
 1

Technology Guide

Telemetry Aware Scheduler -
Enhancement Utilization with Platform
Aware Scheduling

Authors
Madalina Lazar

Denisio Togashi

Marlow Weston

Ukri Niemimuukko

1 Introduction
In today’s cloud technology, Kubernetes (K8s) is the gold standard for containers
orchestration in all kinds of environments and areas that need workload management and
deployment. K8s includes Network Function Virtualization (NFV), Internet of Things (IoT),
5G, and Artificial Intelligence (AI). These diverse areas have different optimizations, and K8s
must be managed to handle all of them. One of the more challenging areas of optimization is
resource management, especially with the increasing numbers of machines with the
increasing cost of energy resources. Valuable solutions will both optimize the efficiency and
functionality of workloads while also allowing for a reduction in both cost and environmental
impact.

Platform Aware Scheduling (PAS) was developed at Intel to address these concerns. It is
comprised of a group of related projects that expose platform specific attributes to the K8s
scheduler and make this data available for scheduling and descheduling decisions in
Kubernetes. Current extenders include Telemetry Aware Scheduling (TAS) and GPU Aware
Scheduling (GAS). TAS helps Kubernetes and the community to improve resource
optimization based on the telemetry data generated from the workload(s) resources. It is
based on written policies, which provide full automation of workloads deployment and
management in a closed loop. GAS allows the usage of GPU resources, such as memory
amount, for scheduling decisions in Kubernetes). This allows users to handle fractional GPU
workload requests in multi-card GPU nodes.

This guide is a refresher on the previous article on Telemetry Aware Scheduling; it presents
the latest additions to PAS (TAS & GAS) and an example of TAS implementation that uses
customer or platform generated telemetry data to assist the K8s scheduler in determining
the best placement of a workload in the cluster. Not only does this paper appeal to a more
general audience, it will also address K8s cluster operators, developers, and architects.

This document is part of the Network Transformation Experience Kits.

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 2

Table of Contents
1 Introduction .. 1

1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Overview ...4
2.1 Challenges Addressed ...4
2.2 Technology Description ..4
2.3 Architecture .. 7

3 Deployment ... 8
3.1 Installation of TAS and Dependencies... 8
3.2 TAS in Operation .. 8

4 Implementation Example .. 10

5 Benefits ... 10

6 Summary .. 10

Figures
Figure 1. Architecture Diagram ... 7
Figure 2. Deployment Diagram ... 9

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents .. 3

Document Revision History

Revision Date Description
001 September 2021 Initial release.

002 October 2022
New additions to features and improvements since the previous revision. Updated the installation
steps to account for newer versions of Kubernetes and Kubernetes Descheduler.

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

GAS GPU Aware Scheduling

GB Gigabits

GPU Graphics Processing Unit

Intel® RDT Intel® Resource Director Technology

IoT Internet of Things

JSON JavaScript Object Notation

K8s Kubernetes

LLC Last Level Cache

NFV Network Function Virtualization

OPNFV Open Platform for NFV

PAS Platform Aware Scheduling

PMU Performance Monitoring Unit

RAM Random Access Memory

RAS Reliability, Availability, and Serviceability

TAS Telemetry Aware Scheduling

TLS Transport Layer Security

VPU Vision Processing Units

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
Barometer Home https://wiki.opnfv.org/display/fastpath/Barometer+Home

collectd https://github.com/collectd/collectd

Closed Loop Automation - Telemetry Aware
Scheduler for Service Healing and Platform
Resilience Demo

https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-
scheduler-for-service-healing-and-platform-resilience-demo

Closed Loop Automation - Telemetry Aware
Scheduler for Service Healing and Platform
Resilience White Paper

https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-
service-healing-and-platform-resilience.pdf

Energy Savings & Resiliency with Closed Loop
Platform Automation

https://tma.roc.cnam.fr/Proceedings/TMA_Demo_5.pdf

GPU Aware Scheduling https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-
scheduling

Intel RDT https://wiki.opnfv.org/display/fastpath/Intel_RDT

Kubernetes Descheduler User Guide https://github.com/kubernetes-sigs/descheduler/blob/master/docs/user-guide.md

Kubernetes Prometheus Adapter https://github.com/DirectXMan12/k8s-prometheus-adapter

Node Exporter https://github.com/prometheus/node_exporter

One Click Install of Barometer Containers https://wiki.opnfv.org/display/fastpath/One+Click+Install+of+Barometer+Containers

Prometheus https://github.com/prometheus/prometheus

Platform Aware Scheduling https://github.com/intel/platform-aware-scheduling

Telemetry Aware Scheduling https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-
scheduling

https://wiki.opnfv.org/display/fastpath/Barometer+Home
https://github.com/collectd/collectd
https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://networkbuilders.intel.com/closed-loop-automation-telemetry-aware-scheduler-for-service-healing-and-platform-resilience-demo
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://tma.roc.cnam.fr/Proceedings/TMA_Demo_5.pdf
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling
https://wiki.opnfv.org/display/fastpath/Intel_RDT
https://github.com/kubernetes-sigs/descheduler/blob/master/docs/user-guide.md
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/prometheus/node_exporter
https://wiki.opnfv.org/display/fastpath/One+Click+Install+of+Barometer+Containers
https://github.com/prometheus/prometheus
https://github.com/intel/platform-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 4

Reference Source
Telemetry Aware Scheduling – Automated
Workload Optimization with Kubernetes (K8s)
Training Video

https://networkbuilders.intel.com/telemetry-aware-scheduling

Telemetry Aware Scheduling (TAS) - Automated
Workload Optimization with Kubernetes (K8s)
Technology Guide

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-
automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf

2 Overview
Telemetry Aware Scheduling extends the Kubernetes Scheduler and the main engine to drive the scheduler’s decisions for a
workload deployment. Based on this concept, TAS via the Platform Aware Scheduling can deliver solutions that the default
Kubernetes Scheduler cannot solve, such as noisy neighbor protection where co-located workloads can compete for specialized
resources (for example, Last Level Cache); Visual Processing at the edge (VPU), like the Intel® Movidius™ Myriad™ X VPU
applied in edge AI image processing workloads. TAS can help to ensure that any new VPU workload is scheduled on a node
where there is more VPU capacity available to enable high performance in use cases like traffic monitoring, video security
systems, and facial recognition. TAS complements the platform resilience use case by delivering up-to-date node-health based
placement suggestions and by indicating possible faulty nodes to the default K8s scheduler. For more information on using TAS
with platform resilience, refer to the Closed Loop Automation - Telemetry Aware Scheduler for Service Healing and Platform
Resilience White Paper.

Platform Aware Scheduling is also home to GPU Aware Scheduling (GAS); GAS allows the usage of GPU resources for
scheduling decisions in Kubernetes. It is used to optimize scheduling decisions when POD resource requirements include the
use of several or fragments of GPUs on a node, instead of traditionally mapping a GPU to a pod. It is designed to be a Kubernetes
Scheduler Extender, and in doing so, will leverage Telemetry Aware Scheduling, through platform metrics and TAS policies, to
get the best decision for the workload deployment.

In general, TAS under the Platform Aware Scheduling, can find solutions for many different areas like automation, service
assurance, and resource management.

2.1 Challenges Addressed

In Kubernetes, scheduling occurs where a pod is assigned to a node. The component responsible for this is Kube-Scheduler (or
simply, scheduler). When a pod with the workload is found by the scheduler, it will try to schedule it on the best available node(s)
that can provide the minimum computer resource types (CPU and memory) that are requested to run the workload. This is the
general approach that is based on the static state of those resources rather than the current state or any previous level of
utilization of those resources.

The lack of knowledge of the current state of the resources, such as CPU and memory, can cause the scheduler to take less than
optimal decisions and affect workload performance. A critical example of a poor placement would be the scheduling of a
workload to a node with a high CPU usage instead of a node with a low CPU usage.

Other resources such as GPUs, FPGAs, and network cards are seen as mere atomic devices that is, either in usage or not. The
scheduler does not have a direct way to access their utilization at a granular level. For example, workloads that need intensive
usage of GPUs will be scheduled to nodes that have GPUs. However, the default scheduler does not prevent the scheduling of
workloads in a situation that can only be achieved by fractioning over several GPUs in the node. More details are available in the
GAS repository.

The inability of Kubernetes to consider the current usage level of the available resources can mislead the scheduler to take non-
optimum scheduling decisions and cause an imbalanced distribution and unexpected resource usage from the workload across
the cluster. TAS is the mechanism that assists K8s in such cases and involves the platform telemetry that becomes crucial in
helping the scheduler not only to know the current resource level usage but also to consider the node history usage and predict
the best node for the workload or avoid scheduling on predicted faulty devices.

2.2 Technology Description

On the deployment of a workload, that is, placement of workload’s pod on a feasible node in a cluster, K8s default scheduler
executes a set of operations such as Filtering and Scoring. Filtering determines the feasible nodes and Scoring assigns scores
between the feasible nodes. The node that is ranked with the highest score is then selected to receive the pod deployment. The
filtering and scoring behavior of the default scheduler can be configured by a scheduling policy configuration file.

Telemetry Aware Scheduling is then enabled as an extender for K8s default Schedule by providing a scheduling policy to the
default Kubernetes scheduler. An example of a policy looks like:

apiVersion: kubescheduler.config.k8s.io/v1beta2
kind: KubeSchedulerConfiguration

https://networkbuilders.intel.com/telemetry-aware-scheduling
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://builders.intel.com/docs/networkbuilders/closed-loop-platform-automation-service-healing-and-platform-resilience.pdf
https://github.com/intel/platform-aware-scheduling/tree/master/gpu-aware-scheduling

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 5

clientConnection:
 kubeconfig: /etc/kubernetes/scheduler.conf
extenders:
 - urlPrefix: "https://tas-service.default.svc.cluster.local:9001"
 prioritizeVerb: "scheduler/prioritize"
 filterVerb: "scheduler/filter"
 weight: 1
 enableHTTPS: true
 managedResources:
 - name: "telemetry/scheduling"
 ignoredByScheduler: true
 ignorable: true
 tlsConfig:
 insecure: false
 certFile: "/host/certs/client.crt"

 keyFile: "/host/certs/client.key"

There are a number of options available to customize the "extenders" configuration object. For more detail, see PAS repository.
Some of these fields - such as urlPrefix, filterVerb and prioritizeVerb are necessary as they help point the Kubernetes
scheduler to the TAS scheduling service URL (in the example above this will be: https://tas-
service.default.svc.cluster.local:9001). With a policy like the above as part of the default scheduler configuration, the identified
webhook then becomes part of the scheduling process. This allows TAS to modify the decisions made by the default scheduler
for workloads that call for the use of TAS.

The Filtering and Prioritization operations in TAS are then aligned with the Filtering and Scoring of the default scheduler; and
together with Descheduler - that removes a workload from its host causing it to be placed on a more suitable host - these three
compose the main processes configured within TAS policies.

TAS policies, implemented as a K8s Custom Resource Definition, are then built on those processes Filtering, Prioritization, and
Descheduling by defining respectively the scheduling Strategies: Scheduleonmetrics, Dontschedule, Deschedule, and Labeling.

Each one of these strategies is governed by rules that relate the platform metrics data values to a desired state defined by the
user or operator.

The “Labeling” strategy is the latest addition to the PAS/TAS’s available scheduling strategies. It is a multi-rule strategy meant
for creating and attaching labels to nodes based on rule violations. Labels will be written to the namespace
telemetry.aware.scheduling.policyname, where policyname will be replaced by the name of the policy. The labels can then be
used with external components like the K8s Descheduler.

An example policy, with strategies and rules as below, is available on the open-source repository.

apiVersion: telemetry.intel.com/v1alpha1
kind: TASPolicy
metadata:
 name: demo-policy
 namespace: default
spec:
 strategies:
 scheduleonmetric:
 rules:
 - metricname: node_metric_1
 operator: LessThan
 dontschedule:
 logicalOperator: anyOf
 rules:
 - metricname: node_metric_1
 operator: GreaterThan
 target: 80
 - metricname: node_metric_2
 operator: LessThan
 target: 200
 deschedule:

https://github.com/intel/platform-aware-scheduling#enabling-a-scheduler-extender
https://tas-service.default.svc.cluster.local:9001/
https://tas-service.default.svc.cluster.local:9001/
https://tas-service.default.svc.cluster.local:9001/
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/deploy/health-metric-demo/health-policy.yaml

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 6

 logicalOperator: allOf
 rules:
 - metricname: node_metric_1
 operator: GreaterThan
 target: 80
 - metricname: node_metric_2
 operator: LessThan
 target: 200
 labeling:
 rules:
 - metricname: node_metric_1
 operator: GreaterThan
 target: 100
 labels: ["foo=1"]

The policy named demo-policy contains four separate rulesets defined under the requested strategies. Each one of these rules
uses a series of metric names (that is, node_metric_1, node_metric_2) to build the set of recommendations based on the
comparison of values defined in the policy field that is, target, and the metrics collected by platform metrics.

In the above “demo-policy” example, the rule in “scheduleonmetrics” strategy advertises the default scheduler to place
workloads toward nodes with the lowest reading that is, lowest value of node_metric_1. The rules in the second strategy
“dontschedule” tells the scheduler to filter out nodes where the node_metric_1 metric value is greater than 80 or the
node_metric_2 metric has a value smaller than 200. The rule in the third strategy “deschedule” tells TAS that the node for which
node_metric_1 has a value greater than 80 and there is node_metric_2 less than 200 is not healthy enough to keep running
workloads. Workloads in this node should be removed and rescheduled. Labeling is a multi-rule strategy for creating node labels
based on rule violations. In the example above if node_metric_1 would be greater than 100, the
telemetry.aware.scheduling.scheduling-policy/foo=1 node label will be created and attached to the respective node.

Labels should have different names in different rules. Labels are key-value pairs and only unique keys can exist in each label
namespace. There can be situations where it is required to have similar label names across rules. If so, when using the
GreaterThan operator the rule with the maximum metric value will be the only one honored. In case of the LessThan operator the
rule with the minimum metric value will be the only one honored.

 labeling:
 rules:
 - metricname: node_metric_1
 operator: GreaterThan
 target: 100
 labels: ["foo=1"]
 - metricname: node_metric_2
 operator: GreaterThan
 target: 100
 labels: ["foo=2"]

The above rules would create label telemetry.aware.scheduling.scheduling-policy/foo=1 when node_metric_1 is
greater than node_metric_2 and also greater than 100. If instead node_metric_2 would be greater than node_metric_1 and also
greater than 100, the produced label would be telemetry.aware.scheduling.scheduling-policy/foo=2. If neither metric
would be greater than 100, no label would be created. When there are multiple candidates with equal values, the resulting label is
random among the equal candidates. Label cleanup happens automatically. An example of the labeling strategy can be found in
here.

With the addition of the anyOf and allOf logical operators, users can now create more complex rules in their TAS policies (that is,
the “deschedule” rule above) which in term will allow them to tackle more complex scheduling scenarios. The operators work
similar to “OR” and “AND” logical operators found in programming languages: that is, with “anyOf” the rule will be triggered if at
least one of the rules is broken and with “allOf”, the rule will be triggered only when all metric rules are broken.

TAS policy system enforces rule-based strategies to control pod distribution across the cluster and influence the scheduling
and lifecycle placement process.

Telemetry Aware Scheduling via policy system allows smart scheduling recommendations and also allows automation of
actions that would otherwise be done manually by the user/operator. As result, it increases the performance by improving the
resource utilization across the whole cluster.

https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/strategy-labeling-example.md

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 7

Figure 1. Architecture Diagram

2.3 Architecture
Figure 1 is a diagram of a Kubernetes cluster with a separate control plane node and worker nodes. The key components are:
Telemetry Aware Scheduling: TAS extender is made up of two main elements in the code base deployed as single container:

• Telemetryscheduler: Recommends nodes for pod placement based on metrics rules.
• Controller: Watches the state of critical metrics and marks violating nodes when deschedule or labeling strategies are

specified in the policy.
Kubernetes Descheduler: Picks up the pods due to be evicted, runs safety checks, and deschedules.
Kubernetes API server: Validates and configures data for the K8s API objects.
Scheduler: Performs scheduling operations and looks for advice from TAS.
Custom Metric Pipeline: Gets metrics from the node metric exporter agents and make them available to K8s API via Custom
Metric API.
Custom Metric API: A K8s API aggregation layer that receives metrics from the Custom Metric Pipeline and makes them
available to TAS.
TAS Policy: A set of strategies and rules made available as a policy custom resource in K8s API.
Pod Spec: Specifically references the policy that should be used to influence the scheduling of this workload.
Node metric exporter agents: “Collectd” and/or "Node Exporter”.
POD-1 linked to policy-1 deployed in a feasible node.
The changes made (related to previous guide) to the Platform Aware Scheduler, are:

• The addition of the “labeling” scheduling strategy
• The support for multiple rules inside scheduling strategies via the “anyOf”, “allOf” logical operators
• All modules inside the PAS project are now tagged in a similar way as the Docker* container image. This release tags the

extender, TAS, and GAS go modules via git tags in the format described in https://go.dev/doc/modules/version-
numbers

• The tests and documentation have been updated to illustrate the newly added features
• TAS has been updated to work with K8s 24
• GAS has added support for doing GPU-tile allocations as a new resource type

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://go.dev/doc/modules/version-numbers
https://go.dev/doc/modules/version-numbers

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 8

• GAS has added support for the “gas-same-gpu” Pod annotation – the annotation value is a list of container names. This
tells GAS which containers should only be given the same GPU. This allows different containers of a POD to e.g., share
the framebuffer of a GPU, as the allocated GPU can be guaranteed to be the same.

3 Deployment
TAS is an open-source community project hosted by the Platform Aware Scheduling available at
https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling Deployment is done directly on
K8s, using Helm* charts provided at the same repository.

3.1 Installation of TAS and Dependencies
1. Install programming languages and packages to deploy and build TAS.

• Go* installation 1.18 or higher

• K8s v23 or higher

• K8s installed on a multi-node cluster using Kubeadm, Helm installed on the K8s cluster

2. Install custom metrics pipeline

• Prometheus - https://github.com/prometheus/prometheus
• Prometheus Adapter - https://github.com/DirectXMan12/k8s-prometheus-adapter
• Node exporter - https://github.com/prometheus/node_exporter
• Collectd - https://github.com/collectd/collectd

3. Install TAS - Build, deploy, and configure TAS

• Configure K8s scheduler extender - https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-
aware-scheduling#extender-configuration

• Deploy the TAS system - https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-
scheduling/deploy

4. Install the Kubernetes Descheduler - https://github.com/kubernetes-sigs/descheduler/tree/v0.23.1

Notes:

• The custom metric pipeline components can be installed by using Helm charts in the quick install at
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling#custom-metrics-pipeline

• Collectd is an additional complementary node metrics provider, which makes many additional platform metrics
available.

3.2 TAS in Operation
Once all the dependency components are installed, configured and up and running, TAS is ready to provide schedule decisions
to the default scheduler. Following the diagram in Figure 1, the steps below demonstrate how TAS works during the workload
deployment that is associated to the TAS policy. Note that the sequence of events is not necessarily in the presented order
since some of the processes can run concurrently.

1. Node metric agents (I) send the monitoring metrics (for example, health_metric) to custom-metrics API (F) via
custom-metric pipeline (E) and therefore to K8s API (C).

2. TAS policies (G) deployed in the cluster are then advertised in K8s API (C).
3. TAS in the cluster (A) starts to watch continuously on the K8s API (C) for TAS policies and updates of policy changes.

• TAS checks the requested strategies and rules from TAS policies in the cluster.
• Based on the policy specs, TAS pulls the metric values advertised in Custom-metric API through K8s API.
• If the “deschedule” strategy’s rules are requested and applicable, TAS labels the nodes that complied with the

“deschedule” strategy’s rules as “violating”. The “violating” label is advertised on K8s API.
• If any “labeling” strategy rules are defined in the TAS policy and they are matched, TAS will label the nodes for

which the policy is applicable with the requested key – value pairs. For example, looking at the labeling strategy
below, if the value “node_metric_1” is greater than 100 then the node in question will get the following labels:
telemetry.aware.scheduling.scheduling-policy/label1=foo and telemetry.aware.scheduling.scheduling-
policy/label2=bar

labeling:
rules:
metricname: node_metric_1
operator: GreaterThan
target: 100

https://github.com/intel/platform-aware-scheduling/tree/master/telemetry-aware-scheduling
https://github.com/prometheus/prometheus
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/prometheus/node_exporter
https://github.com/collectd/collectd
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling#extender-configuration
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling#extender-configuration
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling/deploy
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling/deploy
https://github.com/kubernetes-sigs/descheduler/tree/v0.23.1
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling#custom-metrics-pipeline%20
https://github.com/intel/platform-aware-scheduling/tree/v0.9/telemetry-aware-scheduling#custom-metrics-pipeline%20

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 9

labels: ["label1=foo", “label2=bar”]
4. Descheduler component (B) in the cluster watches K8s API (C)

• If it perceives a node with “violating” label, it evicts pods associated to TAS policy on that node.
• The K8s Schedule (D) with TAS will re-schedule the evicted pods to other available and feasible nodes.
• TAS works with Descheduler up to and including v0.23.1. There are newer versions available, but there seem to be

compatibility issues from v0.24.0 onwards. https://github.com/intel/platform-aware-
scheduling/issues/90#issuecomment-1169012485 links to an issue cut to the Descheduler project team to try to
find a solution to this problem.

5. User deploys a Pod associated to TAS policy (H) for example, set “policy-1” as a label in the pod specs.
• The requested pod is advertised on K8s API (C) and picked up by TAS via K8s Scheduler (D).
• TAS checks if the pod is linked to any TAS policy in the cluster by getting its name in the pod spec.
• TAS internally applies Filter/Prioritize according to the associated strategies and rules in TAS policy linked to the

deployed pod (G, H)
• TAS sends the results to K8s Scheduler (D).
• K8s scheduler (D) schedules the pod by considering TAS results and then advertises the result in K8s API (C).
• Then Kubernetes internal components will make sure that the pod associated to TAS policy is ready in the feasible

worker node (J).

Figure 2. Deployment Diagram

https://github.com/intel/platform-aware-scheduling/issues/90#issuecomment-1169012485
https://github.com/intel/platform-aware-scheduling/issues/90#issuecomment-1169012485

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 10

Figure 2 illustrates an example of how pods are deployed with a “demo-policy” policy demonstrated in previous section:

• Time t0:
− No pods with ‘demo-policy’ label in the nodes.
− Node 3 is filtered out by strategy dontschedule in TAS policy.

• Time t1:
 Pod1 and Pod2 are deployed with ‘demo-policy’.
 Since, the metric values don’t violate the policy, Pod1 and Pod2 are deployed on Node1 and Node2 respectively.

• Time t2:
− Node2 has node_metric_1 value = 85 and node_metric_2 = 195. This violates policy scheduling and follows strategy

deschedule.
− Node 2 now labelled as ‘violating’.
− Descheduler evicts Pod2.

• Time t3:
− Node2 is now filtered out along with Node3
− Node1 metric value allows strategy scheduleonmetric
− Pod2 is now scheduled on Node

4 Implementation Example
By using either the previous guide or the repository, TAS and its dependencies are then up and running in the cluster with the
“demo-policy” TAS policy. The implemented example uses two dummy metrics (node_metric_1, node_metric_2) whose values
are manually changed in a text file that is scraped by the node metric agent (node exporter). The changes of the metrics’ values
will trigger specific actions from TAS. Two value thresholds are defined for node_metric_1, respectively node_metric_2, in the
“demo-policy” TAS policy described in section 2.2. Therefore, where node_metric_1 has values less than 80 and node_metric_2
has values greater than 200, that will make the node in question feasible for the deployment of workloads that are associated to
the “demo-policy”. If there is more than one feasible node, TAS will advertise a priority list based on the magnitude of the metric
values and the rule applied for the “scheduleonmetric” strategy defined in the “demo-policy”. In the implemented example, the
rule tells the scheduler to direct workloads toward nodes with the lowest value for node_metric_1 metric.

If, for example, the value of the node_metric_1 metric would be 87 and node_metric_2 would be equal to 210, TAS will indicate to
the K8s scheduler that nodes with that metric value are not feasible, and they should be filtered out of scheduling
(“dontschedule”). Further on, if the node_metric_2 value would now decrease to 190 (so node_metric_1 = 87, node_metric_2 =
190) nodes where this happens will also be labeled by TAS as “violating, workloads in such nodes will be suitable for eviction by
the Descheduler and rescheduled in another feasible node (Figure 2 summarizes a similar example).

5 Benefits
The addition of the labeling strategy in TAS allows the creation of custom node labels based on rule violations. The labels can
then be used by other external components (that is, Descheduler, GAS) to allow for more complex node filtering queries. The
introduction of the “anyOf” and “allOf” operators throughout all the TAS policy strategy types allows customers to describe
more complex scheduling scenarios. Policy rules will now be able to reference more than one piece of telemetry.

GAS can now take into consideration more resource types as it will offer support for GPU-tiles and from this release it will allow
containers to be scheduled on the same GPU.

6 Summary
Telemetry Aware Scheduling is introduced as an extender to help Kubernetes and the community to improve the resource
optimization based on the telemetry data generated from the workload’s resources. TAS overcomes the performance
difficulties faced by the default scheduler by bridging data information from the platform telemetry to decisions taken at the
scheduler. It does that by targeting specific metrics to the desired workloads specifics within customized policies - a set of
customized strategies and rules - which allows TAS to forward the workloads to the right node in the working cluster. TAS also
helps to indicate critical nodes that should not receive workloads or even nodes that should have workloads descheduled from
one platform.
Platform Aware Scheduling that hosts TAS is ready to receive other extenders that utilize TAS code in order to take telemetry
into account for scheduling workloads with the desired resources.
TAS and other extenders within the Platform can provide the automation actions on workloads scheduling and many
opportunities to reduce the operational cost and at the same time reduce the overhead on the cluster management and make an
overall improvement of the system. Those interested in further information on the benefits of PAS/TAS can access the open-
source project repository at https://github.com/intel/platform-aware-scheduling where deployment scripts and instructions are
readily available.

https://builders.intel.com/docs/networkbuilders/telemetry-aware-scheduling-automated-workload-optimization-with-kubernetes-k8s-technology-guide.pdf
https://github.com/intel/platform-aware-scheduling/blob/master/telemetry-aware-scheduling/docs/health-metric-example.md
https://github.com/intel/platform-aware-scheduling

Technology Guide | Telemetry Aware Scheduler - Enhancement Utilization with Platform Aware Scheduling

 11

No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 1022/DN/WIPRO/PDF 648029-002US

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Challenges Addressed
	2.2 Technology Description
	2.3 Architecture

	3 Deployment
	3.1 Installation of TAS and Dependencies
	3.2 TAS in Operation

	4 Implementation Example
	5 Benefits
	6 Summary

