Export AI inference

Preprocessing

3X reduction in inference time
30-50% increase in training throughput

Scalable design

Unified Pipeline

AI inference

Preprocessing

CPU+GPU Cluster

CPU Cluster

CSV

Data Pipeline

(Legacy)

(New)

2

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

2. Second, use standard TensorFlow APIs to build the memory-augmented network model.

class Model(object):
def __init__(self, config, input_x=None, memories=None, targets=None):

...
self._build_model()

def _build_model(self):
self.add_placeholder()
with tf.variable_scope("inputs"):

input_ar, ar_loss = self.auto_regressive(self.input_x, ...)
with tf.variable_scope("memories"):

memories = tf.concat(tf.split(self.memories, ...), axis=0)
memory_ar, ar_loss_ = self.auto_regressive(memories, ...)
context = self.attention(input_ar, memory_ar)
linear_inputs = tf.concat([input_ar, context], axis=1)
self.predictions = tf.layers.dense(linear_inputs, ...)
self.loss = tf.losses.mean_squared_error(labels=self.targets,

predictions=self.predictions)

model = Model(config, dataset.feature_tensors[0], dataset.feature_tensors[1],
dataset.label_tensors)

3. Third, use Analytics Zoo APIs to train the TensorFlow model on the Spark cluster in a distributed fashion at scale.

optimizer = TFOptimizer.from_loss(model.loss, Adam(1e-3))
optimizer.optimize(end_trigger=MaxEpoch(num_epochs))
saver = tf.train.Saver()
saver.save(optimizer.sess, "/tmp/armem")

4. Finally, use Analytics Zoo APIs for distributed TensorFlow inference at scale on Spark DataFrames.

dataset = TFDataset.from_dataframe(test_df, feature_cols=[...], batch_per_thread=4)
model = Model(config, dataset.feature_tensors[0], dataset.feature_tensors[1])
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, "/tmp/armem")
predictor = TFPredictor.from_outputs(sess, [model.predictions])
predictions_rdd = predictor.predict()

3

Figure 3 . Memory-augmented network model

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

memory1 memory2 memory7 current▪ ▪ ▪ ▪

Attention
layer

memory3

▪ ▪ ▪ ▪

▪ ▪ ▪ ▪

Encoder1 Encoder2▪ ▪
▪ ▪

Encoder1 Encoder1 Encoder1

Concat FCNN 𝑦𝑦!"#"

Final
prediction

Last 7 days Last 50 min Predict 5 min

4

Figure 2 . Seq2seq cannot predict sudden changes in network KPIs

Actual Forecast Error: MAE Score: Error*100

Network Quality KPI Column (1/10)Error: 0.09693 Score: 9.69

Improvements over Conventional Solutions
Several innovations were adopted in this end-to-end network
AI pipeline in order to improve both model accuracy and
end-to-end performance over the conventional GPU-based
architecture that SKT had previously utilized.

Improved Model Accuracy
Seq2seq is an encoder/decoder framework and is often
used for sequence prediction. However, this turns out to be
a suboptimal implementation for this type of network AI use
case, primarily because the Seq2seq model cannot predict the
sudden changes in the network KPI data (as shown in Figure 2).

Based on work done by Chang et al.,⁴ the authors built a
new memory-augmented model to improve the prediction
accuracy of network KPIs, as shown in Figure 3.

• The model takes two inputs, namely the data collected in
the last 50 minutes, and the history data of the last 7 days
during the same time period. It then predicts the future
value for the next 5 minutes.

• Data in the last 50 minutes and last 7 days are passed to
two different encoders that are defined by autoregressive
terms.

• Encoder 1 :

• Encoder 2 :

• In the next step, attention scores are calculated, and the
attention weighted memories are concatenated with the
current state vector for final prediction.

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

5

As shown in Figure 4, the memory-augmented model can
accurately predict any sudden changes in network KPI data,
which is critical in the network quality prediction use case.

Faster End-to-End Speed
Previously, SK Telecom followed a conventional approach
to set up two separate clusters, one for data processing in
Spark, and the other for deep learning training/inference
using GPUs, as illustrated in Figure 5. However, this created
two separate workflows, which introduced significant
overhead, including exporting data from Spark cluster
through files, copying the files between different clusters,

and loading the files from disks—all of which caused delays
and increases the maintenance burden.

By moving to the new CPU-based architecture shown in
Figure 1, SKT could run the end-to-end pipeline on the same
Spark cluster using Analytics Zoo in a distributed fashion to
unite the data store (using FlashBase), data preprocessing
(with Spark DataFrames), model training and inference (with
TensorFlow) into an integrated in-memory data analytics
pipeline. This integrated pipeline performance was four
times faster for deep learning training and six times faster for
inference than the existing GPU architecture.¹

Actual Forecast Error: MAE Score: Error*100

Network Quality KPI Column (1/1)Error: 0.05633 Score: 5.63

Figure 4 . Memory-augmented model can predict sudden changes

Figure 5 . Old architecture with two separate clusters

Data
Store

Export

Preprocessing

Or

Training & Inferencing

CSV

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

Figure 6 . Training throughput tested at SK Telecom Testbed (higher is better)

Figure 7 . Elapsed time for end-to-end inference pipeline tested at SK Telecom Testbed (lower is better)

2.3 2.3

71.96

9.61
2.56 1.43

0.63

0.63

0.68 0.18

0

20

40

60

80

Python Preprocessing (Pandas)
& Inference on GPU

Python Distributed
Preprocessing (DASK)

& Inference on GPU

Analytics Zoo on one
Intel® Xeon® Gold 6240 CPU-

based server

Analytics Zoo on three Intel®
Xeon® Gold 6240 CPU-

based servers

Se
co

nd
s

Inference Pipeline Elapse Time
Lower Is Better

Data Load Preprocessing Inference

6

Figure 7 shows the performance in terms of the elapsed
time for the end-to-end inference pipeline, which includes
data load, data preprocessing, and model inference. (Note
that data copy overhead to the GPU architecture is not
included here). As shown in Figure 7, Analytics Zoo running

on Intel Xeon Scalable Gold 6240 processor-based servers
outperformed the legacy GPU-based solution by up to three
times on a single-node server, and up to six times when
running on a three-node cluster for preprocessing and
inference stages.

0

200

400

600

800

8,192 16,384 32,768 65,536

Th
ou

sa
nd

s
of

 R
ec

or
ds

 p
er

 S
ec

on
d

Batch Size

Training Throughput
Higher Is Better

GPU solution Analytics Zoo on one Intel® Xeon® Gold 6240 CPU-based server Analytics Zoo on three Intel® Xeon® Gold 6240 CPU-based servers

Performance Results
Figure 6 shows the training throughput (record/second) for
Analytics Zoo running on Intel Xeon Gold 6240 CPU-based
server cluster compared to the legacy architecture based on
NVIDIA GPU . As shown in Figure 7, Analytics Zoo running
on a single-node Intel Xeon Gold 6240 server demonstrated

competitive training performance compared with one GPU.
In addition, the Analytics Zoo solution can seamlessly and
efficiently scale to a large cluster using Spark, which showed
up to 4x speed-up on a 3-node Intel Xeon Scalable cluster
compared to one GPU.

White Paper | SK Telecom, Intel Build AI Pipeline to Improve Network Quality

Summary
SK Telecom have developed an end-to-end network AI
pipeline using open source FlashBase, Spark, TensorFlow,
and Analytics Zoo. Leveraging an Intel® Xeon® Scalable
processor-based server cluster, with Intel® Advanced
Vector Extensions 512 (Intel® AVX-512) and Intel® Deep
Learning Boost, SK Telecom can execute unified network
quality prediction workloads, including data processing to
feature engineering and deep learning training/inference,
as an integrated in-memory data analytics pipeline. In
tests conducted by the company, this pipeline architecture
outperformed SKT’s legacy GPU-based pipeline architecture
by up to six times.

Learn More
Intel Xeon Processors: https://www.intel.com/xeon

SK Telecom: https://www.sktelecom.com/index_en.html

Analytics Zoo: https://software.intel.com/content/www/us/
en/develop/topics/ai/analytics-zoo.html

Apache Spark: https://spark.apache.org

TensorFlow: https://www.tensorflow.org

Lightning DB: https://lightningdb.io

About the Authors

Hongchan (Nate) Roh
hongchan.roh@sk.com
Team leader (Sr. Software Engineer), SK Telecom

DBMS Ph. D., Data engineer, and creator of Lightning DB (real-
time big data analytics engine)

Jason Dai
jason.dai@intel.com
Sr. Principal Engineer, Intel, Intel Architecture Graphics and
Software

Founding committer and PMC member of Apache Spark;
mentor of Apache MXNet; creator of BigDL and Analytics Zoo

7

Notices & Disclaimers

 ¹ Tests conducted by SK Telecom in Feb. 2020: The Analytics Zoo server was an Intel® Server System R2208WFTZSR powered by a 2.6 GHz Intel Xeon Gold 6240 processor (microcode
0x400002c). The server featured three nodes and six sockets. Both Intel® Hyper-Threading Technology and Intel® Turbo Boost Technology were turned on. Total memory equaled 256 GB.
CentOS 7.8 (kernel 3.10.0) was the operating system and the server ran the SK Telecom Lightning DB application. Other software included Analytics Zoo v0.7, Tensorflow v1.15, Pandas v0.25.3,
NumPy v1.18.0, and Dask v2.7.0.

 The GPU server was a HPE DL380 Gen 9 powered by a 2.4 GHz Intel Xeon E5-2680 v4 processor (microcode 0xb00001e) and an Nvidia P100 GPU (AI training)/K80 (AI inference). The server
featured one node and two sockets. Both Intel Hyper-Threading Technology and Intel Turbo Boost Technology were turned on. Total memory equaled 256 GB. CentOS 7.3 (kernel 3.10.0) was the
operating system and the server ran the SK Telecom Lightning DB application. Other software included Tensorflow GPU v1.12, Pandas v0.25.1, NumPy v1.14.5, and Dask v2.7.0.

 ² Data from SK Telecom, September 2020.
 ³ https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-scalable-platform-brief.pdf
 ⁴ Yen-Yu Chang, Fan-Yun Sun, Yueh-Hua Wu, Shou-De Lin. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. https://arxiv.org/abs/1809.02105

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
 Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may

cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component
can be absolutely secure.

 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

 Your costs and results may vary.
 Intel technologies may require enabled hardware, software or service activation.
 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
 1020/DO/H09/PDF Please Recycle 344751-001US

https://www.intel.com/xeon
https://www.sktelecom.com/index_en.html
https://software.intel.com/content/www/us/en/develop/topics/ai/analytics-zoo.html
https://software.intel.com/content/www/us/en/develop/topics/ai/analytics-zoo.html
https://spark.apache.org
https://www.tensorflow.org
https://lightningdb.io
mailto:hongchan.roh%40sk.com?subject=
mailto:jason.dai%40intel.com?subject=
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-scalable-platform-brief.pdf
https://arxiv.org/abs/1809.02105
http://www.intel.com/benchmarks

