

Viana™ by meldCX Performance and Validation on Intel® Architecture Processors

Report

January 2024

Document Number: 791691-1.0

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

 $Performance \ varies \ by \ use, \ configuration \ and \ other \ factors. \ Learn \ more \ at \ \underline{www.Intel.com/PerformanceIndex} \ .$

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel* Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost

Intel, the Intel logo, OpenVINO and the OpenVINO logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

Contents

1.0		Overview	5			
	1.1	Objective				
	1.2	Intel® Distribution of OpenVINO™ toolkit				
	1.3	Viana™ by meldCX Vision Analytics Solution				
2.0		System Configuration				
	2.1	Video Stream Configuration	10			
	2.2	Video Analytics Algorithm Description and Parameters	11			
3.0		Profiling				
	3.1	Validation Steps	12			
	3.2	Checklist for Results Validation				
4.0		Access List Requirements				
	4.1	WAN Connection Diagram	13			
	4.2	Viana™ Access Lists				
		4.2.1 Ports and Services for Whitelisting	13			
		4.2.2 Ports and Services for Whitelisting – Common Ports	15			
5.0		Performance Test Results	16			
	5.1	MS11 - Zone Engagement	16			
		5.1.1 Intel® NUC 11 Extreme Kit				
	5.2	MS5 - People Counting	19			
		5.2.1 Dell PowerEdge R650	19			
	5.3	MS2 - Anonymous Audience Measurement	22			
		5.3.1 Dell PowerEdge R650 with Intel® Data Center GPU Flex 140	22			
6.0		Conclusion	24			

intel

Revision History

Date	Revision	Description
January 2024 1.0		Initial release.

January 2024

Document Number: 791691-1.0

1.0 Overview

This document provides an overview and the initial performance results for validation of Viana™ by MeldCX running on Intel® Architecture Processors.

Video Analytics can be performed either on CPU, on the integrated GPU, or with a dedicated GPU. The testing employed an RTSP server app that simulated the RTSP feed from the camera. The focus of this report will be to identify the boundary per server and the number of cameras it will be able to support.

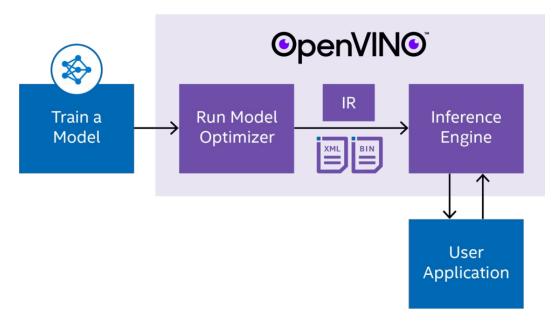
1.1 Objective

The objective of the validation process is to:

- i. Validate and size the system configuration for concurrent multi-stream video analytics.
- ii. Confirm CPU/RAM usage at maximum video analytics channel density.
- iii. For Video analytics, channels are added till total output frames continue to be above 90% of input frames**.
- iv. Confirm that overall software/hardware solution is steady and operates without fail(s) for at least 24 hours.
- v. Measure and log key system running parameters:
 - Overall system CPU and memory load
 - Video analytic inference, performance in frames per second.

1.2 Intel® Distribution of OpenVINO™ toolkit

The Intel® Distribution of OpenVINO™ toolkit helps developers run inference on a range of compute devices. This toolkit is designed to accelerate the development of machine learning solutions. Based on convolutional neural networks (CNNs), the Intel® Distribution of OpenVINO™ toolkit shares workloads across Intel® hardware (including accelerators) to maximize performance.


The Intel® Distribution of OpenVINO™ toolkit includes:

- A model optimizer to convert models from popular frameworks such as Caffe*,
 TensorFlow*, Open Neural Network Exchange (ONNX*), and Kaldi.
- An inference engine that supports heterogeneous execution across computer vision accelerators from Intel, including CPUs, GPUs, FPGAs, and the Intel® Neural Compute Stick 2 (Intel® NCS2).

Common API for heterogeneous Intel® hardware.

Basic workflow:

1.3 Viana™ by meldCX Vision Analytics Solution

Viana™ by meldCX is a vision analytics solution that combines IoT hardware and machine learning at the edge, with vision AI at its core. This platform enables organizations to harness the power of machine vision and artificial intelligence data without the need for developers.

With Viana™, the collection of anonymous audience data is facilitated through high-performance face mapping without keeping identifiable information - respecting audience privacy.

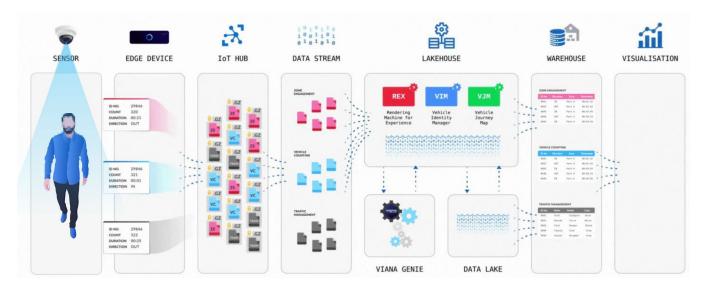
Through Viana™, users are able to anonymously measure how people work, shop, learn and play in physical and digital spaces; telling meaningful data stories about their customers, and empowering teams to make insightful and data-driven business decisions.

Viana[™] has a variety of built-in applications, including:

- Anonymous Audience Measurement Capture anonymous information such as age, gender, mood, and amount of time spent inside a space.
- Zone Engagement Measure human activity in specific zones within your spaces to know how people move and engage, and capture engagement (dwell times) to better understand behaviors of different audience personas.

 People Counting - Track how people move within a defined space, measuring data such as entries and exits and visit duration, as well as audience demographics.

ADATA CREATION
SPREP (SYNTH)


SIGNAY SAME
COMPANY

COMPAN

Figure 1. Viana™ Solution Architecture

Figure 2. Viana™ Data Infrastructure

§

2.0 System Configuration

Table 1. System Configuration

Hardware						
Server	Model	Processor	Base Frequency	Number of Cameras (per testing)		
MS11 Zone Engagement	Intel® NUC 11 Extreme Kit	Intel® Core™ i9-11900KB Processor	3.30GHz	Up to 9 cameras (RTSP streams)		
MS5 People Counting	Dell PowerEdge R650	Intel® Xeon® Gold 6338N Processor	2.20GHz	Up to 60 cameras (RTSP streams)		
MS2 Anonymous Audience Measurement	Dell PowerEdge R650 with Intel® Data Center GPU Flex 140	Intel® Xeon® Gold 6338N Processor Intel® Data Center GPU Flex 140	2.20GHz	Up to 59 cameras (RTSP streams)		
Software						
Operating System	Operating System Ubuntu 22.04 LTS					
RTSP Server	SP Server Used to simulate the total number of cameras that can be loaded into the Viana Software.					
Viana Edge App	The app that does the local inference of the RTSP cameras (using RTSP server as dummy cameras).					

Table 2. Detailed Hardware Specifications

Intel® NUC 11 Extreme Kit (Beast Canyon)			
Processor	Intel® Core™ i9-11900KB Processor (24M Cache, up to 4.90 GHz)		
GPU	1x Intel® Arc™ A770		
Memory	32GB SODIMM DDR4 3200		
Storage	512GB SSD Storage or higher		

Dell PowerEdge R650			
Processor	2x Intel® Xeon® Gold 6338N Processor (2.2GHz, 32 Core Processor, 32C/64T, 11.2GT/s, 48M Cache, Turbo, HT (185W) DDR4-2666)		
GPU	none		
Memory	16x 16GB RDIMM		
Storage	10x 1.92TB SSD		

Dell PowerEdge R650 with Intel® Data Center GPU Flex 140				
Processor	2x Intel® Xeon® Gold 6338N Processor (2.2GHz, 32 Core Processor, 32C/64T, 11.2GT/s, 48M Cache, Turbo, HT (185W) DDR4-2666)			
GPU	2x Intel® Data Center GPU Flex 140			
Memory	16x 16GB RDIMM			
Storage	10x 1.92TB SSD			

2.1 Video Stream Configuration

Component	Settings	Comments	
Video Analytic Input Video Stream Parameters	1920x1080@25fps (1080p) 1280x720@25fps (720p) 640x480@25fps (480p)	FHD, HD, and SD video streams	
Number of Input Video Streams for Analytics (Virtual cameras)	1-n	Each virtual camera stream has high-resolution and low-resolution videos	

2.2 Video Analytics Algorithm Description and Parameters

Item	Person Detection
Description	Model for Person Detection – Angled FOV
Detection CNN Architecture	YOLOv5
Service Name	Person-detection-angled
Version	2023100500
Date	05 Oct 2023

3.0 Profiling

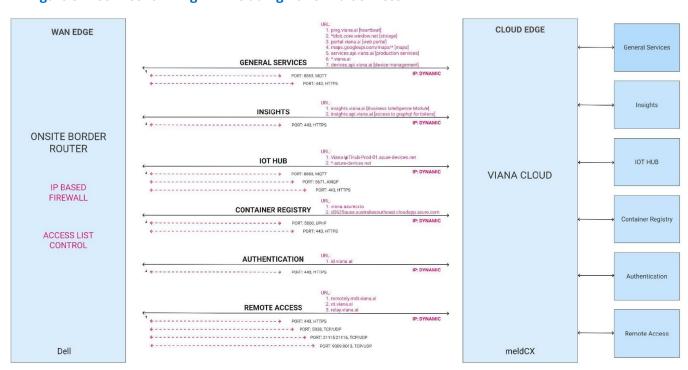
3.1 Validation Steps

- 1. Deploy and Configure systems under test (SUTs)
- 2. Install Ubuntu* Operating System and Analytics Platform with Testing Criteria.
 - a. Set up maximum virtual video streams with specified video sources for high-resolution streams.
 - b. Set up MeldCX VAS video analytics to process the virtual video streams.
- 3. Run the profiler tools to record hardware usage and other metrics over a given period of time.
- 4. Process results to generate tabulated data using multiple readings.
- 5. Analyze results and report.

3.2 Checklist for Results Validation

- i. MeldCX VAS is utilizing the optimum amount of CPU/iGPU/dGPU without compromising the system accuracy.
- ii. Processing frame rate is matching the expectations (>90% of input).
- iii. CPU usage and Memory consumption values are consistent during the test.

§


Document Number: 791691-1.0

Access List Requirements 4.0

WAN Connection Diagram 4.1

Figure 3. Connection Diagram Including Ports and Services

Viana™ Access Lists 4.2

4.2.1 Ports and Services for Whitelisting

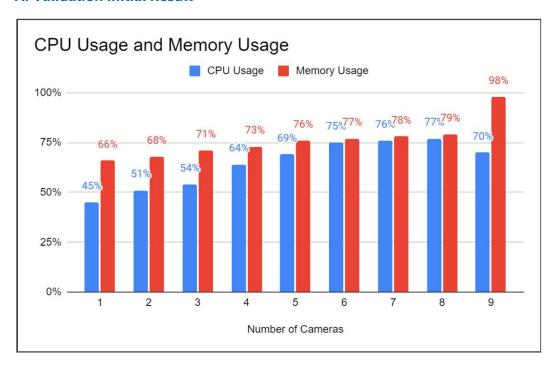
Source of access: Your Network

FQDN	Ports	Protocol	Direction	Description
portal.viana.ai	443	TCP/UDP/ICMP	Outbound	General Services. Viana Portal
maps.googleapi.com/maps/*	443	TCP/UDP	Outbound	General Services. Google Maps API
ping.viana.ai	443	TCP/UDP	Inbound/ Outbound	General Services. Device Heartbeat

*blob.core.window.net	443	TCP/UDP	Inbound/ Outbound	General Services. Blob Storage
services.api.viana.ai	443, 8883	TCP/UDP	Inbound/ Outbound	General Services. Production Services
*.viana.ai	443	TCP/UDP	Inbound/ Outbound	General Services. Viana Wildcard
devices.api.viana.ai	443	TCP/UDP	Inbound/ Outbound	General Services. Device Management
-	8000,8003	TCP/UDP	Inbound	General Services. Viana Inference
insights.viana.ai	443	TCP/UDP	Inbound/ Outbound	Insights. Business Intelligence Module
insights.api.viana.ai	443	TCP/UDP	Inbound/ Outbound	Insights. Access to GraphQL for Tokens
Viana-IoTHub-Prod-01.azure- devices.net	5671	TCP/UDP	Inbound/ Outbound	loT Hub. Azure loT Hub endpoints
*.azure-devices.net	443, 5671, 8883	TCP/UDP/MQTT	Inbound/ Outbound	loT Hub. Azure loT Hub endpoints
viana.azurecr.io	443, 5000	TCP/UDP	Inbound/ Outbound	Azure Container Registry
d0625ause.australiasoutheast. cloudapp.azure.com	443	TCP/UDP	Inbound/ Outbound	Container Registry. Azure Domain
id.viana.ai	443	TCP/UDP	Inbound/ Outbound	Authentication. Viana authenticator
remotely.mdt.viana.ai	443	TCP/UDP	Inbound/ Outbound	Remote Access
rd.viana.ai	21115:21119	TCP/UDP	Inbound/ Outbound	Remote Access
relay.viana.ai	9009:9013	TCP/UDP	Inbound/ Outbound	Remote Access. File Transfer

4.2.2 Ports and Services for Whitelisting – Common Ports

Common Ports	Description	Viana™ Use
80	Hypertext Transfer Protocol (HTTP). HTTP is the protocol that makes the World Wide Web possible.	No longer in use
449	HTTP Secure (HTTPS). HTTPS is the secure and encrypted version of HTTP. All HTTPS web traffic goes to port 443. Network services that use HTTPS for encryption, such as DNS over HTTPS, also connect at this port.	For Viana Cloud Software
5000	This TCP port is opened and used by Universal Plug N' Play (UPnP) devices to accept incoming connections from other UPnP devices. UPnP devices connect to each other using TCP protocol over port 5000.	For Viana Azure Hub
5671	Advanced Message Queuing Protocol (AMQP)[246] over TLS. Azure Service Bus always requires the use of TLS (Transport Layer Security). It supports connections over TCP port 5671. It requires the port 5671(default port used by AMQP) to be enabled in the network of the sender or receiver local system. Connection to Azure Service Bus will fail if this port is disabled.	For Viana Azure Services
8000, 8002, 8003	Container ports where Triton listens for HTTP requests (port 8000), listens for GRPC requests (port 8001), and reports Prometheus metrics (port 8002).	For Viana Inference Services
8883	Secure MQTT (MQTT over TLS. TCP/IP port 1883 is reserved with IANA for use with MQTT. TCP/IP port 8883 is also registered, for using MQTT over SSL.	For Viana MQTT Broker
9009, 9010, 9011, 9012, 9013	QuickTime Streaming Server.	For File Transfer
21115, 21116, 21117, 21118, 21119	Unassigned port that supports TCP and UDP Protocols.	For Remote Management (i.e., RustDesk)



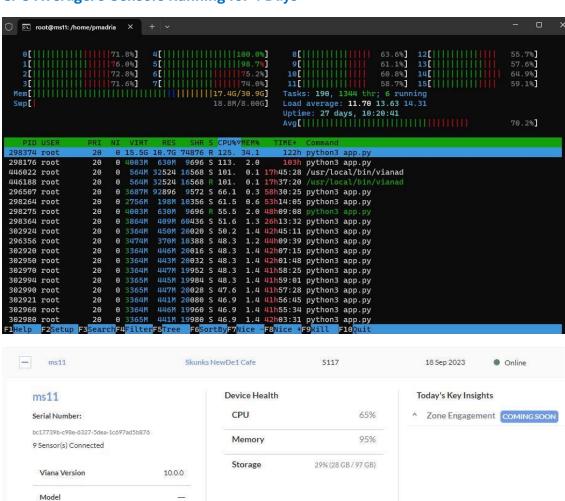
5.0 Performance Test Results

5.1 MS11 - Zone Engagement

5.1.1 Intel® NUC 11 Extreme Kit

5.1.1.1 AI Validation Initial Result

Architecture	x86_64
CPU op-mode(s)	32-bit, 64-bit
Address sizes	39 bits physical, 48 bits virtual
Byte Order	Little Endian
CPU(s)	16
On-line CPU(s) list	0-15
Vendor ID	GenuineIntel
Model name	11th Gen Intel® Core™ i9-11900KB @ 3.30GHz



CPU family	6
Model	141
Thread(s) per core:	2
Core(s) per socket	8
Socket(s)	1
Stepping	1
CPU max MHz	5000.0000
CPU min MHz	800.0000
BogoMIPS	6604.80

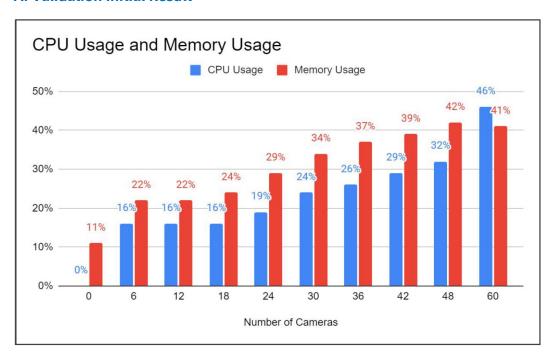
5.1.1.2 Utilization Before Adding Any Sensors

5.1.1.3 CPU Average: 9 Sensors Running for 4 Days

Last active: 22/09/2023 10:26 AM

OS

IP Address
MAC Address

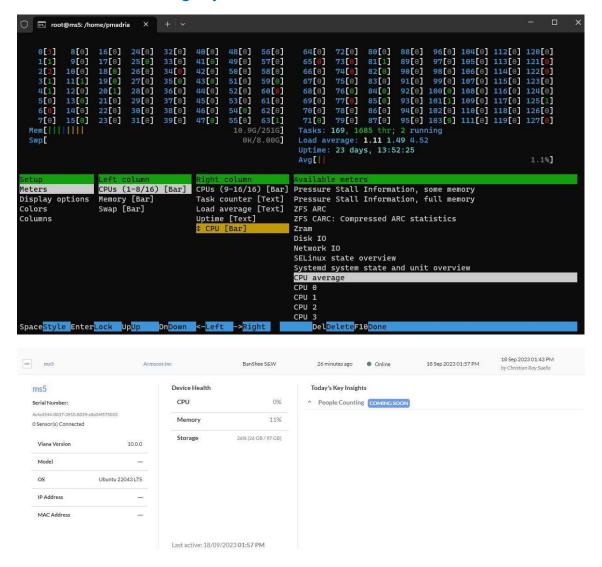

Ubuntu 22043 LTS

5.2 MS5 - People Counting

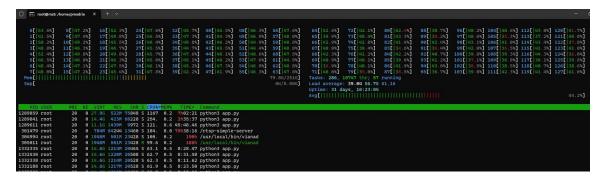
5.2.1 Dell PowerEdge R650

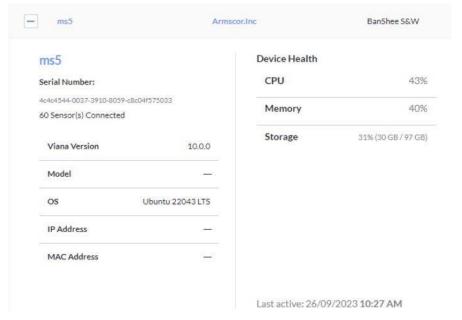
5.2.1.1 AI Validation Initial Result

Architecture	x86_64	
CPU op-mode(s)	32-bit, 64-bit	
Address sizes	46 bits physical, 57 bits virtual	
Byte Order	Little Endian	
CPU(s)	128	
On-line CPU(s) list	0-127	
Vendor ID	GenuineIntel	
Model name	Intel® Xeon® Gold 6338N CPU @ 2.20GHz	
CPU family	6	
Model	106	

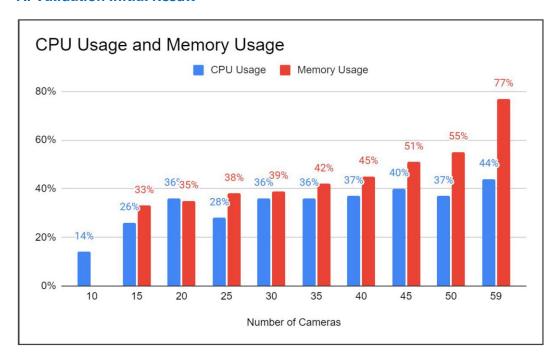

January 2024

Document Number: 791691-1.0


Thread(s) per core:	2
Core(s) per socket	32
Socket(s)	2
Stepping	6
BogoMIPS	4400.00


5.2.1.2 Utilization Before Adding Any Sensors

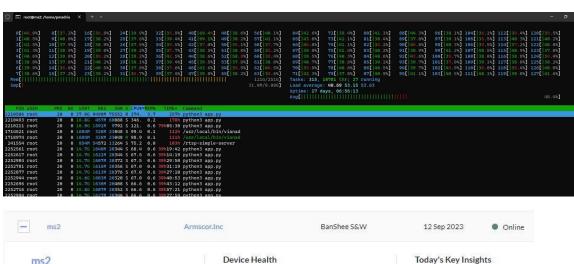
5.2.1.3 CPU Average: Up to 60 Cameras (RTSP Streams)

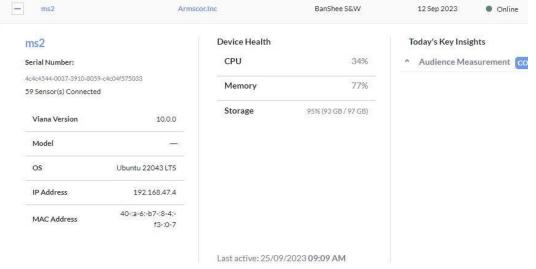


5.3 MS2 - Anonymous Audience Measurement

5.3.1 Dell PowerEdge R650 with Intel® Data Center GPU Flex 140

5.3.1.1 Al Validation Initial Result




Architecture	x86_64	
CPU op-mode(s)	32-bit, 64-bit	
Address sizes	46 bits physical, 57 bits virtual	
Byte Order	Little Endian	
CPU(s)	128	
On-line CPU(s) list	0-127	
Vendor ID	GenuineIntel	
Model name	Intel® Xeon® Gold 6338N CPU @ 2.20GHz	
CPU family	6	
Model	106	

Thread(s) per core:	2
Core(s) per socket	32
Socket(s)	2
Stepping	6
BogoMIPS	4400.00

5.3.1.2 CPU Average: Up to 59 Cameras (RTSP Streams) with Storage 95%+

January 2024

Document Number: 791691-1.0

6.0 Conclusion

MS2: Audience Measurement

MS5: People Counting

MS11: Zone Engagement

Edge Device / Server	Processor	Number of Cameras (per testing)
MS11 Intel® NUC 11 Extreme Kit	Intel® Core™ i9-11900KB Processor @ 3.30GHz	Up to 9 cameras (RTSP streams)
MS5 Dell PowerEdge R650	Intel® Xeon® Gold 6338N Processor @ 2.20GHz	Up to 60 cameras (RTSP streams)
MS2 Dell PowerEdge R650 with Intel® Data Center GPU Flex 140	Intel® Xeon® Gold 6338N Processor @ 2.20GHz Intel® Data Center GPU Flex 140	Up to 59 cameras (RTSP streams)