
Introduction
Network quality is becoming harder for communications service providers  
(CoSPs) to manage manually because of the overwhelming flood of telemetry 
data coming from multi-gigabit networks. This challenge grows with the rapid 
advancement of 5G technology due to the large number of devices and very fast 
data rates. As a result, managing communication networks in an intelligent and 
automated fashion using artificial intelligence (AI) technology becomes  
increasingly important for CoSPs. 

SK Telecom, the largest mobile operator in South Korea, manages more than 
400,000 cell towers with over 27 million subscribers. This network handles 1.4 
million records every second, which accumulates to 120 billion records per day.² 
In order to effectively analyze this massive amount of data, SK Telecom and Intel 
engineers built an end-to-end network AI pipeline for network quality prediction 
using Analytics Zoo and FlashBase, running on Intel® architecture servers, which 
effectively applies a memory-augmented TensorFlow model to large-scale time 
series data on Apache Spark. 

The entire pipeline (from FlashBase to Spark DataFrames to TensorFlow) runs 
on a unified Intel® Xeon® Scalable processor-based server cluster, with Intel® 
Advanced Vector Extensions 512 (Intel® AVX-512) and Intel® Deep Learning Boost. 
Additionally, this leverages Analytics Zoo software to automatically handle the 
in-memory data pipelines and distributed model training and inferencing. In 
tests conducted by SKT, this AI pipeline outperforms SKT’s legacy GPU-based 
implementation by up to four times and six times for deep learning training and 
inference respectively,¹ which enables SK Telecom to more quickly forecast and 
detect degradation and abnormal changes in network quality so that SKT can take 
proactive action to deliver their 5G service quality.

AI Pipeline Architecture
Figure 1 shows the high-level architecture for the end-to-end network AI pipeline 
in use at SK Telecom.  

The entire pipeline runs on an Intel Xeon Scalable processor-based Spark 
cluster using Analytics Zoo. Some of the key elements of the solution include the 
following:

Analytics Zoo is an Intel-developed open source unified data analytics and AI 
platform that simplifies scaling a range of AI models for distributed training 
or inference on a big data cluster (such as Apache Spark). TensorFlow was the 
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Companies build accelerated end-to-end network AI pipelines using Analytics Zoo, TensorFlow, 
and Apache Spark running on an Intel® architecture server; testing shows solution is six times faster 
than GPU-based predecessor .¹ The new AI pipeline demonstrates fast predictive analysis of network 
quality from SK Telecom’s huge volume of live datasets and distributed AI application with Spark 
cluster on 2nd generation Intel® Xeon® Scalable processors, which enables improved network quality 
prediction for SK Telecom’s real-world use cases .

Authors
Hongchan (Nate) Roh

SK Telecom 

Jason Dai
Intel 

SK Telecom, Intel Build AI Pipeline 
to Improve Network Quality

White Paper

https://github.com/intel-analytics/analytics-zoo


AI model used in this testing, but other models are also 
supported, including PyTorch, Intel® Distribution of OpenVINO 
toolkit, and Ray. Analytics Zoo also enables porting AI 
pipelines to Apache YARN or Kubernetes containerized 
servers without the need to modify the clusters. Analytics 
Zoo provides unified infrastructure for data processing, model 
training, and model inference, which reduces data movement 
and consolidates data storage and pipelines. 

Apache Spark is an open-source distributed general-
purpose cluster-computing framework. Spark Core 
provides in-memory computing capabilities to deliver 
high-performance generalized execution to support a wide 
variety of applications. APIs for Java, Scala, and Python APIs 
ensure ease of development. For this testing, DataFrames 
was used as the programming abstraction language acting as 
a distributed SQL query engine.

TensorFlow is an open-source symbolic math software 
library for dataflow and differentiable programming across 
a range of tasks. TensorFlow is a Python library for fast 
numerical computing and was created and released by 
Google. It is a foundation library that can be used to create 
deep learning models directly or by using wrapper libraries 
that simplify the process built on top of TensorFlow.

Intel Xeon Scalable processors powered the CPU-
only server used in the testing. These CPUs provide the 
foundation for high performance data center platforms 
delivering both agility and scalability. This innovative 
processor platform converges capabilities across compute, 
storage, memory, network, and security. The Intel Xeon 
Scalable platform is designed for data center modernization 

to drive operational efficiencies that lead to improved total 
cost of ownership (TCO) and higher productivity for users.³ 
For AI projects, Intel Xeon Scalable processors provide 
vectorized and deep learning instructions via support for 
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) and 
Intel® Deep Learning Boost.

Test Parameters
Network KPI data is collected every five minutes from over 
400,000 cell towers and stored into FlashBase, an in-
memory data store for Spark that supports extreme data 
partitioning and efficient aggregation push-down. The KPI 
data is then processed using Spark DataFrames. After that, 
Analytics Zoo can directly apply the TensorFlow models to 
the in-memory Spark DataFrames in a distributed fashion 
across the Spark cluster, as illustrated below. 

1. First, load the data from FlashBase using Spark
DataFrames for preprocessing, and transform Spark
DataFrames to the resilient distributed datasets (RDD) of
TensorFlow Tensors.

from zoo.tfpark import TFDataset
train_df, val_df = get_df_from_flashbase(sc, train_
cells=0.8, valid_cells=0.2)
dataset = TFDataset.from_dataframe(train_df,

feature_cols=[...],  
labels_cols=[...],
batch_size=config.batch_size, 
val_df=val_df)
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Figure 1 . SK Telecom Lightning DB solution using Analytics Zoo on Intel Xeon processor-based servers
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2. Second, use standard TensorFlow APIs to build the memory-augmented network model.

class Model(object):
def __init__(self, config, input_x=None, memories=None, targets=None):

...
self._build_model()     

def _build_model(self):
self.add_placeholder()
with tf.variable_scope("inputs"):

input_ar, ar_loss = self.auto_regressive(self.input_x, ...)
with tf.variable_scope("memories"):    

memories = tf.concat(tf.split(self.memories, ...), axis=0)
memory_ar, ar_loss_ = self.auto_regressive(memories, ...)        
context = self.attention(input_ar, memory_ar)
linear_inputs = tf.concat([input_ar, context], axis=1)
self.predictions = tf.layers.dense(linear_inputs, ...)
self.loss = tf.losses.mean_squared_error(labels=self.targets,

predictions=self.predictions)

model = Model(config, dataset.feature_tensors[0], dataset.feature_tensors[1], 
dataset.label_tensors)

3. Third, use Analytics Zoo APIs to train the TensorFlow model on the Spark cluster in a distributed fashion at scale.

optimizer = TFOptimizer.from_loss(model.loss, Adam(1e-3))
optimizer.optimize(end_trigger=MaxEpoch(num_epochs))
saver = tf.train.Saver()
saver.save(optimizer.sess, "/tmp/armem")

4. Finally, use Analytics Zoo APIs for distributed TensorFlow inference at scale on Spark DataFrames.

dataset = TFDataset.from_dataframe(test_df, feature_cols=[...], batch_per_thread=4)
model = Model(config, dataset.feature_tensors[0], dataset.feature_tensors[1])
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, "/tmp/armem")
predictor = TFPredictor.from_outputs(sess, [model.predictions])
predictions_rdd = predictor.predict()
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Figure 3 . Memory-augmented network model
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Figure 2 . Seq2seq cannot predict sudden changes in network KPIs

Actual Forecast Error: MAE Score: Error*100

Network Quality KPI Column    (1/10)Error:   0.09693   Score:   9.69

Improvements over Conventional Solutions 
Several innovations were adopted in this end-to-end network 
AI pipeline in order to improve both model accuracy and 
end-to-end performance over the conventional GPU-based 
architecture that SKT had previously utilized. 

Improved Model Accuracy
Seq2seq is an encoder/decoder framework and is often 
used for sequence prediction. However, this turns out to be 
a suboptimal implementation for this type of network AI use 
case, primarily because the Seq2seq model cannot predict the 
sudden changes in the network KPI data (as shown in Figure 2). 

Based on work done by Chang et al.,⁴ the authors built a 
new memory-augmented model to improve the prediction 
accuracy of network KPIs, as shown in Figure 3.

• The model takes two inputs, namely the data collected in 
the last 50 minutes, and the history data of the last 7 days 
during the same time period. It then predicts the future 
value for the next 5 minutes.

• Data in the last 50 minutes and last 7 days are passed to 
two different encoders that are defined by autoregressive 
terms.

• Encoder 1 :

• Encoder 2 :

• In the next step, attention scores are calculated, and the 
attention weighted memories are concatenated with the 
current state vector for final prediction.
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As shown in Figure 4, the memory-augmented model can 
accurately predict any sudden changes in network KPI data, 
which is critical in the network quality prediction use case.

Faster End-to-End Speed
Previously, SK Telecom followed a conventional approach 
to set up two separate clusters, one for data processing in 
Spark, and the other for deep learning training/inference 
using GPUs, as illustrated in Figure 5. However, this created 
two separate workflows, which introduced significant 
overhead, including exporting data from Spark cluster 
through files, copying the files between different clusters,  

and loading the files from disks—all of which caused delays 
and increases the maintenance burden.

By moving to the new CPU-based architecture shown in 
Figure 1, SKT could run the end-to-end pipeline on the same 
Spark cluster using Analytics Zoo in a distributed fashion to 
unite the data store (using FlashBase), data preprocessing 
(with Spark DataFrames), model training and inference (with 
TensorFlow) into an integrated in-memory data analytics 
pipeline. This integrated pipeline performance was four 
times faster for deep learning training and six times faster for 
inference than the existing GPU architecture.¹

Actual Forecast Error: MAE Score: Error*100

Network Quality KPI Column    (1/1)Error:   0.05633   Score:   5.63

Figure 4 . Memory-augmented model can predict sudden changes 

Figure 5 . Old architecture with two separate clusters
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Figure 6 . Training throughput tested at SK Telecom Testbed (higher is better)

Figure 7 . Elapsed time for end-to-end inference pipeline tested at SK Telecom Testbed (lower is better)
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Figure 7 shows the performance in terms of the elapsed 
time for the end-to-end inference pipeline, which includes 
data load, data preprocessing, and model inference. (Note 
that data copy overhead to the GPU architecture is not 
included here). As shown in Figure 7, Analytics Zoo running 

on Intel Xeon Scalable Gold 6240 processor-based servers 
outperformed the legacy GPU-based solution by up to three 
times on a single-node server, and up to six times when 
running on a three-node cluster for preprocessing and 
inference stages.
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Performance Results
Figure 6 shows the training throughput (record/second) for 
Analytics Zoo running on Intel Xeon Gold 6240 CPU-based 
server cluster compared to the legacy architecture based on 
NVIDIA GPU . As shown in Figure 7, Analytics Zoo running 
on a single-node Intel Xeon Gold 6240 server demonstrated 

competitive training performance compared with one GPU. 
In addition, the Analytics Zoo solution can seamlessly and 
efficiently scale to a large cluster using Spark, which showed 
up to 4x speed-up on a 3-node Intel Xeon Scalable cluster 
compared to one GPU.
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Summary 
SK Telecom have developed an end-to-end network AI 
pipeline using open source FlashBase, Spark, TensorFlow, 
and Analytics Zoo. Leveraging an Intel® Xeon® Scalable 
processor-based server cluster, with Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512) and Intel® Deep 
Learning Boost, SK Telecom can execute unified network 
quality prediction workloads, including data processing to 
feature engineering and deep learning training/inference, 
as an integrated in-memory data analytics pipeline. In 
tests conducted by the company, this pipeline architecture 
outperformed SKT’s legacy GPU-based pipeline architecture 
by up to six times. 

Learn More 
Intel Xeon Processors: https://www.intel.com/xeon

SK Telecom: https://www.sktelecom.com/index_en.html

Analytics Zoo: https://software.intel.com/content/www/us/
en/develop/topics/ai/analytics-zoo.html

Apache Spark: https://spark.apache.org 

TensorFlow: https://www.tensorflow.org 

Lightning DB: https://lightningdb.io
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Notices & Disclaimers

 ¹ Tests conducted by SK Telecom in Feb. 2020: The Analytics Zoo server was an Intel® Server System R2208WFTZSR powered by a 2.6 GHz Intel Xeon Gold 6240 processor (microcode 
0x400002c). The server featured three nodes and six sockets. Both Intel® Hyper-Threading Technology and Intel® Turbo Boost Technology were turned on. Total memory equaled 256 GB. 
CentOS 7.8 (kernel 3.10.0) was the operating system and the server ran the SK Telecom Lightning DB application. Other software included Analytics Zoo v0.7, Tensorflow v1.15, Pandas v0.25.3, 
NumPy v1.18.0, and Dask v2.7.0.

  The GPU server was a HPE DL380 Gen 9 powered by a 2.4 GHz Intel Xeon E5-2680 v4 processor (microcode 0xb00001e) and an Nvidia P100 GPU (AI training)/K80 (AI inference). The server 
featured one node and two sockets. Both Intel Hyper-Threading Technology and Intel Turbo Boost Technology were turned on. Total memory equaled 256 GB. CentOS 7.3 (kernel 3.10.0) was the 
operating system and the server ran the SK Telecom Lightning DB application. Other software included Tensorflow GPU v1.12, Pandas v0.25.1, NumPy v1.14.5, and Dask v2.7.0.

 ² Data from SK Telecom, September 2020.
 ³ https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-scalable-platform-brief.pdf
 ⁴ Yen-Yu Chang, Fan-Yun Sun, Yueh-Hua Wu, Shou-De Lin. “A Memory-Network Based Solution for Multivariate Time-Series Forecasting”. https://arxiv.org/abs/1809.02105 

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may 

cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product 
when combined with other products. For more complete information visit www.intel.com/benchmarks.

  Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component 
can be absolutely secure. 

  Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, 
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by 
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

  Your costs and results may vary. 
  Intel technologies may require enabled hardware, software or service activation.
  Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
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